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Fractional Powers of Non-densely
Defined Operators

CELSO MARTINEZ - MIGUEL SANZ*

1. - Introduction and notation

In [1] Balakrishnan extended the concept of fractional powers to closed
linear operators A, defined on a Banach space X, such that ) - oo, 0[ is included
in the resolvent set p(A) and the resolvent operator satisfies

(Following Komatsu’s terminology in [10], we shall call these operators non-
negative).

Balakrishnan defined the power with base A and exponent a complex
number a (Re a &#x3E; 0) as the closure of a closable operator, JA, whose expression
is:

and

and

For

For

) and ,

) and ,
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The theory of fractional powers was studied and completed by other authors
(Hovel-Westphal [5], Kato [6]-[7], Komatsu [8]-[11], Krasnosel’skii-Sobolevskii
[12], Nollau [16], Watanabe [17], Westphal [18], Yosida [19],...). An extensive
bibliography can be found in Fattorini’s book [4].

This theory worked satisfactorily when the operator A is densely defined
since in this case the following properties hold:

;Additivity);

I Mapping Theorem);
is non-negative and for

(Multiplicativity).

In fact, a coherent theory of powers should satisfy (PI) to (P4).
However, if A is not densely defined and 0 ~ p(A), there was no

definition of fractional powers satisfying properties (P2), (P3) and (P4), until
the publication of [13].

There are simple examples of non-negative operators of this kind; for
instance: the indefinite integral operator on L’ (]o, oo[) defined in its natural

domain, and the derivative operator on whose domain is the Sobolev

space Moreover, we can obtain a lot of non-negative non-densely
defined operators, by considering the inverse of a one-to-one non-negative
operator and the adjoint of a densely defined non-negative operator, which are
not, in general, densely defined.

Many non-negative non-densely defined differential operators have been
studied by Da Prato-Sinestrari in [3].

In [13], Martinez-Sanz-Marco developed a new theory of powers for non-
negative operators which, apart from providing a considerable simplification of
Balakrishnan’s theory, is also valid (in the sense that fractional powers satisfy
(Pl)-(P4)) for non-densely defined operators. This theory is an extension of all
other theories developed up to the moment, although it coincides with the one
introduced in [1] in the case of dense domains.

In the present paper we have chosen a different point of view: taking as
a starting-point Balakrishnan’s theory about densely defined operators, we shall
give a definition of power for non-densely defined operators, and thus we shall,
in a straightforward manner, obtain a theory satisfying properties (PI) to (P4).
In Section 3 we prove that there is a unique family of closed linear operators,

Re a &#x3E; 01, satisfying properties (Pl)-(P2) and the auxiliary condition
that the operator P(a) is an extension of the operator J~. Consequently we
obtain that the definition presented here is equivalent to the one given in [13].
In this section we study the equivalence between the uniqueness of a family of
operators satisfying properties (PI) to (P4) and the uniqueness (studied in [15]
and [16]) of non-negative n-th roots of a non-negative operator. We prove that
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there exist non-negative operators A for which there are families of operators,
different from the family of fractional powers of A, satisfying (PI) to (P4).

Finally, we prove that, if A is a one-to-one non-negative operator, its
inverse A-’ is non-negative and (A-1 )a = and if A is densely defined, its
adjoint A* is non-negative and (A*)« _ (Aa)* for a E C : Re a &#x3E; 0. The previous
theories to the one developed in [13] did not satisfy these properties. The first
result can be applied to prove that the fractional derivative of Riemann-Liouville
is the inverse of the fractional integral of Riemann-Liouville, both considered
as operators defined on suitable functional spaces. The second property allows
us to prove that the fractional integral of Weyl is the adjoint of the fractional
integral of Riemann-Liouville on LP(]O, oo[), and so we obtain in this way a
formula for fractional integration by parts.

2. - Construction of fractional powers. Additivity

Throughout this paper, A shall be a non-negative operator defined on a
Banach space X such that D(A) =/ X and a shall be a complex number with
Re a &#x3E; 0.

Let us consider the Banach space X = D(A) and the operator A l whose
domain is {1J E D(A) : A~ E defined as A, 0 = A~ for ~ E 

The operator Al is obviously a non-negative densely defined operator (note
that D(A2) c D(A1), and the property lim A(A + A)-1~ =~ for 0 E D(A), valid

______

for any non-negative operator, implies that D(A2) = D(A)) on the Banach space
Xi.

