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Regularized Semigroups and Systems of Linear
Partial Differential Equations

M. HIEBER* - A. HOLDERRIETH** - F. NEUBRANDER

1. - Introduction

The class of "semigruppi regolarizzabili" was introduced by G. Da Pra-
to [DaPl] in 1966. About twenty years later, this class was rediscovered

independently by B. Davies and M. Pang [D-P] who called it "exponentially
bounded C-semigroups". Because Da Prato’s notion of a regularized (or
regularizable) semigroup is more descriptive than C-semigroups, this term will
be used here. Over the last few years the theory of regularized semigroups
was further developed by R. deLaubenfels, I. Miyadera and N. Tanaka (see
e.g. [deLl]-[deL4], [M-T], [Ta]). Further generalizations and extensions can be
found in [DeL5], [Lu] and [T-0].

In the Sections 2 and 3 of this paper the Laplace transform approach is
taken to introduce the concept and basic theory of regularized (or regularizable)
semigroups. Altough some of the results in these sections are not surprising to
the expert, the presentation of the material clarifies, as we believe, the concepts
substantially.

One of the main reasons to study regularized semigroups is their

flexibility in applications to evolution equations (see e.g. [Ar2], [A-K], [D-P],
[deLl]-[deL4], [Hi1], [Hi2], [H-R], [Ne2], [Pa], [Ta]). We will demonstrate
this in Section 4, where it will be shown that there is a one-to-one

correspondence between constant coefficient differential operators generating
regularized semigroups and the Petrovskii correctness of the associated system.
Hence, in studying evolution equations and, in particular, partial differential

equations by functional analytic means, the theory of regularized semigroups
appears to be an appropriate tool.

* Supported by Deutsche Forschungs gemeinschaft.
** Supported by Deutscher Akademischer Austauschdienst.
Pervenuto alla Redazione il 5 Agosto 1991 e in forma definitiva il 27 Maggio 1992.
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2. - Regularized semigroups

Instead of starting with a definition, we first try to convince the sceptical
reader that regularized semigroups are natural objects to look at if one studies
abstract Cauchy problems

for closed operators A with domain D(A) and range Im(A) in a Banach space E.
It has to be emphasized that the operator A may have empty resolvent set

p(A) and that D(A) may not be dense in E. Such operators occur frequently in
the study of systems of linear partial differential equations (see Section 4).

The following theorem is the main result of this section. Assuming only
the closedness of the operator A, it characterizes the existence of a global,
exponentially bounded "integral solution" of (ACP). Integrating (ACP) with
respect to time one obtains

Clearly, a solution of (ACPo) has to be less regular in time compared to a
t

solution of (ACP). Integrating once more and setting := f u(s)ds yields
o

Continuing in this manner gives the (n + 1 )-times integrated Cauchy problem

Any function v(.) E 0([0,00), E) satisfying (AOPn) for all t &#x3E; 0 is called
an "integral solution" of (ACP). Clearly, if u(.) solves (ACP), then the n-th
antiderivative 

ft

solves (ACPn). Also, if v(-) solves (ACPn) and is (n + I)-times continuously
differentiable, then u(.) := v(n)(.) solves (ACP).

THEOREM 2.1. Let A be a closed operator on a Banach space E and let
n E No. Let v (.) E 0([0, oo), E) with Mew’ for some M, w &#x3E; 0 and all
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t &#x3E; 0. Then v(.) solves the integrated Cauchy problem (ACPn) for the initial
value x E E if and only if

(a) For all A E Hw := JA E (~ ; Re A &#x3E; w } there exists a solution y = y(A) of
the pointwise resolvent equation Ay - Ay = x, and

t t

PROOF. "=’ Define vo(t) and vl (t) Integrat-
o 0

00

ing by parts yields = a f for all A &#x3E; iu, where I := w + E
o

and E &#x3E; 0 (j = 0,1 ). Because the functions vj(-) are Lipschitz continuous, the
complex inversion theorem of Laplace transform theory is applicable (see e.g.

[H-N; Corollary 3.3]). This implies that forC ’ary )- P ij ( ) 27ri r 
y( )/

all t &#x3E; 0, where r is the path {iu + ir, r E R }. Since A is closed we obtain
w+iN 

f f for all N &#x3E; 0. Again, the
tD-t7V

closedness of A implies that that vl (t) E D(A) for all t &#x3E; 0 and

Using the differentiability of vj(.) and the closedness of A, one obtains

for all t &#x3E; 0.

