@article{ASNSP_1992_4_19_1_1_0, author = {Richardson, Thomas J.}, title = {Limit theorems for a variational problem arising in computer vision}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {1--49}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 19}, number = {1}, year = {1992}, mrnumber = {1183756}, zbl = {0757.49027}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1992_4_19_1_1_0/} }
TY - JOUR AU - Richardson, Thomas J. TI - Limit theorems for a variational problem arising in computer vision JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1992 SP - 1 EP - 49 VL - 19 IS - 1 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1992_4_19_1_1_0/ LA - en ID - ASNSP_1992_4_19_1_1_0 ER -
%0 Journal Article %A Richardson, Thomas J. %T Limit theorems for a variational problem arising in computer vision %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1992 %P 1-49 %V 19 %N 1 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1992_4_19_1_1_0/ %G en %F ASNSP_1992_4_19_1_1_0
Richardson, Thomas J. Limit theorems for a variational problem arising in computer vision. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 19 (1992) no. 1, pp. 1-49. http://archive.numdam.org/item/ASNSP_1992_4_19_1_1_0/
[1] Sobolev Spaces, Academic Press N.Y. 1975. | MR | Zbl
,[2] A Compactness Theorem for a Special Class of Functions of Bounded Variation, Boll. Un. Mat. Ital., 3-B No. 4, 1989, 857-881. | MR | Zbl
,[3] Variational Problems on SBV, Center for Intelligent Control Systems Report CICS-P-86, MIT, 1989.
,[4] Visual Reconstruction, MIT Press, Cambridge, 1987. | MR
- ,[5] On the Existence of Solutions to a Problem in Image Segmentation, preprint.
- ,[6] A Variational Method in Image Segmentation: Existence and Approximation Results, S.I.S.S.A. 48 M, April 1989.
- - ,[7] Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei, 1988.
- ,[8] Free Discontinuity Problems in Calculus of Variations, to appear in proceedings of the meeting in J.L. Lions' honor, Paris 1988. | Zbl
,[9] Existence Theorem for a Minimum Problem with Free Discontinuity Set, preprint, University of Lecce 1988.
- - ,[10] The Geometry of Fractal Sets, Cambridge University Press, 1985. | MR | Zbl
,[11] Geometric Measure Theory, Springer-Verlag, 1969. | MR | Zbl
,[12] Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel, 1983. | MR | Zbl
,[13] Vision, W.H. Freeman and Co. 1982 Proc. Roy. Soc. London B, 207, 187-217, 1980.
,[14] Segmentation of Images by Variational Methods: a Constructive Approach, Rev. Mat. Univ. Complut. Madrid, 1, 1, 2, 3; 1988. | MR | Zbl
- ,[15] Boundary Detection by Minimizing Functionals, IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco 1985.
- ,[16] Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems, Comm. Pure Appl. Math., XLII, No. 4 July, 1989, 577-685. | MR | Zbl
- ,[17] Scale Independent Piecewise Smooth Segmentation of Images via Variational Methods, Ph.D. Thesis Dept. of E.E. & C.S., M.I.T. 1990.
,[18] Hausdorff Measure, Cambridge University Press, 1970. | MR | Zbl
,[19] Edge and Curve Dectection for Visual Scene Analysis, IEEE Trans. Comput. C-20, May 1971, 562-569.
- ,[20] Functional Analysis, McGraw Hill, 1973. | MR | Zbl
,[21] Image Analysis and Mathematical Morphology, Academic Press Inc., 1982. | MR | Zbl
,[22] Segmentation by Minimizing Functionals: Smoothing Properties, preprint.
,[23] Ph.D. Thesis Harvard University Math. Dept. 1989.
,