Limit theorems for a variational problem arising in computer vision
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 19 (1992) no. 1, pp. 1-49.
@article{ASNSP_1992_4_19_1_1_0,
     author = {Richardson, Thomas J.},
     title = {Limit theorems for a variational problem arising in computer vision},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {1--49},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 19},
     number = {1},
     year = {1992},
     mrnumber = {1183756},
     zbl = {0757.49027},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1992_4_19_1_1_0/}
}
TY  - JOUR
AU  - Richardson, Thomas J.
TI  - Limit theorems for a variational problem arising in computer vision
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1992
SP  - 1
EP  - 49
VL  - 19
IS  - 1
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1992_4_19_1_1_0/
LA  - en
ID  - ASNSP_1992_4_19_1_1_0
ER  - 
%0 Journal Article
%A Richardson, Thomas J.
%T Limit theorems for a variational problem arising in computer vision
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1992
%P 1-49
%V 19
%N 1
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1992_4_19_1_1_0/
%G en
%F ASNSP_1992_4_19_1_1_0
Richardson, Thomas J. Limit theorems for a variational problem arising in computer vision. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 19 (1992) no. 1, pp. 1-49. http://archive.numdam.org/item/ASNSP_1992_4_19_1_1_0/

[1] R. Adams, Sobolev Spaces, Academic Press N.Y. 1975. | MR | Zbl

[2] L. Ambrosio, A Compactness Theorem for a Special Class of Functions of Bounded Variation, Boll. Un. Mat. Ital., 3-B No. 4, 1989, 857-881. | MR | Zbl

[3] L. Ambrosio, Variational Problems on SBV, Center for Intelligent Control Systems Report CICS-P-86, MIT, 1989.

[4] A. Blake - A. Zisserman, Visual Reconstruction, MIT Press, Cambridge, 1987. | MR

[5] G. Congedo - I. Tamanini, On the Existence of Solutions to a Problem in Image Segmentation, preprint.

[6] G. Dal Maso - J.M. Morel - S. Solimini, A Variational Method in Image Segmentation: Existence and Approximation Results, S.I.S.S.A. 48 M, April 1989.

[7] E. De Giorgi - L. Amrbosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei, 1988.

[8] E. De Giorgi, Free Discontinuity Problems in Calculus of Variations, to appear in proceedings of the meeting in J.L. Lions' honor, Paris 1988. | Zbl

[9] E. De Giorgi - M. Carriero - A. Leaci, Existence Theorem for a Minimum Problem with Free Discontinuity Set, preprint, University of Lecce 1988.

[10] K.J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985. | MR | Zbl

[11] H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. | MR | Zbl

[12] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel, 1983. | MR | Zbl

[13] D. Marr, Vision, W.H. Freeman and Co. 1982 Proc. Roy. Soc. London B, 207, 187-217, 1980.

[14] J.-M. Morel - S. Solimini, Segmentation of Images by Variational Methods: a Constructive Approach, Rev. Mat. Univ. Complut. Madrid, 1, 1, 2, 3; 1988. | MR | Zbl

[15] D. Mumford - J. Shah, Boundary Detection by Minimizing Functionals, IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco 1985.

[16] D. Mumford - J. Shah, Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems, Comm. Pure Appl. Math., XLII, No. 4 July, 1989, 577-685. | MR | Zbl

[17] T.J. Richardson, Scale Independent Piecewise Smooth Segmentation of Images via Variational Methods, Ph.D. Thesis Dept. of E.E. & C.S., M.I.T. 1990.

[18] C.A. Rogers, Hausdorff Measure, Cambridge University Press, 1970. | MR | Zbl

[19] A. Rosenfeld - M. Thurston, Edge and Curve Dectection for Visual Scene Analysis, IEEE Trans. Comput. C-20, May 1971, 562-569.

[20] W. Rudin, Functional Analysis, McGraw Hill, 1973. | MR | Zbl

[21] J. Serra, Image Analysis and Mathematical Morphology, Academic Press Inc., 1982. | MR | Zbl

[22] J. Shah, Segmentation by Minimizing Functionals: Smoothing Properties, preprint.

[23] Y. Wang, Ph.D. Thesis Harvard University Math. Dept. 1989.