Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

A. CASTELLÓN SERRANO J. A. CUENCA MIRA

Isomorphisms of *H**-triple systems

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^e série, tome 19, nº 4 (1992), p. 507-514

<http://www.numdam.org/item?id=ASNSP_1992_4_19_4_507_0>

© Scuola Normale Superiore, Pisa, 1992, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Isomorphisms of *H*^{*}-Triple Systems¹

A. CASTELLÓN SERRANO - J.A. CUENCA MIRA

Let A be a module over the commutative unit ring ϕ . We say that A is a ϕ -triple system if it is endowed with a trilinear map $\langle \cdots \rangle$ of $A \times A \times A$ to A. If $\phi = \mathbb{R}$ or \mathbb{C} the map $* : A \to A$ that to each x assigns x^* is said to be a multiplicative involution if it satisfies $\langle xyz \rangle^* = \langle x^*y^*z^* \rangle$ for any $x, y, z \in A$ and it is involutive linear if $\phi = \mathbb{R}$ or involutive antilinear if $\phi = \mathbb{C}$. The ϕ -triple system A is said an H^* -triple system if its underlying ϕ -module ($\phi = \mathbb{R}$ or \mathbb{C}) is a Hilbert ϕ -space of inner product $(\cdot | \cdot)$ endowed with a multiplicative involution $x \mapsto x^*$ satisfying

$$(\langle xyz \rangle | t) = (x | \langle tz^*y^* \rangle) = (y | z^*tx^* \rangle) = (z | \langle y^*x^*t \rangle)$$

for any x, y, $z \in A$. A ϕ -linear map F between the triple systems V and V' is said to be a morphism if $F(xyz) = \langle F(x)F(y)F(z) \rangle$ for any $x, y, z \in V$. The concepts of isomorphism, automorphism between triple systems and *-morphism, *-isomorphism and *-automorphism between H^* -triple systems are defined in an obvious way. A *-isomorphism F between the H*-triple systems V and V' is said to be an isogeny if there exists a real positive number λ , called the constant of the isogeny, such that $(F(x)|F(y)) = \lambda(x|y)$ for any $x, y \in V$. If F is a continuous morphism between the H^* -triple systems V and V', we denote by $F^{\Box}: V' \to V$ the adjoint operator of F and by $F^*: V \to V'$ the morphism given by $F^*: x \mapsto [F(x^*)]^*$. A subspace I of a triple system V is said to be an ideal of V if it satisfies $(IVV) + (VIV) + (VVI) \subset I$. An H*-triple system V is topologically simple if the triple product is non-zero and contains no proper closed ideals. In an H^* -triple system V we define the annihilator Ann(V) of V to be the set $\{x \in V : \langle xVV \rangle = 0\}$. We observe that if V is an H^{*}-triple system, then Ann(V) = $\{x \in V : \langle VxV \rangle = 0\} = \{x \in V : \langle VVx \rangle = 0\}$, and the involution * is isometric if Ann(V) = 0 ([3], [4] and [5]). Ann(V) is a closed self-adjoint ideal of V. The centroid Z(V) of an H^* -triple system V is the set of

¹ This work was partially supported by the "Plan Andaluz de Investigación y Desarrollo Tecnológico".

Pervenuto alla Redazione il 26 Luglio 1991.

linear maps $F: V \to V$ such that $F\langle xyz \rangle = \langle F(x)yz \rangle = \langle xF(y)z \rangle = \langle xyF(z) \rangle$ for any $x, y, z \in V$. In [6] we proved that if V is a topologically simple H^* -triple system then $(Z(V), \Box)$ is $(\mathbb{C} \operatorname{Id}, \overline{})$ in the complex case and either $(\mathbb{C} \operatorname{Id}, \overline{})$ or $(\mathbb{R} \operatorname{Id}, \operatorname{Id})$ in the real case.

PROPOSITION 1. Let V and V' be two H^{*}-triple systems with continuous involution and $F: V \to V'$ a continuous morphism with dense range. Then $F^* \circ F^{\Box}$ lies in Z(V').

