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Hyperbolic Systems of Partial Differential
Inclusions

JEAN-PIERRE AUBIN - HÉLÈNE FRANKOWSKA

0. - Introduction

Let X, Y, Z denote finite dimensional vector-spaces, f : X x Y - X be
a single-valued map, G : X x Y--Y be a set-valued map and A E feY, Y) a
linear operator. We set throughout this paper a = minllxll=l (Ax, x).

We recall that the contingent cone TK(x) to a subset K c X at x E K is
defined by 

- - - - ---

and that the contingent derivative DR(x, y) of a set-valued map R : X~Y at
(x, y) E Graph(R) is defined by

When R = r is single-valued, we set Dr(x) := Dr(x, r(x)). Naturally, Dr(x)(u) =
r’(x)u whenever r is differentiable at x.

Usually, a Lipschitz map r is not differentiable, but contingently differen-
tiable in the sense that its contingent derivative has nonempty values. In this
case, it associates to every direction u E X the subset

See [8, Chapter 5] for more details on differential calculus of set-valued maps.
In this paper, we shall look for single-valued and set-valued contingent

solutions to hyperbolic systems of partial differential inclusions, i.e., single-
valued maps r : X H Y with closed graph satisfying

Pervenuto alla Redazione il 9 Aprile 1991.
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and set-valued maps R : X--Y with closed graph satisfying

We observe that when r is differentiable, the contingent differential
inclusion boils down to a quasi-linear hyperbolic system of first-order partialdifferential equations

Motivations: Tracking Property - Consider the system of differential
inclusions

The solutions to the inclusion

are the maps r : X H Y, regarded as observation maps, satisfying what is called
the tracking property: for every xo E X, there exists a solution (x(.), y( ~ » to
this system of differential inclusions (1) starting at (xo, yo = r(xo)) and satisfying

One can also look for set-valued contingent solutions R : X--Y to the inclusion

characterizing the tracking property : for every Xo E Dom(R) and every
yo E R(xo), there exists a solution (~(’),2/(’)) to the system of differential
inclusions

starting at (xo, yo) and satisfying

1 For several special types of systems of differential equations, the graph of such a map r

(satisfying some additional properties) is called a center manifold.
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Motivations: Inclusions governing feedback controls - The partial
differential inclusions governing the feedback controls r : K - Y regulating
solutions of a control system (U, f ):

belong to the class studied in this paper, as it was mentioned in [9,11,12]. Here,
U : X--Y is a closed set-valued map, f : Graph(U) - X a continuous (single-
valued) map with linear growth and K = Dom(U). Let y~ : Graph(U) - R+
be a nonnegative continuous function with linear growth (in the sense that

We look for feedback controls r satisfying the following property: for any
xo E K, there exists a solution to the differential equation

such that u(t) := r(x(t)) E U(x(t)) is absolutely continuous and fulfils the growth
condition

for almost all t. Such feedback controls r are solutions to the following
contingent differential inclusion

satisfying the constraints

Outline - We extend in the first section Hadamard’s formula of solutions
to linear hyperbolic differential equations to the set-valued case. Namely,
we shall prove the existence of a set-valued contingent solutions R~ to the

decomposable system

where Q : K-&#x3E;X and y:K-y are two Marchaud maps2, K C X is closed
and A E feY, Y).

If we denote by 5~(x, ~ ) the set of solutions x( ~ ) to the differential
inclusion x’(t) E starting at x, then the set-valued map R~ : X--Y
defined by

2 A Marchaud map C : K--Y is an upper semicontinuous set-valued map with nonempty
compact convex images and with linear growth.
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is the largest contingent solution with linear growth to this partial differential
inclusion when A := nlinllxll=l (Ax, x) &#x3E; 0 is large enough. We also show that it is
Lipschitz whenever (D and W are Lipschitz and compare the solutions associated
with maps (Di and Ti (i = l, 2).

We then turn our attention in the second section to partial differential
inclusions of the form

when A &#x3E; 0 is large enough, f : X x Y H X is Lipschitz,
Lipschitz with nonempty convex compact values and satisfies3

When G is single-valued, we obtain a global Center Manifold Theorem,
stating the existence and uniqueness of an invariant manifold for systems of
differential equations with Lipschitz right-hand sides (existence and uniqueness
of a contingent solution r has been proved by viscosity methods in [6,7] when
A = Al).