DEFINITION 2.1. We define the operator A« as (1 + A)Al ( 1 + A)-l1J
on

where A1 is the Balakrishnan power (J~ ) of the (densely defined) operator A1.

REMARK 2.2. The first resolvent formula easily shows that, replacing the
resolvent operator (1 + A)-1 1 by (~ + A)-1 1 (A &#x3E; 0) in definition 2.1, would yield
the same definition. Moreover, it is clear that A" is an extension of 

THEOREM 2.3. closed operator.

PROOF. This is a straightforward consequence of the definition of A" and
the fact that A1 is a closed operator. D
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LEMMA 2.4. Both of the following assertions hold:

Moreover,

The definition of the operator JI implies that Ran JI C D(A). Then, by using
the former equality and the fact that A is a non-negative operator we obtain
that

Since A1 is a closed operator on Xl, then 1J e D(A1 ) and = 

(ii) Let {3 be a complex number such that 0  Re (3  1 and Re( a + (3) &#x3E; 1.

If 1J E D(Aï) and e D(A) we conclude, owing to (i), that e 

The additivity of the fractional powers of A 1 implies that

and consequently ~ E D(A1 ). 0

THEOREM 2.5. (Additivity). If Re a &#x3E; 0, Re,3 &#x3E; 0, then Aa+P = AaA,3.

PROOF. It is clear that Aa+P is an extension of the operator AaA,3.
Now, given 0 E we know that

and Applying part (ii) of Lemma 2.4 we obtain

Thus 0 E and applying the definition of All we conclude that E

D(Aa) and = A«+a~. D

COROLLARY 2.6. Given n E N, then An = AA... A (n times).

then
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PROOF. Let us suppose first that 0  Re a  1. If 0 E then

+ A) - 10 E D(A) and according to (i) of Lemma 2.4,

and consequently ~ E D(A). The other inclusion is clear.
When Re a &#x3E; 1, we have

COROLLARY 2.8. The following statements are equivalent:

Then Moreover, the operators JI satisfy the additivity
property:

PROOF. (i) ~ (ii) follows directly from the definitions of the operators
JI and Aï, and the fact that Al is a closed operator. (ii) ~ (iii) is evident.

(iii) ~ (i). Let n be an integer number such that n &#x3E; Re a. Since A is
a non-negative operator, we get for 0 E D(A), and by

u-00

Corollary 2.7 we obtain that

and
1

Therefore, we conclude that ~ E and = Aa1J.
As the operators JI coincide with the operators All, the additivity for the

operators follows from the corresponding property for the fractional powers
of the (densely defined) operator Ai . D

REMARK 2.9. The additivity for the operators J~, although A was not
densely defined, was already known (see [8], [13] and [16]).

3. - Uniqueness

In this section we study the relationship between the theory of fractional
powers given in this paper and the one constructed in [13]. We shall see that
they are both equivalent; our proof will consist in showing that this equivalence
is true for any two definitions of fractional powers such that additivity holds,
the power with exponent equal to one is the base operator and both definitions
are extensions of the operator JA defined by Balakrishnan.
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DEFINITION 3.1. A family of closed linear operators Re a &#x3E; 0} is
an additive class of operators associated to A if

PROPOSITION 3.2. If Re a &#x3E; 01 is an additive class of operators
associated to A, then

(i) P(a) commutes with (I + A)--’.
for some integer numbers n, then

PROOF. (i) First, let us suppose that 0  Re a  1. If 0 E D[P(a)], then
the element + A)-1 ~ _ ~ - ( 1 + belongs to D[P(a)], since

Thus I and

from which we conclude that P(a)(I + A)-1 ~ _ ( 1 + 
Given any complex number a with Re a &#x3E; 0, let n be an integer such

that n &#x3E; Re a. Applying additivity and commutativity of P(a/n) with ( 1 + A)-’,
we obtain that P(a) commutes with ( 1 + A)-’.

(ii) The proof is similar to that of [13, Lemma 3.1]. We shall give a
brief outline. By induction on n it is sufficient to prove it for n = 1. Let

A(l +A)-l1J E D [P(a)] and m be an integer number such that 2m &#x3E; Re a. By
using (i) we obtain

The right-hand side belongs to D[P(a)] and since

we conclude that 0 E D[P(a)]. D

THEOREM 3.3. Let Re a &#x3E; 01 and Re a &#x3E; 01 be two additive
classes of operators associated to A. If P(ao) and Q(ao) are extensions of the
operator then P(ao) = Q(ao).