PROOF. For any $x, y, z \in V, t \in V'$, we have

$$(F\langle xyz\rangle|t) = (\langle xyz\rangle|F^{\Box}(t)) = (x|\langle F^{\Box}(t)z^{*}y^{*}\rangle)$$

and on the other hand

$$\begin{split} (F\langle xyz\rangle|t) &= (\langle F(x)F(y)F(z)\rangle|t) = (F(x)|\langle tF(z)^*F(y)^*\rangle) \\ &= (x|F^{\Box}\langle tF(z)^*F(y)^*\rangle). \end{split}$$

Hence $F^{\Box}\langle tF(z)^*F(y)^*\rangle = \langle F^{\Box}(t)z^*y^*\rangle$. Substituting y for y^* and z for z^* , we can write $F^{\Box}\langle tF^*(z)F^*(y)\rangle = \langle F^{\Box}(t)zy\rangle$, and by applying F^* to both members, we obtain

$$F^*F^{\Box}\langle tF^*(z)F^*(y)\rangle = \langle F^*F^{\Box}(t)F^*(z)F^*(y)\rangle.$$

It follows, from continuity of F and the fact that F^* is a morphism, that F^* has dense range. Taking into account the above equality we have

$$F^*F^{\Box}\langle tuv\rangle = \langle F^*F^{\Box}(t)uv\rangle,$$

for any $u, v \in V'$. Analogously we can prove that

$$F^*F^{\Box}\langle tuv\rangle = \langle tF^*F^{\Box}(u)v\rangle = \langle tuF^*F^{\Box}(v)\rangle,$$

for any $u, v \in V'$ and therefore $F^*F^{\Box} \in Z(V')$.

PROPOSITION 2. (a) Let V be an H*-triple system with zero annihilator of norm $\|\cdot\|$. If V is endowed with another norm $\|\cdot\|_1$ such that $(V, \|\cdot\|_1)$ is a complete normed triple system, then $\|\cdot\|$ and $\|\cdot\|_1$ are equivalent.

(b) Let V and V' be two H^{*}-triple systems with zero annihilator and $F: V \rightarrow V'$ an (algebraic) isomorphism. Then F is continuous.

PROOF. (a) Let V_1 be the triple system V with the norm $\|\cdot\|_1$. For any $x, y \in V$, we have $L(x, y) \in BL(V) \cap BL(V_1)$. So

$$L(x, y)^{\Box}L(x, y) \in BL(V) \cap BL(V_1).$$

From the Banach inverse map theorem, we obtain

$$r(BL(V), L(x, y)^{\Box}L(x, y)) = r(BL(V_1), L(x, y)^{\Box}L(x, y)).$$

So

$$r(BL(V_1), L(x, y)^{\Box}L(x, y)) \le ||L(x, y)^{\Box}L(x, y)||_1,$$

and therefore

(3)
$$||L(x,y)||^2 \le ||L(x,y)^{\Box}||_1 ||L(x,y)||_1 \le ||x^*||_1 ||y^*||_1 ||x||_1 ||y||_1$$

As in [7, (1-2-36)], it can be shown that * is continuous for the topology induced by the norm $\|\cdot\|_1$, hence there exists a positive real k such that

(4)
$$||x^*||_1 \le k ||x||_1,$$

for any $x \in V_1$. Let $\{z_n\}$ be a sequence of elements of V with $\lim_{n \to \infty} z_n = 0$ in V_1 and $\lim_{n \to \infty} z_n = z$ in V. It follows from (3) and (4) that

$$||L(x,y)|| \le k||x||_1||y||_1,$$

and therefore

$$||L(z_n, y)|| \le k ||z_n||_1 ||y||_1.$$

The limit of the sequence $\{L(z_n, y)\}$ with the norm $\|\cdot\|$ is therefore zero. Since relative to the norm $\|\cdot\|$, we have $\lim_{n\to\infty} L(z_n, y) = L(z, y)$, it follows that L(z, y) = 0 and z = 0. The closed map theorem implies that $x \mapsto x$ is a continuous map of V_1 to V. The Banach inverse map theorem finishes the proof.

(b) We define a new norm $\|\cdot\|_1$ on V by means $\|x\|_1 = \|F(x)\|$. Then $(V, \|\cdot\|_1)$ is a complete normed triple system. Part (a) proves that $\|\cdot\|$ and $\|\cdot\|_1$ are equivalent and this implies the continuity of F.