We end this paper with comparison theorems between single-valued and
set-valued solutions to such partial differential inclusions, using both the
extension of Hadamard’s formula and some kind of maximum principle.

The authors are gratefully indebted to C. Byrnes for stimulating
discussions.

Notations - If r : X H Y, we set

and we denote by CA(X, Y) the set of all Lipschitz maps from X to Y.
When G : X--Y is Lipschitz with nonempty closed images, we denote

by "GilA its Lipschitz constant, the smallest of the constants 1 satisfying

where B is the closed unit ball in Y.

When L c X and M c X are two closed subsets of a metric space, we
denote by

3 We when K c X. It is equal to - oo whenever K is empty.
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their semi-Hausdorff distance4, and recall that A(L, M) = 0 if and only if L c M.
If C and T are two set-valued maps from X to Y, we set

We recall that solutions are always understood as set-valued or single-valued
maps with closed graph.

1. - Contingent Solutions to Decomposable Systems

We need first to establish some properties of contingent set-valued solutions
to decomposable systems.

Let K c X be a closed subset, C : K--X and T : be two
Marchaud maps and A E L(Y, Y). We say that K is a viability domain of (D if

We set

and we observe that

We look for a solution K--Y to the decomposable system

Denote by the set of solutions x( ~ ) to the differential inclusion
E starting at x viable in K (in the sense that x(t) E K for all

t &#x3E; 0), which exists thanks to the Viability Theorem (see [2,3]).

4 The Hausdorff distance between L and M is max M), A(M, L)1, which may be
equal to oo.
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We introduce the set-valued K--Y defined5 by

THEOREM 1.1. Assume that (D : K--X and T : K--Y are Marchaud

maps and that K is a closed viability domain of 1&#x3E;. If A is large enough, then
R* : K~Y defined by (5) is the largest contingent solution to inclusion (4)
with linear growth and is bounded whenever ~I’ is bounded.

More precisely, if there exist positive constants a, ~3 and i such that

and if A &#x3E; a, then

Furthermore, if K := X and (D, ~’ are Lipschitz, then R* : X--Y is also

Lipschitz (with nonempty values) whenever A is large enough:

for every Xl, X2 E X.
Formula (5) shows also that the graph of R* is convex (respectively a

convex cone) whenever the graphs of the set- valued maps (D and T are convex
(respectively are convex cones).

PROOF.

1. - We prove first that the graph of R* satisfies contingent inclusion
(4).

Indeed, choose an element y in R*(x). By definition of the integral of a
set-valued map, this means that there exist a solution x(.) E to the

5 
By definition of the integral of a set-valued map (see [8, Chapter 8] for instance), this means

that for every y E ~(~c), there exist a solution x( ~ ) E to the differential inclusion

x’(t) E starting at x and z(t) C T(x(t)) such that
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differential inclusion x’(t) E starting at x which is viable in K and

z(t) E T(x(t)) such that

We check that for every T &#x3E; 0

By observing that

we deduce that

Since (D is upper semicontinuous, we know that for any - &#x3E; 0 and t small

enough, c + -B, so that x’(t) E + eB for almost all small t.

Therefore, being closed and convex, we infer that for T &#x3E; 0 small enough,
r

thanks to the Mean-Value Theorem. This latter set

being compact, there exists a sequence of Tn &#x3E; 0 converging to 0 such that

converges to some u E (D(x).
v 

In the same way, T being upper semicontinuous, ’¥(x(t)) c T(x) + 8B for
any 6 &#x3E; 0 and t small enough, so that z(t) E T(x) + -B for almost all small t.

The Mean-Value Theorem implies that
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since this set is compact and convex. Furthermore, there exists a subsequence
of zn converging to some zo c T(x). Hence, since

we infer that

so that

2. - Let us prove now that the graph of m is closed when A is large
enough. Consider for that purpose a sequence of elements (xn, Yn) of the graph
of ~ converging to (x, y). There exist solutions a~(’) e to the
differential inclusion x’ E starting at xn, viable in K and measurable
selections zn(t) E ’P(xn(t)) such that

The growth of (D being linear, there exists a &#x3E; 0 such that the solutions x,,(.)
obey the estimate