"=~B Let A E Hw. Since A is closed and
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it follows that and

Define for all

REMARK. Using the complex inversion formula of Laplace transform theory
(see [A-K, Proposition 3.1]), the statements (a) and (b) of Theorem 2.1 can
be reformulated. They hold for some n E No if and only if there exists a

polynomial p(.) such that, for all A E Hw, there exists a solution y = y(A) of the
equation Ay - Ay = x such that  p(IXl) for all A E Hw.

As Theorem 2.1 shows, the existence of global, exponentially bounded
integral solutions of (ACP) depends on two main factors:

(1) The initial value x has to be in the intersection of the images of the
operators (A - A) for A in the halfplane Hw ; that is, x E n A).
This is a range condition for the operator A. 

(2) The pointwise resolvent y(A) has to be Laplace representable if it is

dampened by a large enough polynomial factor an. This is a growth or
representability condition on the pointwise resolvent y(A).
We are only interested in closed operators A for which the solution

of (ACP) is unique. Again it follows from Theorem 2.1 that uniqueness of
global, exponentially bounded integral solutions is implied by the following
point spectral condition.

(3) There exists w E R such that the intersection of the point spectrum 
of the operator A with the right halfplane Hw is empty.
In order to put the range condition (1) in a functional analytic framework,

it is useful to introduce the notion of a "regularizing operator" (see also [DaPl],
[D-P], [deL4]).

DEFINITION 2.2. Let A be a closed, linear operator on a Banach space E
and let Q be an open, nonempty subset of C with n u =0. A bounded

operator C is called a regularizing operator for A on SZ if

(a) C is injective, CAx = ACx for all x E D(A), and Im C c n Im(a - A).
aES2

(b) The £(E)-valued function A - (A - A)-’C is holomorphic on Q.
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REMARK. Note that (A - is a closed operator with domain

LEMMA 2.3. Let C be a regularizing operator for A on Q. Then the

following holds for all A, Ao E Q, 

for all x E E and all n E N.

for all n E N.

PROOF. For x E E define

Then y E D(A). It follows from A(A - A(A - A)-1 C - C E leE)
that (A - A)y = (Ao - and (Ao - A)y = (A - A)-lCx. Hence,
(Ao - E Im(A - A) = D((A - A)-’) and y = (Ao - A)-’(A - =

(A - A)-1(ao - A)-lOx. This proves (a). The closedness of the operator

(Ao - implies -(A - A)-20x for all x E E.
dA d

The assumed analyticity of A - (A - implies that - (A - A)-’C =Y Y ( ) p dA 
( )

-(A - A)-2C E for all A E Q. This _proves the statements (b) and (c) for
n = l, 2.

Next define 01 : x ~--~ (Ao - A)-’Cx. Then 01 is a regularizing operator for
A on Q. The same arguments as above yield (Ao - = (Ao - A)-2Cx E
Im(A - A) for all A E S2 and the validity of the resolvent equation (a) in
terms of the operator Cl. Therefore, Cx E D((Ao - A)-3). The analyticity
of A - (A - A)-’Cl implies that d (A - A -1 C =( A - A) -2C, E for( ) 1 p dA 

) 1 ( ) 1 ( )

all A E Q. In particular, (Ao - (Ao - A)-3C E leE). Because Ao
was chosen arbitrarily, the statements (b) and (c) are proven for n = 1,2,3.
Continuing this way by defining (Ao - A)-lCnx finishes the proof.

D

We now return to Theorem 2.1 and the abstract Cauchy problem (ACP).
In order to meet the point spectral condition (3), we assume from now on that
there exists a regularizing operator C for A on an open right halfplane 
Then, for all x E E and A E Hw, the equation ay - Ay = Cx has a unique
solution y = y(A) = (A - 
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Assume that there exists an n E N U {0} such that, for all x E E and
A E Hw, the regularized resolvent A - (À-A)-lCx has a Laplace representation

where v(., x) is a continuous function with llv(t, x)11  Mxewt.
Then, by Theorem 2. l, the function v(., x) is the solution of (ACPn) for the

initial value Cx. Define, for all t &#x3E; 0, linear operators S(t) by S(t)x := v(t, x).
In order to obtain continuous dependence of the integral solutions v(., x) on the
initial values x, we have to assume that the operators S(t) are in f,(E) for all
t &#x3E; 0. The continuity of t ~ v(t, x) implies the strong continuity of the operator
family (S(t))t&#x3E;o. The exponential boundedness of v(t, x) leads  Mewt
for all t &#x3E; 0 (by the principle of uniform boundedness).