COROLLARY 5. Let V and V' be topologically simple H^* -triple systems and $G: V \to V'$ a *-isomorphism. Then G is an isogeny.

PROOF. By Proposition 3, G is continuous. It follows from Proposition 1 and [6, Teorema 14] that $GG^{\Box} = \lambda \operatorname{Id} (\lambda \in \mathbb{R})$. For any $x, y \in V'$, we have

$$(G^{\Box}(x)|G^{\Box}(y)) = (x|GG^{\Box}(y)) = (x|\lambda y) = \lambda(x|y).$$

Hence λ is a positive real number and G is an isogeny of constant λ .

DEFINITION 6. Let V be a triple system over K and $D: V \to V$ a linear map. We say that D is a derivation if it satisfies

$$D\langle xyz\rangle = \langle D(x)yz\rangle + \langle xD(y)z\rangle + \langle xyD(z)\rangle,$$

for any $x, y, z \in V$.

LEMMA 7. Let V be a complex H^* -triple system with non-zero triple product, F a continuous automorphism of V and D a continuous derivation of V. Then

- (a) there exist λ , μ , $\nu \in \text{Sp}(F)$, such that $\lambda \mu \nu \in \text{Sp}(F)$;
- (b) there exist λ , μ , $\nu \in \text{Sp}(D)$, such that $\lambda + \mu + \nu \in \text{Sp}(D)$;
- (c) Sp(F) cannot be contained in a halfline of origin 0 different from \mathbb{R}^+ and \mathbb{R}^- ;
- (d) Sp(D) cannot be contained in a line other than for the lines containing the origin.

PROOF. Let F be the Banach space of the continuous trilinear maps of $V \times V \times V$ into V. For any $T \in BL(V)$ we define the maps $\overset{a}{T}, \overset{b}{T}, \overset{c}{T}, \overset{d}{T} \in BL(F)$ by

$$\begin{split} \tilde{T}(f)(x,y,z) &= T(f(x,y,z)) \\ \tilde{T}(f)(x,y,z) &= f(T(x),y,z) \\ \tilde{T}(f)(x,y,z) &= f(x,T(y),z) \\ \frac{d}{T}(f)(x,y,z) &= f(x,y,T(z)). \end{split}$$

If $f_0(x, y, z) = \langle xyz \rangle$ then T is an automorphism iff $\overset{a}{T}(f_0) = \overset{b}{T} \overset{c}{T} \overset{d}{T}(f_0)$ and T is a derivation iff $\overset{a}{T}(f_0) = (\overset{b}{T} + \overset{c}{T} + \overset{d}{T})(f_0)$. The map $T \mapsto \overset{a}{T}$ is a continuous morphism which preserves the unity and the maps $T \mapsto \overset{x}{T}$, $x \in \{b, c, d\}$, are continuous skewmorphisms which preserve the unity. Hence

(8) $\operatorname{Sp}(\overset{x}{T}) \subset \operatorname{Sp}(T), \quad x \in \{a, b, c, d\}.$

If F is an automorphism then $\overset{a}{F}(f_0) = \overset{b}{F}\overset{c}{F}\overset{d}{F}(f_0)$, that is, $(\overset{a}{F} - \overset{b}{F}\overset{c}{F}\overset{d}{F})$ $(f_0) = 0$, and therefore $0 \in \operatorname{Sp}(\overset{a}{F} - \overset{b}{F}\overset{c}{F}\overset{d}{F})$. It follows from the fact that $\{\overset{x}{F}\}_{x \in \{a,b,c,d\}}$ is a commutative set, that $0 \in \operatorname{Sp}(\overset{a}{F}) - \operatorname{Sp}(\overset{b}{F})\operatorname{Sp}(\overset{c}{F})\operatorname{Sp}(\overset{d}{F})$ (see [11, p. 280]). So there exist $\rho \in \operatorname{Sp}(\overset{a}{F})$, $\lambda \in \operatorname{Sp}(\overset{b}{F})$, $\mu \in \operatorname{Sp}(\overset{c}{F})$, $\nu \in \operatorname{Sp}(\overset{d}{F})$, such that $0 = \rho - \lambda \mu \nu$. Part (a) now follows from (8). In a similar way part (b) can be obtained. Parts (c) and (d) are consequence of (a) and (b).

