@article{ASNSP_1992_4_19_3_451_0, author = {Ottaviani, Giorgio}, title = {On 3-folds in $\mathbb {P}^5$ which are scrolls}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {451--471}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 19}, number = {3}, year = {1992}, mrnumber = {1205407}, zbl = {0786.14026}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1992_4_19_3_451_0/} }
TY - JOUR AU - Ottaviani, Giorgio TI - On 3-folds in $\mathbb {P}^5$ which are scrolls JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1992 SP - 451 EP - 471 VL - 19 IS - 3 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1992_4_19_3_451_0/ LA - en ID - ASNSP_1992_4_19_3_451_0 ER -
%0 Journal Article %A Ottaviani, Giorgio %T On 3-folds in $\mathbb {P}^5$ which are scrolls %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1992 %P 451-471 %V 19 %N 3 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1992_4_19_3_451_0/ %G en %F ASNSP_1992_4_19_3_451_0
Ottaviani, Giorgio. On 3-folds in $\mathbb {P}^5$ which are scrolls. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 19 (1992) no. 3, pp. 451-471. http://archive.numdam.org/item/ASNSP_1992_4_19_3_451_0/
[1] On surfaces in projective 4-space, Thesis, Oslo 1987.
,[2] Boundedness for non-general type 3-folds in P5, to appear in the Proceedings of CIRM Meeting "Analysis and Geometry X", Trento 1991.
- - - ,[3] Classification of log-special 3-folds in P5, to appear.
- - - ,[4] Comparing the classical and the adjunction theoretic definition of scrolls, to appear in the Proceedings of the 1990 Cetraro Conference "Geometry of Complex Projective Varieties". | MR | Zbl
- ,[5] New properties of special varieties arising from adjunction theory, J. Math. Soc. Japan 43, 381-412 (1991). | MR | Zbl
- ,[6] Threefolds of degree 9 and 10 in P5, Math. Ann. 288, 613-644 (1990). | MR | Zbl
- - ,[7] Ricerche di geometria della retta nello spazio a quattro dimensioni, Atti R. Ist. Veneto Sc., ser. VII, 2, 855-901 (1891). | JFM
,[8] A filtered Bertini-type theorem, J. Reine Angew. Math. 397, 214-219 (1989). | MR | Zbl
,[9] Classification of Buchsbaum subvarieties of codimension 2 in projective space, J. Reine Angew. Math. 401, 101-112 (1989). | MR | Zbl
,[10] Sur les surfaces lisses de P4, Invent. Math. 95, 1-11 (1989). | MR | Zbl
- ,[11] Intersection theory, Springer, Berlin 1984. | MR | Zbl
,[12] Una formula di geometria numerativa, Ann. Univ. Ferrara, Sez. VII, 27, 201-227 (1981). | MR | Zbl
- ,[13] On the embeddings of Projective Varieties, Lecture Notes in Math. 1311, 118-146, Springer, Berlin 1988. | MR | Zbl
- ,[14] Geometry on Grassmannians and applications to splitting bundles and smoothing cycles, Publ. Math. IHES 36, 281-297 (1969). | Numdam | MR | Zbl
,[15] On the existence of scrolls in P4, Atti Accad. Naz. Lincei (8) 69, 223-227 (1980). | MR | Zbl
,[16] Some formulas concerning nonsingular algebraic varieties embedded in some ambient variety, Atti Accad. Sci. Torino 116, 463-474 (1982). | MR | Zbl
- ,[17] Projective varieties defined by small number of equations are complete intersections, in "Topology and geometry", Rohlin Sem. 1984-1986, Lecture Notes in Math. 1346, 433-453, Springer, Berlin 1988. | MR | Zbl
,[18] Über 2-codimensionale Untermannigfaltigkeiten vom Grad 7 in P4 und P5, Math. Z. 187, 209-219 (1984). | MR | Zbl
,[19] Vector bundles on complex projective spaces, Birkhäuser, Boston 1980. | MR | Zbl
- - ,[20] Sui sistemi lineari di complessi lineari di rette nello spazio a cinque dimensioni, Atti Ist. Veneto, 602, 371-383 (1900). | JFM
,[21] Liaison des variétés algébriques I, Invent. Math. 26, 271-302 (1974). | MR | Zbl
- ,[22] Vector bundles and low-codimensional submanifolds of projective space: a problem list, Topics in algebra. Banach Center Publications, vol. 26, PWN Polish Scientific Publishers, Warsaw 1989. | MR | Zbl
,[23] On the adjunction theoretic structure of projective varieties, in "Complex Analysis and Algebraic Geometry", Proceedings Göttingen 1985, Lecture Notes in Math. 1194, 175-213, Springer, Berlin 1986. | MR | Zbl
,