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A Construction of Quasiconvex Functions
with Linear Growth at Infinity

KEWEIZHANG

1. - Introduction

In this paper we develop a method for constructing nontrivial quasiconvex
functions with p-th growth at infinity from known quasiconvex functions. The
main result is the following:

THEOREM 1.1. Suppose that the continuous function f : MNxn ---+ 1~g is

quasiconvex in the sense of Morrey (cf. [17], also see Definition 2.1) and that
for some real constant a, the level set

is compact. Then, for every 1  q  +oo, there is a continuous quasiconvex
function gq &#x3E; 0, such that

and

where 0, c &#x3E; 0, C2 &#x3E; 0 are constants.

When the level set Ka of some quasiconvex function is unbounded, we
establish the following result for a compact subset of Ka under an additional
assumption.

COROLLARY 1.2. Under the assumptions of Theorem 1.1 without assuming
that Ka is compact, for any compact subset H c Ka, satisfying

Pervenuto alla Redazione il 27 Settembre 1990 e in forma definitiva il 27 Maggio 1992.
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and 1  q  oo, there exists a non-negative quasiconvex function gq satisfying
( 1.1 ) and with H as its zero set:

(For relevant notations and definitions, see Section 2 below).

With these results we can construct a rich class of quasiconvex functions
with linear growth, for example, function with the two-point set { A, B } being
its zero set provided that rank A - B f 1. However for sets like SO(n), we
need much deeper result to cope with (see Theorem 4.1 below). These sets

are important in the study of quasiconformal mappings (Reshetnyak [18], [19])
and phase transitions (Kinderlehrer [15], Ball and James [8]). Also, we can
establish connection between these results and Tartar’s conjecture on sets without
rank-one connections (see Section 4). We prove that for any compact subset
K c R+SO(n) we can construct quasiconvex functions with K as its zero set
and with prescribed growth at infinity.

The basic idea for proving the main result is to apply maximal function
method developed by Acerbi and Fusco [1] in the study of weak lower semicon-
tinuity for the calculus of variations and an approximating result motivated by
a work of V. Sverak on two-dimensional two-well problems with linear growth.

In Section 2, notation and preliminaries are given which will be used in the
proof of the main result. In Section 3, we prove Theorem 1.1 while in Section 4
we study the relation between Tartar’s conjecture and our basic constructions
and give some examples to show how quasiconvex functions with linear growth
and non-convex zero sets can be constructed.

2. - Notation and preliminaries

Throughout the rest of this paper Q denotes a bounded open subset
of Rn . We denote by MN x n the space of real N x n matrices, with norm

We write for the space of continuous functions
0 : Q - R having compact support in SZ, and define = 01(0) n Co(Q).
If 1  p  oo we denote by the Banach space of mappings
u : Q - R , u such that ui E for each i, with

N

Similarly, we denote by W1,P(Q; RN) the usual
1=1

Sobolev space of mappings u E RN) all of whose distributional derivatives
a8Ui = 1  i  N, 1   n belong to is a Banach’ g ( ) ( )

space under the norm
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where Du = (ui,j), and we define, as usual, the closure of 
in the topology of 

Weak and weak * convergence of sequences are written ~ and
respectively. The convex hull of a compact set K in MN"n is denoted by
conv K. If H c MNxn, P E MN"n, we write H + P the set {P + Q : Q E H}.
We define the distance function for a set K by

DEFINITION 2.1 (see Morrey [17], Ball [3, 4], Ball, Currie and Olver [7]).
A continuous function f : is quasiconvex if

for every P E E C¿(U;RN), and every open bounded subset U eRn.
To construct quasiconvex functions, we need the following

DEFINITION 2.2 (see Dacorogna [11]). Suppose f : MNxn --+ II~ is a con-
tinuous function. The quasiconvexification of f is defined by

and will be denoted by Q f .

PROPOSITION 2.2 (see Dacorogna [11]). Suppose f : MNxn --+ I~g is conti-

nuous, then

.11

where Q c Rn is a bounded domain. In particular the infimum in (2.1 ) is

independent of the choice of Q.