By [8, Theorem 10.1.9], we know that there exists a subsequence (again
denoted by) ~(’) converging uniformly on compact intervals to a solution

The growth of W being also linear, we deduce that, setting un(t) . :=

When A &#x3E; a, Dunford-Pettis’ Theorem implies that a subsequence (again
denoted by) un( ~ ) converges weakly to some u( ~ ) E Ll(O, 00; Y). This implies
that zn( . ) converges weakly to some z(.) in the space The

Convergence Theorem [8, Therem 7.2.2] states that z(t) e for almost
00

every t. Since the integrals yn converge to - f e-Atz(t)dt, we have proved that
o
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3. - Estimate (6) is obvious since any solution x(-) E satisfies

so that, if A &#x3E; a,

Assume now that M : K--Y is any set-valued contingent solution to
inclusion (4) with linear growth: there exists 6 &#x3E; 0 such that for all x E K,

+ 1 ). Since Graph(M) enjoys the viability property for the set-
valued map (x, y)--((D(x), Ay + T(x)), we know that for any (x, y) E Graph(M),
there exists a solution (x( ~ ), y( ~ )) to the system of differential inclusions

starting at (x, y) such that y(t) E M(x(t)) for all t &#x3E; 0. We also know that
The second differential

inclusion of the above system implies that

is a measurable selection of T(x(.)) satisfying the growth condition

Therefore, if A &#x3E; a, the function e-At z(t) is integrable. On the other hand,
integrating by parts e-Atz(t) := e-Aty’(t) - e-AtAy(t), we obtain

which implies that

by letting T H oo. Hence we have proved that6 M(X) C 

4. - Assume now that K = X and that Q and T are Lipschitz, take any

6 This proof actually implies that any set-valued contingent solution M with polynomial
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pair of elements x I and X2 and where

By the Filippov Theorem 7 there exists a solution x2( ~ ) E such that

We denote by z2(t) the projection of onto the closed convex set BJI(X2(t)),
which is measurable thanks to [8, Corollary 8.2.13] and which satisfies

growth in the sense that for some P&#x3E;o,

is contained in m whenever A &#x3E;ap, i.e., that there is no contingent solution with polynomial growth
other than with linear growth (and bounded when ~=o).
7 

Adapted to the case of solutions defined on [0, oo [. Filippov’s Theorem (see [5, Theorem
2.4.1 for instance), yields an estimate on any finite interval [0, T] : If 0 is c-Lipschitz with

nonempty closed values, and if an absolutely continuous function y( . ) and an initial state xo are
given, then there exists a solution x( ~ ) to the differential inclusion (7)i) defined on [0, T] starting
at xo and satisfying the estimate

We can extend it to the interval [0, +oo [. Indeed, there exists a solution 3;( ’ ) to the differential
inclusion defined on [0, T] starting at xo satisfying estimate (8) and in particular

There also exists a solution z( . ) to the differential inclusion (7)i) starting at x(T) estimating the
function t H y(t + T) and satisfying

Hence we can extend x( ~ ) on the interval [0, 2T] by concatenating it with the function t -~

x(t) := z(t - T) on the interval [T, 2T], we check that the above estimates yield (8) for
t E [0, 2T] and we reiterate this process. See the forthcoming monograph [23].
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Therefore, if , belongs to IL(z2) and satisfies

THEOREM 1.2. Consider now two pairs (1&#x3E;1, and ((D2, T2) of Marchaud
maps defined on X and their associated solutions

to inclusion (4). If the set-valued maps (D2 and T2 are Lipschitz, and if
a &#x3E; then

PROOF. Choose where

In order to compare x 1 ( ~ ) with the solution-set SCP2 (x, .) via the Filippov
Theorem, we use the estimate

Therefore, there exists a solution X2 ( - ) C that

by Filippov’s Theorem. As before, we denote by z2(t) the projection of zl(t)
onto the closed convex set ~2(~2~)), which is measurable and satisfies
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Therefore, if belongs to 1L2(z) and satisfies

When Q := p, y’ = y are single-valued, we obtain:

PROPOSITION 1.3. Assume that y~ : X 1---* X and 0 : X - Y are Lipschitz
and that 0 is bounded. Then when A &#x3E; 0, the map r := r(p, ~) defined by

is the unique bounded single-valued solution to the contingent inclusion

and satisfies

Furthermore, for all Lipschitz single-valued maps pi : X f--; X, 1/;i : X f--~ Y, i =

1, 2 such that 0 1, 7P2 are bounded and all A 

The proof can be derived from Theorems 1.1 and 1.2 or directly from the
properties of linear systems of hyperbolic equations established in [7].