449

PROOF. Let n be an integer number such that n &#x3E; Re ao. Given

1J E D[P(ao)], Proposition 3.2 (i) gives

and so

and by property (ii) of Proposition 3.2 we get that 0 E D[Q(ao)], and commuting
with (1 + A)-n in (3.1 ), we conclude that = 

Taking as a starting point 0 E D[Q(ao)] we would argue in a similar way.
n

REMARK 3.4. If {Q(a), Re a &#x3E; 01 satisfies all the hypothesis of Theo-
rem 3.3, to prove that Q(ao) is an extension of P(ao) we only need suppose
that the operator P(ao) commutes with the resolvent operator ( 1 + A)-1 I and that

is an extension of 

COROLLARY 3.5. If A is not densely defined, the fractional powers as
defined in this paper coincide with the ones given in [13].

REMARK 3.6. In [13, Theorem 4.1, Corollary 4.1 and Theorem 4.2] it has
been proved that the definition of fractional powers presented there, satisfied
the spectral mapping theorem (property (P3)) and the multiplicativity (property
(P4)). Both properties were established for any non-negative operator and their
proofs were independent of its domain being dense or not.

When the operator is densely defined, both properties had been proved
before the publication of [13]. Balakrishnan [1, Theorem 3.1] ] gave a proof for
densely defined non-negative operators and his proof was based on giving an
integral representation of the resolvent of the fractional power. On the other
hand, Watanabe [17, Theorem 1] ] proved the multiplicativity property for the
case that the base operator is densely defined.

We can prove directly both properties for non-densely defined operators,
starting from the definition presented here. The proofs are very simple
and probably easier than those of [13], but depend on the validity of the
corresponding properties for densely defined operators.

REMARK 3.7. In Theorem 3.3 we have proved that an additive class
of operators Rea &#x3E; 0} associated to a non-negative operator A and
satisfying that the operators P(a) extended to the operators J~, coincides with
the class facl, Re a &#x3E; 01 of fractional powers of A. The question that naturally
arises is whether the last property can be substituted by the following two
properties:
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, then P(cx) is non-negative and

(Multiplicativity Property);

to claim the uniqueness of a such additive class.
In Theorem 3.9 we shall prove that, under certain analyticity hypothesis,

this question is similar to the uniqueness, for each integer n &#x3E; 2, of a non-

negative n-th root of A with spectrum equal E ~ (A) ~ .
In [15] we have found infinitely many counterexamples that prove the

non-uniqueness of non-negative n-th roots of a non-negative operator A.

Consequently, there exist, in general, additive classes of operators associated to
A, different from the class Re a &#x3E; 01 of fractional powers of A, satisfying
the spectral and multiplicativity properties.

In our next proposition we study the analyticity conditions that fractional
powers satisfy.

PROPOSITION 3.8. If 1J E with Re cxo &#x3E; 0, the mapping a - 
analytic for 0  Re a  Re ao.

PROOF. In [ 1, Lemma 2.2] it has been proved that if ~ e D(An), the

mapping cx -~ is analytic for 0  Re a  n. This fact is a direct consequence
of the definition of the operator JA .

Let a 1 E C~ : 1  Re ao Choosing an integer
n &#x3E; Re ao and a complex number a2 satisfying that 0  Re a2  Re al and
Ima2 = Im ao, the operator B = is a non-negative operator, as a

consequence of the multiplicativity of fractional powers, and A 12 E D(Bn).
Applying [1, Lemma 2.2] we obtain that the mapping

is analytic in the region 0  Re n(a - a2) / (ao - a2)  n, and so in a1. F-1

THEOREM 3.9. Let Re a &#x3E; 01 be an additive class associated to
A, satis, fying the spectral property (3.2), the multiplicativity property (3.3) and
the property of analyticity:

the mapping a ~ P(a)o is analytic in

Then P(a) = Aa for Re a &#x3E; 0 if and only if there exists a unique non-negative
operator B with spectrum a(B) = z satisfying that Bn = A, for
any integer n.