We use the following theorem concerning the existence and properties
of Young measures from Tartar [22]. For results in a more general context
and proofs the reader is referred to Berliocchi and Lasry [10], Balder [2] and
Ball [6].

THEOREM 2.4. Let be a bounded sequence in Then there
exist a subsequence of zU) and a family of probability measures on
W, depending measurably on x E Q, such that

for every continuous function f : RS -+ R.
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DEFINITION 2.5 (The Maximal Function). Let E we define

where we set

for every locally summable f, where úJn is the volume of the n dimensional
unit ball.

LEMMA 2.7. and

for all

and if then

for all 1

Then for every
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LEMMA 2.9. Let X be a metric space, E a subspace of X, and k a positive
real number. Then any k-Lipschitz mapping from E into 1I~ can be extended to
a k-Lipschitz mapping from X into R.

For the proof see [13, p. 298].

3. - Construction of quasiconvex functions

In this section we prove Theorem 1.1. The following lemma is crucial in
the prove of the theorem.

LEMMA 3.1. Suppose 1 such that

Then there exists a bounded sequence gj in 1 such that

PROOF. For each fixed j, extend uj by zero outside Q so that it is defined
on R~. Since is dense in there exists a sequence
in such that

and

as j -~ oo, so that we can assume that -
For each fixed j, i, define

Lemma 2.8 ensures that for all x, y E HI,
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Let g~ be a Lipschitz function extending U"*. outside Hj with Lipschitz constant
not greater than C(n)A (Lemma 2.9). Since H~ is an open set, we have

for all x E H~ and

We may also assume

and set
.1 - j - -j

In order to prove that 1

Hence the left hand side of (3.2) tends to zero provided that

From the definition of H ~ , we have

and

Define h : I~n --; R by

so that we can prove that

In fact, when , we have a sequence 
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sequence of balls Bk = B(x, R k) such that

which implies

Passing to the limit k -&#x3E; oo in (3.5), we obtain (3.4) (here we choose
From Lemma 2.6, we have

as j --+ oo. Also, from Lemma 2.6, together with the embedding theorem, we
have 

, ,

as j - oo, so that we conclude that

PROOF OF THEOREM 1.1. It is easy to see that the function
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is quasiconvex and satisfies assumption (1), with zero set

Define

and

We seek to prove that G(P) = 0 if and only if P E Ka. By definition of quasi-
convexification of fa, G is zero on Ka. Conversely, suppose G(P) = 0, i.e.,

for a ball we have a sequence
dist (P; Ka),

such that for K &#x3E; 2

hence

as j -~ 00 and are equi-integrable on Q with respect to j. Then, by
a vector-valued version of the Dunford-Pettis theorem (A &#x26; C. Ionescu Tul-
cea [14, p. 117], Diestel and Uhl [12, p. 101, 76]) there exists a subsequence
(still denoted by which converges weakly in to a function ~.
Moreover, by an argument of Tartar [22], and the embedding theorems,

E conv Ka for a.e. x E B, so that 0 E 
Define yj =Qj - 4&#x3E;. Then satisfies all assumptions of Lemma 3.1. Hence

there exists a bounded sequence gj E such that
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as j - oo. Let {vx}zEB be the family of Young measures corresponding to the
sequence Dgj (up to a subsequence), we have

which implies

which further implies

Since in by Ball and Zhang [9, Th. 2.1], and (3.7),
up to a subsequence, we have

for a.e. x E B, as j -~ oo. By the definition of quasiconvex functions, we have

which implies F(P) = 0, P E Ka.
Now, for q &#x3E; 1, define

It is easy to see that gq satisfies ( 1.1 ) and (1.2). D

PROOF OF COROLLARY 1.2. As in the proof of Theorem 1.1, firstly we have
P E K, supp vz c H - P - D§(z) for a.e. x E B, so that E conv H n K.