2. - Existence of a Lipschitz contingent solution

We shall now prove the existence of a contingent single-valued solution
to inclusion
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THEOREM 2.1. Assume that the map f : X x Y H X is Lipschitz, that
G : X--Y is Lipschitz with nonempty convex compact values and that

for some c &#x3E; 0.

Then if A &#x3E; (where v is the dimension of X), there
exists a bounded Lipschitz contingent solution to the partial differential inclusion
(12).

PROOF. Since for every Lipschitz single-valued map s( ~ ), the set-valued
map sex)) is Lipschitz (with constant IIGIIA(l and has convex

compact values, [8, Theorem 9.4.1] implies that the subset G, of Lipschitz
selections 1b of the set-valued map with Lipschitz constant not
larger than is not empty (where v denotes the dimension of
X). We denote by ~ps the Lipschitz map defined by := f(x,s(x)), with
Lipschitz constant equal 

The solutions r to inclusion (12) are the fixed points to the set-valued
map N : defined by

Indeed, if r E N (r), there exists a selection V) E Gr such that

Since I I G(x, y)11  c(i + Ilyll), we deduce that any selection o E G, satisfies

Therefore, Proposition 1.3 implies that if A is large enough,

We first observe that when A &#x3E; c,

When A &#x3E; we denote by

the smallest root of the equation
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which is positive. We observe that

and infer that

because r being of the form r(y~s, ~s), satisfies by Proposition 1.3:

Let us denote by B~(a) the subset of CA(X, Y) defined by

which is compact (for the compact convergence topology) thanks to Ascoli’s
Theorem.

We have therefore proved that if A &#x3E; the set-valued

map N sends the compact subset B 00 1 (A) to itself.
It is obvious that the values of JI are convex. Kakutani’s Fixed-Point

Theorem implies the existence of a fixed point r e M(r) if we prove that the

graph of N is closed.

Actually, the graph of the restriction of M to B~(~) is compact. Indeed,
let us consider any sequence (sn, rn) E Graph(N) such that sn E B~(a). Since
B~(~) is compact, a subsequence (again denoted by) (sn, rn) converges to some
function

But there exist bounded Lipschitz selections "pn E with Lipschitz constant
such that

Therefore a subsequence (again denoted by) 1/;n converges to some function

1/; E GS. Since converges obviously to ’Ps, we infer that rn converges to

r(ps,1/;), i.e., that r E ).(8), since r is continuous by formula (11) of Proposition
1.3.

3. - Comparison Results

The point of this section is to compare two solutions to inclusion (12), or
even, a single-valued solution and a contingent set-valued solution M : X--Y.
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We first deduce from Theorem 1.2 the following "localization property":

THEOREM 3.1. We posit the assumptions of Theorem 2.1 with A E feY, Y)
such that À &#x3E; (where v is the dimension of X). Let
~ : X--X and T: be two Lipschitz and Marchaud maps with which
we associate the set-valued map R.~. defined by

Then any single-valued contingent solution r(-) to inclusion (12) having linear
growth satisfies the following estimate

In particular, if we assume that

then all single-valued contingent solutions r(.) to inclusion (12) with linear
growth are selections of R,,.

PROOF. Let r be any single-valued contingent solution to inclusion (12)
with linear growth. One can show that r can be written in the form

by using the same arguments as in the third part of the proof of Theorem 1.1.
We also adapt the proof of Theorem 1.2 with := f (x, r(x)), zl (t) := z(t),

C2 := I&#x3E; and T2 := T, to show that the estimates stated in the theorem hold
true. D

The next comparison results are consequences of the following kind of
maximum principle.