PROOF. Let B be a non-negative n-th root of A, different from A1/n,
satisfying that u (B) = z E a (A) 1. It can be easily seen that
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is an additive class associated to A for which the conditions of analyticity
(3.4) and the spectral property (3.2) hold. Moreover, this class satisfies the

multiplicativity property (3.3) (see Watanabe [17, Theorem 1] and Komatsu [8,
Theorem 10.6]) and obviously P(a) does not coincide with A0152 for any cx e C
with Re a &#x3E; 0.

Conversely, let us now suppose the uniqueness, for any integer number n,
of a non-negative n-th root of A with spectrum equal e ~(-A)}. Given
an additive class associated to A, Re a &#x3E; 01, satisfying the hypothesis of
the theorem, then = A1/n. The additivity implies that P(q) = Aq for any
rational number q. The analiticity of the mappings a - and a --+ in
the region 0  Re cx  n for 0 E D(An), and the equality between the operators
P(q) and Aq for any rational q imply by analytic continuation that P(a) is
an extension of the operator Ja, and applying Theorem 3.3 we obtain that

P(a) = A0152 for any complex number a with Re a &#x3E; 0. D

4. - Fractional powers of the inverse and the adjoint

The aim of this section is the study of the fractional powers of the inverse
of a one-to-one non-negative operator and those of the adjoint of a densely
defined non-negative operator. Note that, in general, these operators are non-
densely defined and non-negative and consequently this is another reason to
construct a satisfactory theory of fractional powers for non-negative operators,
valid too for the case where the base operator is non-densely defined. We shall
prove that fractional powers preserve the inverse and the adjoint, when these
operators exist.

THEOREM 4.1. If A is a one-to-one, non-negative operator, then A-’ is

non-negative and (A-1)« _ (Aa)-1 for Re a &#x3E; 0.

PROOF. The identity A(A + A-1)-1 - A(~-1 + A)-l = 1 - a-1(a-1 + A)-l
proves that the operator A-’ is non-negative. Moreover, the operators A0152 are

one-to-one operators. In fact, if 0 E D(Aa) and = 0, then

for any integer number n (n &#x3E; Re a). Using that A and ( 1 + A)-1 are one-to-one
operators we conclude that 0 = 0.

As a consequence of the additivity of the fractional powers it is sufficient
to prove this theorem for 0  Re a  1.

The additivity of the fractional powers of the operator A easily implies
that the family of closed operators Re a &#x3E; 01 is an additive class
associated to A-1.

Let 0  Re a  1. If we show that the operator (Aa)-1 is an extension
of the operator J1-1 (associated to A-’), then Theorem 3.3 will allow us to
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conclude that

Let The equality implies
. Applying the definition we obtain

with J-l = A~’ . This last integral is precisely J1-11J. D

THEOREM 4.2. If A is a densely defined non-negative operatoq then

A* is a non-negative operator in the dual space X* and (~4*)~ = (Aa)* ,for
a e C

PROOF. The equality [(a +A)-1 ] * _ (~ +A* )-1 (A &#x3E; 0) and the non-negativity
of A* follows easily from the definition of the adjoint operator.

According to Corollary 2.7, the operators Aa are densely defined. Using
the additivity of fractional powers it is clear that the family

satisfies P(l) = A* and the property:

us an extension of 1

To prove that (~4*)~ is an extension of (Aa)* we will apply Remark 3.4.
We have to check that (Aa)* commutes with the resolvent operator (1 + A*)-1
and that (Aa)* is an extension of the operator JA* .

The first assertion is an immediate consequence of the commutativity of
Aa with the resolvent operator (1 +A)-’.

Let us now prove the second assertion. First, let us suppose 0  Re a  1.

As A is densely defined, we know that (Aa)* _ (JA)* = Thus it is sufficient
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to check that (J~)* is an extension of and 1b E D(A), then

and as 0 E D(A*) we obtain

I /

from which 0 E D(J~)* and (JÄ)*1J = JA*~. 

’

The general case for Re a &#x3E; 0 is reduced to the former case by using the
additivity of the operators J~. and property (4.1 ).

Let us now prove directly that (Aa)* is an extension of (A*)~. Let

1J E D[(A*)a] and 1b E D(Aa). Let n be an integer such that n &#x3E; Re a. Then

where the third equality is a consequence of the fact that (Aa)* is an extension
of JI.. Hence 0 E D[(Aa)*] and (A~)*~ _ D
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