We summarize the above assumptions in the following definition (see also
[deL3; Definition 4.1 ] and [Mi]).

DEFINITION 2.4. Let A be a closed operator on a Banach space E with
a regularizing operator C on a right halfplane Hw. Let (S’(t))t&#x3E;o be a strongly
continuous family of bounded operators  Mewt for some M, w &#x3E; 0

and all t &#x3E; 0. If, for some n E N U {0}, all A E Hw, and all E,

then A is called the generator of an n-times integrated, C-regularized semigroup.
If n = 0, then (S(t))t&#x3E;o is called a regularized (or C-regularized) semigroup.

REMARK. The theory of integrated, regularized semigroups comprises all
classes of semigroups connected with "correctly posed" Cauchy problems. The
following operators are generators of regularized semigroups.
(a) Generators of strongly continuous semigroups (C = I, n = 0).
(b) Generators of n-times integrated semigroups or, equivalently, generators of

regular, exponentially bounded distribution semigroups (C = I, n E NU{0};
see e.g. [Arl], [Nel]).

(c) Generators of semigroups of growth order « (C = (Ao - A) -(k+l) where k
is the integral part of « &#x3E; 0, and n = 0 (see e.g. [DaP2], [D-P])).

The crucial properties of integrated, regularized semigroups are collected
in the following lemma (see also [Arl; Proposition 3.3], [deL3], [Nel; Lemma
5.1], [Mi]).

LEMMA 2.5. Let A be the generator of an n-times integrated, C-regularized
semigroup (S(t))t&#x3E;o. Then the operators S(t) have the following properties for
all t &#x3E; 0.
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for all x E D(A).

for all x E E.

for all x E D(A).

PROOF. (Po): Let x E E. Since

The uniqueness theorem for Laplace transforms (see e.g. [H-N; Corollary 1.4])
implies that CS(t)x = S(t)Cx.

(P2): This follows immediately from Theorem 2.1.

(P3): Let x E D(A). Then the uniqueness theorem for Laplace transforms
and

gives
’OJ

(Pi): This statement follows from (P2), (P3) and the closedness of A.

(P4): This statement follows immediately from (P2). 0

3. - Characterizations

If A generates an integrated, C-regularized semigroup, then it follows
from the property (P2) that (ACP) has integral solutions for all initial values in
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Im(C) which are contained in n Im(a - A). Next, using Theorem 2.1 and
)..EHw

Lemma 2.5, the existence and uniqueness of classical, exponentially bounded
solutions of (ACP) can be characterized. The following uniqueness result is

only a slight modification of a classical result of Ju.I. Ljubic. The proof (see e.g.
[Paz; Section 4.1 ] ) extends to the more general statement below by replacing
the’resolvent R(A, A) by (A - A)-’C and is therefore omitted.

PROPOSITION 3.1. Let A be a closed operator on a Banach space E and

suppose that Q satisfies the assumptions in Definition 2.2. Let (w, 00) c S~ for
some w E R. If there exists a regularizing operator C on S2 and a polynomial
p(.) such that 11(’B - p(A) for all A &#x3E; w, then (ACP) has at most one
solution u(.) E Cl ([0, T], E) for any 0  T  oo.

Besides characterizing regularized semigroups in terms of the abstract

Cauchy problem (see also [deL3; Chapter 3], or [Nel; Theorem 4.2]), it is
shown next that the class of generators of integrated regularized semigroups
coincides with the class of generators of regularized semigroups. For a similar
result, see [deL3; Theorem 4.2].

THEOREM 3.2. Let A be a closed operator on a Banach space E with

pa (A) n Hw = ~b for some w &#x3E; 0. Then the following statements are equivalent.
(i) A generates an integrated, regularized semigroup.
(ii) There exists n U f 01, w &#x3E; w, and a regularizing operator C for A on

Hw such that u’(t) = Au(t), u(O) = Cx has unique classical solutions for
all x E which are all O(ewt).

(iii) A generates a regularized semigroup.
PROOF. "(i) # (ii)". Let A be the generator of an n-times integrated, C-re-

gularized semigroup (S(t))t&#x3E;o. It follows from (P3) that S(.)x is continuously

differentiable for all x E D(A) and that ,S ~ (t)x = S(t)Ax + 
1 , 

Cx if n &#x3E; 1
(n - 1)! ~

or S’(t)x = AS(t)x if n = 0. It follows that S(.)x is n-times continuously
differentiable for all x E D(An) and that

for all n &#x3E; 1. Moreover, 6’(’)~ is (n + I)-times continuously differentiable for all
x E and = AsCn)(t)x, = CX.