Let V be a Hilbert space and $F \in BL(V)$. We recall that F is a positive operator if F is self-adjoint and $(F(x)|x) \ge 0$ for any $x \in V$. In the complex case the self-adjointness follows from the last condition.

510

LEMMA 9. Let V and V' be two topologically simple complex H^* -triple systems and $F: V \to V'$ an isomorphism. Then either $(F^*)^{-1} \circ F$ or $-(F^*)^{-1} \circ F$ is a positive operator.

PROOF. By [6, Teorema 14] and Proposition 1 we have $F^* \circ F^{\Box} = \lambda \operatorname{Id} (\lambda \in \mathbb{C})$. Firstly we prove that $\lambda \in \mathbb{R} - \{0\}$. The fact that $\lambda \neq 0$ is obtained from the invertibility of F. So

$$(F^*)^{-1} \circ F = \frac{1}{\lambda} F^{\Box} \circ F.$$

Since $F^{\Box} \circ F$ is a positive operator

$$\operatorname{Sp}\left(rac{1}{\lambda}\,F^{\square}\circ F
ight)\subsetrac{1}{\lambda}\,\mathbb{R}^{+},$$

and, by Lemma 7, $\lambda \in \mathbb{R} - \{0\}$. Then we have either $(F^*)^{-1} \circ F$ or $-(F^*)^{-1} \circ F$ is a positive operator. This finishes the proof.

From the following lemmata we shall prove that the unique positive root of $(F^*)^{-1} \circ F$ or $-(F^*)^{-1} \circ F$ is also a morphism. Next we generalize a well know result (see [10, Lemme 8 p. 313]).

LEMMA 10. Let E be a complex Banach space and \hat{F} the Banach space of the continuous multilinear maps of E^n into E. Let $D \in BL(E)$ and $F = e^D$. We define $D' \in BL(F)$ and $F' \in BL(\hat{F})$ by

$$(D'f)(\varsigma_1, \varsigma_2, \dots, \varsigma_n) = D(f(\varsigma_1, \varsigma_2, \dots, \varsigma_n)) - f(D\varsigma_1, \varsigma_2, \dots, \varsigma_n)) - f(\varsigma_1, D\varsigma_2, \dots, \varsigma_n) - \dots - f(\varsigma_1, \varsigma_2, \dots, D\varsigma_n) (F'f)(\varsigma_1, \varsigma_2, \dots, \varsigma_n) = F(f(F^{-1}\varsigma_1, F^{-1}\varsigma_2, \dots, F^{-1}\varsigma_n))$$

with $\zeta_1, \zeta_2, \ldots, \zeta_n \in E$, $f \in \hat{F}$. Then

(a)
$$D'f = 0$$
 implies $F'f = f$.

(b) If
$$F'f = f$$
, and $\operatorname{Sp} D \subset \left\{ z \in \mathbb{C} : |\operatorname{Im}(z)| < \frac{2\pi}{(n+1)} \right\}$, then $D'f = 0$.

PROOF. We define maps $x_1, x_1, \ldots, x_n \in BL(\hat{F})$ by

$$(x_0 f)(\zeta_1, \ldots, \zeta_n) = D(f(\zeta_1, \ldots, \zeta_n)),$$
$$(x_i f)(\zeta_1, \ldots, \zeta_n) = -f(\zeta_1, \ldots, D\zeta_i, \ldots, \zeta_n), \qquad i \in \{1, \ldots, n\},$$

taking into account that $D' = \sum_{i=0}^{n} x_i$ and that the x_i pairwise commute, we can conclude the proof as in [10, Lemme 8 p. 314].