Hence,

For q &#x3E; 1, similar argument as above works.
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4. - Tartar’s conjecture and some examples

With Theorem 1.1 in hand, we can study the connection between out
constructions and Tartar’s conjecture on oscillations of gradients (cf. Tartar

[23], Ball [5]).

TARTAR’S CONJECTURE. Let K C MNxn be closed and have no rank-one
connections, i. e. for every A, B E K, rank(A - B) f 1. Let zj be a bounded

sequence in and the Young measures associated with Dzj
satisfies v., C K, and such that f(Dzj) is weak-* convergent in L°°(Rn) for
every continuous f : .MNxn -.~ R. Then is a Dirac mass.

The answer of this conjecture is, in general, negative (cf. Ball [5]).
However, there are a number of cases when Tartar’s conjecture is known to be
true for gradients under supplementary hypotheses on the set K.

(i) Kl = IA, B} with rank(A - B) &#x3E; 1 (Ball and James [8]),

(ii) n = N &#x3E; 1, K = SO(n) (Kinderlehrer [15]). In fact, more generally, (see
Ball [5]), for n &#x3E; 1 and

Based on these examples, we can use similar argument as in the proof of
Theorem 1.1 to prove the following

THEOREM 4.1. Suppose K C MNxn has no rank-one connections and
Tartar’s conjecture is known to be true for K. Moreover, for any bounded 
sequence with Young measures v., C K has the property that Vx = 6T with T
a constant matrix in K (T = (v.,, A)). Then for any non-empty compact subset
H c K, any 1  p  00, there exist a continuous quasiconvex function f &#x3E; 0,
such that

(i) C(P) ~ f (.P)  + with c(p), &#x3E; 0, C(p) ~! 0;

(ii) {P E M’’ : f (P) = 0} = H.

REMARK 4.2. In the case K = KI, Kohn [16] constructs a quasiconvex
function with the above properties when p = 2 and n, N &#x3E; 1 arbitrary; Sverak
[21] does the same in the case p &#x3E; 1, n = N = 2.

PROOF OF THEOREM 4.1. We employ a similar argument as that of Theo-
rem 1.1.

Firstly, we construct a quasiconvex function with linear growth. Define as
before
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and assume that

to derive a sequence Qj -1 Q in with 0 E In fact,
we can assume Qj E and 0 E supported in B. It is

easy to see that converges in measure to the set H - P. Let gj be the
approximate sequence in we have the Young measures 
associated with Dgj satisfy supp vx c for a.e. x E Therefore,
the Young measures associated with P + + will be supported in
H c K, so that from the assumption, they are the same Dirac measure. Since
(vx, A = Dg(x) = 0, P + = constant E H. Therefore Q = 0 a.e. and P E H.

EXAMPLE 4.3. Let Kl = { A, B } with A, B E and assume that rank

(A-B) &#x3E; 1. It is known (Kohn [16]) that there exists a non-negative quasiconvex
function f with quadric growth, such that

From Theorem 1.1, the zero set of the quasiconvex function with linear growth
Q dist(P; Ki ) should be Kl .

EXAMPLE 4.4. Let K2 = {P = tQ : t &#x3E; 0, Q E = and let
H be any non-empty compact subset of K2. Then, we can apply Theorem 4.1
and a result due to Reshetnyak [18], [19] to show that

Here we employ the approach based on an argument of Ball [5]. Following the
proof of Theorem 1.1, the Young measures associated with Dgj are
supported in H - P - for a.e. x c B. Let us consider the quasiconvex
function (see, e.g. Ball [5])

which is non-negative and has K2 as its zero set. We have
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Since the function I . In is strictly convex and

we have

which implies

so that P E H.

REMARK 4.5. Since any non-empty compact subset of can be
the zero set of some non-negative quasiconvex function, the topology of zero
sets for quasiconvex functions can be very complicated. For example, let K be
any compact subset of ]R2, define

then K1 C and has the same topology as K.

REMARK 4.6. The method used in the proof of Theorem 1.1 depends
heavily on the compactness of the level set Ka. I do not know, for example,
whether the function Q dist(P, has R+SO(n) as its zero set or not.
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