It remains to be shown that the solutions of (ACP) are unique. It

follows from the Laplace representation of (A - that A)-1 Cxll (
is polynomially bounded for all x E E and all A &#x3E; 2w. Now the uniqueness
follows from Proposition 3.1.

"(ii) ~ (iii)". Define 01 := C(Ao - A)-nC. Then Cl is a regularizing op-
erator for A on Hw and the initial value problem u’(t) = Au(t), u(O) = Cl x,
has unique solutions U(.,OlX) for all x E E which are Let T &#x3E; 0 and
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[D(A)] be the Banach space D(A) endowed with the graph- norm. Define an
operator K : E --&#x3E; 0([0, T], [D(A)]) by Kx := u(t, Cl x). Then K is closed, thus
bounded. It follows that there exists MT &#x3E; 0 such that

for all x E E. Define linear operators on E by u(t, ClX). Then
S(t) E and  MT for all t E [0, T]. By assumption, for all x E E
there exists Mx &#x3E; 0 such that Mx 0. By the principle
of uniform boundedness, we obtain a constant M &#x3E; 0 such that IIS(t)11  Me-t
for all t &#x3E; 0. Clearly, (S(t))t&#x3E;o is strongly continuous. It follows immediate-

ly from Theorem 2.1 that (S(t))t&#x3E;o is a Cl- regularized semigroup generated
by A. D

REMARK 3.3. We actually proved a more precise result than the state-

ment of the theorem indicates. In fact, if A generates an n-times integrated,
C-regularized semigroup (S(t))t&#x3E;o, then u’(t) = Au(t), u(O) = Cx, has a unique
solution u(.) for all x E which is given by (3.1). In particular,

1B1 ewt(IIAnx/l + IICXlln-1) and lIu’(t)11 ~ + IICxlln) for all
t &#x3E; 0, where := llzll +... 

Next, two resolvent type characterizations of generators of regularized
semigroups will be given. The first one follows from the following consider-
ations.

Let C be a regularizing operator for A on Hw for some w &#x3E; 0. Set

F(A) := (a - Extending the statements of Lemma 2.3, it can be shown
that 

,

for all A E Hw and U {0}. Assume that the growth conditions

are satisfied for all A &#x3E; w and all k e N U 101. By Widder’s representation
theorem for Laplace transforms (see [Ar1] or [H-N]), there exists an

exponentially bounded, normcontinuous operator family (W(t))t&#x3E;o such that

for all A &#x3E; w. The analyticity of A " implies that the above equality
holds for all A e Hw. It follows from Theorem 3.2 that A generates a regularized
semigroup.

Similarily, if C is a regularizing operator for A on Hw such that

P(JAI) for some polynomial p(.) and all A E Hw, then it
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follows from the complex representation theorem for Laplace transforms (see
[A-K], Proposition 3.1) that there exists n E N and an exponentially bounded,
normcontinuous operator family (W(t))t&#x3E;o such that

for all A E Hw. Again it follows from Theorem 3.2 that A generates a

regularized semigroup. These observations prove the following Hille-Yosida type
characterization of generators of regularized semigroups (see also [DaP1], [D-P],
and [deL3], Theorem 5.7).

THEOREM 3.4. Let A be a closed operator on a Banach space E with

pu(A) f1 Hw = 0 for some w &#x3E; 0. Then the following statements are equivalent.
(i) A generates a regularized semigroup.
(ii) There exists a regularizing operator C for A on Hw and a polynomial

p(.) such that II(À - p(IÀI) for all A E Hw.
(iii) There exists a regularizing operator C1 for A on Hw and a constant

M &#x3E; 0 such Ml(,B _ w)k for all A &#x3E; w and all

k E N.

An immediate consequence of Theorem 3.4 is the following Lumer-Phillips
type characterization of generators of regularized semigroups.

COROLLARY 3.5. Let A be a closed operator on a Banach space E with

pa (A) fl Hw = ~ for some w &#x3E; 0. Then A generates a regularized semigroup if
and only if

(a) There exists a regularizing operator C on Hw.

