@article{ASNSP_1992_4_19_1_69_0, author = {Webster, S. M.}, title = {Holomorphic symplectic normalization of a real function}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {69--86}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 19}, number = {1}, year = {1992}, mrnumber = {1183758}, zbl = {0763.58010}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1992_4_19_1_69_0/} }
TY - JOUR AU - Webster, S. M. TI - Holomorphic symplectic normalization of a real function JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1992 SP - 69 EP - 86 VL - 19 IS - 1 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1992_4_19_1_69_0/ LA - en ID - ASNSP_1992_4_19_1_69_0 ER -
%0 Journal Article %A Webster, S. M. %T Holomorphic symplectic normalization of a real function %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1992 %P 69-86 %V 19 %N 1 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1992_4_19_1_69_0/ %G en %F ASNSP_1992_4_19_1_69_0
Webster, S. M. Holomorphic symplectic normalization of a real function. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 19 (1992) no. 1, pp. 69-86. http://archive.numdam.org/item/ASNSP_1992_4_19_1_69_0/
[1] Symplectic geometry, in "Dynamical Systems IV, EMS." vol. 4, Springer-Verlag, Berlin, 1990. | MR
- ,[2] Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1-22. | MR | Zbl
,[3] Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271. | MR | Zbl
- ,[4] Symmetries and other transformations of the complex Monge-Ampere equation, Duke Math. J. 52 (1985), 869-885. | MR | Zbl
,[5] Normal forms for real surfaces in C2 near complex tangents and hyperbolic surface transformations, Acta Math. 150 (1983), 255-296. | MR | Zbl
- ,[6] Lectures on Celestial Mechanics", Springer-Verlag, New York, 1971. | MR | Zbl
- , "[7] A normal form for a singular first order partial differential equation, Amer. J. Math. 109 (1987), 807-833. | MR | Zbl
,