We recall that when M is Lipschitz around x and y E M(x), its adjacent
derivative DP M(x, y) c DM(x, y) is defined by

A set-valued map M is said to be derivable at (x, Graph(M) if the

contingent and adjacent derivatives coincide at (x, y) and derivable if it is
derivable at every point of its graph. See [8, Chapter 5] for more details.
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LEMMA 3.2. (MAXIMUM PRINCIPLE) We posit the assumptions of Theorem
2.1 with A E leY, Y) such that A &#x3E; Let M be a

Lipschitz set-valued map such that y)) is nonempty for every
(x, y) E Graph(M). Let r be any Lipschitz single-valued solution to (12) and set

If the supremum

is finite, then

The same conclusion holds true if we assume that the solution r is derivable
and when we replace the adjacent derivative of M by its contingent derivative.

PROOF. It is sufficient to consider the case when the supremum

is achievedg at some (x, y) of the graph of M and when 6 &#x3E; 0.

Let us take 0 := v - Ar(x) in the set

Set u := f (x, r(x)). Since r is Lipschitz, there exists a sequence hn &#x3E; 0

converging to 0 such that

Since M is Lipschitz, we deduce that for any w E y)(u), there exists a
sequence wn converging to w such that 9 + hnwn E + hnu). Thus

Therefore,

8 If the nonnegative bounded function y) I does not achieve its maximum,
we use a standard argument which can be found in [ 17,26] for instance. One can find approximate
maxima (xn, yn) such that X(xn, yn) converges to sup(x,Y)EGraph(M)X(X, y) and x’(xn, yn)
converges to 0.
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and we infer that

from which we obtain the estimate

We use this Lemma to compare two solutions to inclusion (12):

THEOREM 3.3. We posit the assumptions of Theorem 2.1. Let rl and r2
be two Lipschitz contingent solutions to (12). If r2 is differentiable and if
A&#x3E; IIT21IAII/IIA, then

When f does not depend on y, we can take = 0 in the above estimate.
In particular, when G does not depend on y, we deduce that

More generally, let us consider a set-valued contingent solution M :
X--Y to the inclusion

THEOREM 3.4. We posit the assumptions of Theorem 2.1. Let r be a

Lipschitz contingent solution to (12) and M be a Li p schitz set-valued contingent
solution to inclusion (14) in the stronger sense that for every (x, y) E Graph(M),
there exists a Lipschitz closed convex process E(x, y) C co(DP M(x, y)) satisfying

and

Assume also that the supremum
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is finite and that A &#x3E; IJEJIAllfllA. Then

or, equivalently,

When f does not depend on y, we can take = 0 in the above estimates.

In particular, when G does not depend on y, we deduce that

PROOF. By Lemma 3.2, it is enough to show that for every (x, y) E
Graph(M) and

there exists

such that

Take any such 0. By assumption, we know that the norms of the closed convex
processes E(x, y) are bounded by IIEIIA and that

Then there exist

and 0’ e G(x, y) satisfying
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Hence

from which the conclusion of Theorem 3.4 follows. D

Uniqueness follows when A is large enough and when we assume the
existence of a set-valued map M the graph of which is an invariance domain
of the set-valued map (x, y)----+f (x, y) x (Ay + G(x, y)), in the sense that9

We need to use the circatangent derivative CM(x, y) of M at (x, y) defined by

where -&#x3E;G denotes the convergence in the graph of G. See [8, Chapter 4] for
more details.

THEOREM 3.5. We posit the assumptions of Theorem 2.1. Assume that
the graph of the Lipschitz set-valued map M is an invariance domain of
(x, y)~ f (x, y) x (Ay + G(x, y)) and that there exists Lipschitz closed convex
process E satisfying

and that

9 One can prove that when F is Lipschitz with closed values and the graph of M is closed,
then Graph(M) is an invariance domain if and only if it is invariant in the sense that for any
(xo, yo) E Graph(M), every solution to the system of differential inclusions

starting at yo) satisfies
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If A is large enough, then M(x) = for any (single-valued) contingent
solution r to inclusion (12) such that the supremum

is finite.

PROOF. Since f and G are lower semicontinuous, we know from [8,
Theorem 4.1.9] that inclusion

holds true with the circatangent derivative CM(x, y) (which is a closed convex
process), so that

Observe that it is sufficient to prove that

which implies that 6 = 0 whenever A &#x3E; JIGIIA + 
By Lemma 3.2, it is enough to show that for every (x, y) E Graph(M) and

there exists

such that

Take any such 0. Since G is Lipschitz, we infer that

Therefore,

and, E(x, y) being a closed convex process with a norm less than or equal to
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Hence there exists

such that
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