(b) There exists a polynomial p(.) and a function F(~) : E - [0, oo) such that,

PROOF. Let z E E. Then x := (A - A)-1Cz E D(A) and p(IÀI)F(Oz) =
p(IAI)FOx - Ax) ~! II(A It follows from the uniform
boundedness principle that there exists M &#x3E; 0 such that II(À-A)-10211 ~ 
for all A E Since C2 is a regularizing operator, the statement follows from
Theorem 3.4. D

For generators of regularized semigroups there exists a variety of in-
terpolation and extrapolation results (the most general ones can be found
in [deL4]; for others, see [A-N-S] and [M-T]). We mention one of them.
Using the above characterizations one can reformulate Theorem 1 in [M-T] to
the following characterization of regularized semigroups in terms of strongly
continuous semigroups.

THEOREM 3.6. Let A be a closed operator on a Banach space E with
n Hw = 0 for some w &#x3E; 0. Then A generates a regularized semigroup

if and only if there exists a regularizing operator C for A on Hw and a
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continuously embedded Banach space Y - E with C E £(E, Y) such that the
part of A in Y generates a strongly continuous semigroup in Y.

4. - Systems of partial differential equations in Il~n

In this section we investigate initial value problems of the form

/ a ki / g k.
where Dk is defined by a kl ... ( -2013 ) and Ak the ring of allwhere Ok is defined by 

8Xl ) ... 

8xn 
and Ak E MN(C), the ring of all

constant N x N-matrices over C. We are primarily interested in the case where
the solution u belongs to one of the function spaces E := (1  p  oo),
ob(Rn)N or CO!(JRn)N (0  a  1). Therefore, it is natural to use Fourier methods
in order to investigate this problem. We start with some notation.

We denote by SN the space of all functions from to having each
component in S, the space of rapidly decreasing functions. The dual space (SN)’
of sN is the space of tempered distributions. Note that the Fourier transform of
matrix valued distributions is defined by applying the transform elementwise.
We call an LOO-function M : MN(C) a Fourier multiplier for 
(1  p  oo) if E for all 0 E SN and if

The space of all such matrix-valued functions M is a Banach algebra, denoted
by The norm of N§N is the above supremum. For details, we refer to
[Ho] or [St]. With a given differential operator E AkDk on E and its symbol

|k|m
~(0 ~= E Ak(i~)k, we associate a linear operator AE on E as follows. Set

|k|m

Then AE is a closed operator.
We note that the operator ~1~ (p ~ oo) generates a Co-semigroup on

V(Rn)N if and only if etp E MN for all t &#x3E; 0  Mewt for
all t &#x3E; 0 and suitable constants M, w E R. In particular, generates a

Co-semigroup on if and only if (  Mew’ for all t &#x3E; 0.
E

Symbols satisfying this condition have been completely characterized by Kreiss
[Kr] in terms of properties of P(~). Note that systems which are wellposed in L2
need not to be wellposed in LP. Nevertheless, if AL2 generates a Co-semigroup
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on L2(11~n)N, then generates, under suitable assumptions on the matrices Ak,
a k-times integrated semigroup on whenever k &#x3E; 1 /p~ (see
[Hi2]).

We now prefer to express our conditions for wellposedness of (4.1) in
terms of the eigenvalues of the matrix P(~) rather than More precisely,
for an N x N-matrix M with eigenvalues Aj, j = 1,..., N, we define its spectral
bound A(M) by A(M) := max Re Aj. Then we observe first that a necessary con-

I

dition for ,A to be the generator of a Co-semigroup on LP(R7)N is that there exists
a constant w such that A(jP(~))  W for all ~ E R7. Considering the operator ,~ on

L2 ~~2 )2 given by we notice that this condition is far

from being sufficient. We even have p(A) = 0. Nevertheless, we will investigate
the problem (4.1) by semigroup methods. Instead of considering Co-semigroups
on interpolation or intermediate spaces, we will apply the preceeding theory.

Petrovskii [Pe] proved in 1938 that etp satisfies an estimate IletP(Ç)1I I 
for all ~ and suitable C, w, q if and only if A(P( ~)) 

C1 log( 1 + ]£]) + C2 for all E E R" and suitable constants Cl and C2. Later

Girding showed that one can choose C1 = 0. Hence, by Parseval’s formula, we
can conclude that the solution u of (4.1 ) exists for uo e Hq (the Sobolev space
of order q) and M ew’tlluollHq (q suitable, w’ &#x3E; w) if and

only if AP((0)  ~ for all ~ e R".
The following theorem now shows that a differential operator on E, de-

fined as in (4.2), is the generator of a regularized semigroup with C = R( l, 0)r
(r suitable) if and only if A(P(~))  w for all ~ E I~n and some w. Here A
denotes the Laplacian on In order to prove such a result, we make use of
the following multiplier results.