LEMMA 11. Let V be a complex complete normed triple system and F a continuous automorphism of V such that

$$\operatorname{Sp}(F) \subset \left\{ z \in \mathbb{C} : |\operatorname{arg}(Z)| < \frac{\pi}{2} \right\}.$$

There there exists a unique continuous derivation $D: V \to V$ such that $e^{D} = F$ and

$$\operatorname{Sp}(D) \subset \left\{ z \in \mathbb{C} : |\operatorname{Im}(z)| < \frac{\pi}{2} \right\}.$$

PROOF. Let f be the triple product of V and log the principal determination of the logarithm. Let $D = \log(F)$. Because F is an automorphism, it follows that F'f = f, with F' as in Lemma 10. The condition on F implies that

$$\operatorname{Sp}(D) = \log(\operatorname{Sp}(F)) \subset \left\{ z \in \mathbb{C} : |\operatorname{Im}(z)| < \frac{\pi}{2} \right\},\$$

and by Lemma 10 (b) we have that D'f = 0, that is D is a derivation.

PROPOSITION 12. Let V be a topologically simple H^* -triple system and F a positive automorphism of V. Then there exists a unique positive automorphism G of V such that $G^2 = F$. Moreover if $(F^*)^{-1} = F$, then $(G^*)^{-1} = G$.

PROOF. Let V be a complex topologically simple H^* -triple system. Since $\operatorname{Sp}(F) \subseteq \mathbb{R}^+$, by Lemma 11 there exists a unique continuous derivation $D: V \to V$ such that $e^D = F$. Obviously $\frac{1}{2}D$ is a derivation of V, and by Lemma 10 (a) and the spectral mapping theorem, $G = e^{(1/2)D}$ is a positive automorphism of V such that $G^2 = F$. If V is a real H^* -triple system with $(Z(V), \Box) = (\mathbb{R} \operatorname{Id}, \operatorname{Id})$, the unique positive automorphism \hat{G} of $\mathcal{C}(V)$, with $\hat{G}^2 = \mathcal{C}(F)$ can be obtained by arguing over the automorphism $\mathcal{C}(F)$ of the complexified $\mathcal{C}(V)$ of V given by $\mathcal{C}(F): (a+bi) \mapsto F(a)+F(b)i$. A direct calculation proves that $\tau \hat{G}\tau$ is another positive root of $\mathcal{C}(F)$, where τ is the (real) involutive \mathbb{C} -antilinear automorphism of V given by $\tau: (a+bi) \mapsto (a-bi)$. So $\hat{G}(V) \subseteq V$ and $G = \hat{G}|_V$ is the unique positive automorphism of V such that $G^2 = F$. Finally, if V is a real H^* -triple system with $(Z(V), \Box) = (\mathbb{C} \operatorname{Id}, -)$, that is, V is the realization of a complex H^* -triple system, then as in [1, Lemma 1.4.3] it can be proved that F is either \mathbb{C} -linear automorphism of V. Hence this case follows from the complex one.

Suppose now that $(F^*)^{-1} = F$. By Proposition 1, we obtain $(G^*)^{-1} = \mu G$, for some $\mu \in Z(V)$ $(Z(V) = \mathbb{R} \text{ or } \mathbb{C})$, since G and G^* are positive operators $\mu > 0$. On the other hand, we have

$$\mu^2 F = (\mu G) \circ (\mu G) = (G^*)^{-1} \circ (G^*)^{-1} = (F^*)^{-1} = F$$

so $\mu = 1$ and the proposition is proved.

MAIN THEOREM 13. Let V and V' be two topologically simple H^* -triple systems and $F: V \to V'$ an isomorphism. Then either $F: V \to V'$,

or $-F: V^b \rightarrow V'$ splits in a unique way

$$\sigma F = F_2 \circ F_1, \qquad \sigma \in \{1, -1\},$$

where F_1 is a positive automorphism, F_2 is a *-isomorphism and V^b is the twin of V, that is, the H*-triple system with the same Hilbert space and triple product as V and involution $x \mapsto -x^*$.

In particular if V and V' are isomorphic, then either V or V^b is *-isomorphic to V'.