For the time being, let j, n E N, j &#x3E; n/2, 0  a  1 and f E 
Assume that there exist constants M, L &#x3E; 0 such that

a)  Mlçl-lkl-¡3 for some ~3 &#x3E; 0 and all c R" with I &#x3E; L and all
1~ with I k  j . Then f E 1Ll 1 C .M I (see [Hil]; Lemma 3.2).

b) IDk f(ç)1  for all ç E Rn with lçl &#x3E; L and all k with  j.
Then there exists a constant Ca such that, for all g E we have

(see [Tr], p. 30, p. 93).
We also make use of the following matrix-estimate. Let A(P(~))  W.

Then, for w’ &#x3E; w, there exists a constant C such that

for all ~ E ?" and all t &#x3E; 0. For a proof, see [Fr; p. 168].
Let E be one of the Banach spaces (1  p  oo), CO(R7)N,

or ca(Rn)N (0  a  1). Define qE,m E I1~+ by
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and let

Then the following holds.

THEOREM 4.1. Let E be one of the spaces listed above. Assume P :

MN(C) is given by P(~) - ~ Ak(i~)k and let AE be the operator
|k|m

defined as in (4.2). Then AE generates a C-regularized semigroup on E with
C := if and only if there exists a constant w E lI~ such that

A(P(~))  w for all ~ E R.

PROOF. ":::": For q E R define the function wq : Rn --+ C by wq(C) :=
( 1 + IC12)-q/2. We will show that the family (SE(t))t&#x3E;o of operators on E given
by

is the C-regularized semigroup generated by AE, where C :=R(1,A)~’~. *
We claim first that the function ut : MN(C) defined by Ut(ç) :=

is a Fourier multiplier for E. Using the estimate (4.3), this is
clear for E = Consider next the case E = V(Rn)N (p ~ 2). Follow-
ing H6rmander [H6; Lemma 2.3] we define a positive Cy-function 1b on

00

Rn with suppo c {x 1/2  Ixl  2} such that E V)(2-lx) = 1 for
1=_ o0

all Moreover, for 1 E Z, define lbi and gi by loi(x) := ~(2-l x) and
:= respectively. In order to prove the claim, it suffices to show
00

that  oo for all t &#x3E; 0. To this end, assume that 1  p  2 and note
p

that from (4.3) we obtain

for large enough ~, all t &#x3E; 0, all r E R+ and suitable constants Mo &#x3E; 0 and
w’ &#x3E; w. Hence,

for some constant Ml , all multiindices k and all 1 &#x3E; 1. Bernstein’s theorem

(see, e.g. [Hil; Lemma 2.1]) implies now that

By the Riesz-Thorin convexity theorem,
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we obtain

Finally, the inequality
where 1/p - 1 /p’ = 1, yield the claim.

The corresponding assertion for E = follows from the case p = oo

by Lebesgue’s convergence theorem. Finally, the case E = CI(R7)N is implied
by the cited result b).

In order to show that t t---+ is strongly continuous on E for all t &#x3E; 0,
consider first the cases E = LP and Co. Define, for A &#x3E; w, the function

rx by
00

Then Therefore t
1

7-1(utr,x) is continuous with respect to the multiplier norm. In particular, this
implies that the family (SE(t))t&#x3E;o is strongly continuous on the range of the
mapping f - and therefore by density on E.

In order to prove the remaining cases, let r &#x3E; m if E = LOO or Cb and let
t+h

r = m if E = C". Writing Ut,h(~) - Ut(~) = P(0~r(0 / and using
t

the results a) and b), we obtain

rhus (,SE(t))t&#x3E;o is strongly continuous on E.
Finally, let f E sN and A &#x3E; w. By Fubini’s theorem,

This proves the assertion for E = LP ( 1  p  oo) and E = Co.
For the remaining spaces E = Loo, Cb and C’, let f E E and note that,

since E L 1, we can apply Fubini’s theorem and obtain

Using the definition of the Fourier transform in the distributional sense and
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again Fubini’s theorem, we obtain and therefore

"~": Let C := and let ~4 be the generator of the C-re-

gularized semigroup on E. Then wr etp E = for suitable r E N
and all t &#x3E; 0 and the multiplier norm of wr etp is exponentially bounded. Hence
there exist constants M and w such that lIetP(ç)1I  for all ~ E 
Now the inequality I implies that

holds for all ~ E IEBn and suitable constants 01 and C2. The Seidenberg-Tarski
theorem (see [Fr; Sections 14, 15]) finally yields the assertion. 0
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