PROOF. Let $H = (F^*)^{-1} \circ F$. By Lemma 9 and the proposition above, we obtain that either H or -H has a unique positive root F_1 . First we suppose that H is a positive operator. A direct calculation prove that $(H^*)^{-1} = H$, and by Proposition 12 we have $(F_1^*)^{-1} = F_1$. Then $F_2 = F \circ F_1^{-1}$ is a *-isomorphism. Indeed from

$$F_1^{-1} \circ (F^*)^{-1} \circ F_2 = F_1^{-1} \circ (F^*)^{-1} \circ F \circ F_1^{-1} = F_1^{-1} \circ F_1^2 \circ F_1^{-1} = \mathrm{Id},$$

we obtain

$$F_1^{-1} \circ (F^*)^{-1} = F_2^{-1},$$

or equivalently

$$F_2^* = F \circ F_1^*.$$

It follows from $(F_1^*)^{-1} = F_1$ that $F_2^* = F_2$, and F_2 is a *-isomorphism. If H is a negative operator we argue over $-\text{Id} \circ H$ in a similar way, taking into account that $-\text{Id} : V \to V^b$ shows that $(-\text{Id})^* = \text{Id}$. Finally we prove the uniqueness of the factorization. Arguing as in the proof of Lemma 9, we have that $G^{\square} = \lambda(G)(G^*)^{-1}$ for every automorphism G, where $\lambda(G)$ is a non-zero real number. Moreover $\lambda(G) > 0$ if G is positive. Suppose that $F = F_2 \circ F_1$ with F_1 a positive automorphism and F_2 a *-isomorphism. Then

$$(F^*)^{-1} \circ F = (F_2^* \circ F_1^*)^{-1} \circ F_2 \circ F_1 = (F_1^*)^{-1} \circ (F_2^*)^{-1} \circ F_2 \circ F_1$$
$$= (F_1^*)^{-1} \circ F_1 = \lambda (F_1)^{-1} F_1^2,$$

so F_1 is the unique positive root of the operator $(G^*)^{-1} \circ G$ with $G = \lambda (F_1)^{1/2} F$ and, by Proposition 12, $(F_1^*)^{-1} = F_1$, that is $\lambda (F_1) = 1$ and the factorization is unique. In a similar way, we can obtain the uniqueness in the case $-F = F_2 \circ F_1$.

COROLLARY 14 (Essential uniqueness). Let V be a topologically simple H^* -triple system over \mathbb{K} ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}) and V' another H^* -triple system with the same underlying \mathbb{K} -triple system of V. Then either V or V^b is isogenic to V'.

REFERENCES

- [1] M. CABRERA, H^{*}-álgebras no asociativas reales. H^{*}-álgebras de Malcev complejas y reales, Tesis doctoral, Universidad de Granada, 1987.
- M. CABRERA J. MARTÍNEZ A. RODRÍGUEZ, Nonassociative real H*-algebras, Publ. Mat. 32, 1988, 267-274.
- [3] A. CASTELLÓN, Sobre H^{*}-sistemas triples, Tesis doctoral, Universidad de Málaga, 1989.
- [4] A. CASTELLÓN J.A. CUENCA, Associative H*-triple systems. In Nonassociative Algebraic Models, Nova Science Publisher (eds. S. González and H.C. Uyung), New York, 1992, 45-67.
- [5] A. CASTELLÓN J.A. CUENCA, Compatibility in Jordan H^{*}-triple systems, Boll. Un. Mat. Ital. (7) 4-B, 1990, 433-447.
- [6] A. CASTELLÓN J.A. CUENCA, *El centroide de un H^{*}-sistema triple*, Primeras Jornadas Hispano-marroquíes de Matemática, Tetuán, 1989.
- [7] J.A. CUENCA, Sobre H*-álgebras no asociativas, Teoría de estructura de las H*-álgebras de Jordan no conmutativas semisimples, Universidad de Málaga, Málaga 1984.
- [8] J.A. CUENCA A. RODRÍGUEZ, Isomorphisms of H^{*}-algebras, Math. Proc. Cambridge Philos. Soc. 97, 1985, 93-99.
- [9] J.A. CUENCA A. RODRÍGUEZ, Structure theory for noncommutative Jordan H^{*}algebras, J. Algebra 106, 1987, 1-14.
- [10] J. DIXMIER, Les algèbras d'operateurs dans l'espace hilbertien, Gauthier-Villars, 1969.
- [11] W. RUDIN, Functional Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

Departamento de Algebra, Geometría y Topología Facultad de Ciencias, Universidad de Málaga Apartado 59 (29080) Málaga Spain