Scuola Normale Superiore di Pisa

 Classe di Scienze
A. Castellón Serrano

J. A. Cuenca Mira
 Isomorphisms of H^{*}-triple systems

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze $4{ }^{e}$ série, tome 19, n ${ }^{\circ} 4$ (1992), p. 507-514
http://www.numdam.org/item?id=ASNSP_1992_4_19_4_507_0

[^0]
Isomorphisms of \boldsymbol{H}^{*}-Triple Systems ${ }^{1}$

A. CASTELLÓN SERRANO - J.A. CUENCA MIRA

Let A be a module over the commutative unit ring ϕ. We say that A is a ϕ-triple system if it is endowed with a trilinear map $\langle\cdots\rangle$ of $A \times A \times A$ to A. If $\phi=\mathbb{R}$ or \mathbb{C} the map ${ }^{*}: A \rightarrow A$ that to each x assigns x^{*} is said to be a multiplicative involution if it satisfies $\langle x y z\rangle^{*}=\left\langle x^{*} y^{*} z^{*}\right\rangle$ for any $x, y, z \in A$ and it is involutive linear if $\phi=\mathbb{R}$ or involutive antilinear if $\phi=\mathbb{C}$. The ϕ-triple system A is said an H^{*}-triple system if its underlying ϕ-module ($\phi=\mathbb{R}$ or \mathbb{C}) is a Hilbert ϕ-space of inner product $(\cdot \mid \cdot)$ endowed with a multiplicative involution $x \mapsto x^{*}$ satisfying

$$
(\langle x y z\rangle \mid t)=\left(x \mid\left\langle t z^{*} y^{*}\right\rangle\right)=\left(y\left|z^{*} t x^{*}\right\rangle\right)=\left(z \mid\left\langle y^{*} x^{*} t\right\rangle\right)
$$

for any $x, y, z \in A$. A ϕ-linear map F between the triple systems V and V^{\prime} is said to be a morphism if $F\langle x y z\rangle=\langle F(x) F(y) F(z)\rangle$ for any $x, y, z \in V$. The concepts of isomorphism, automorphism between triple systems and *-morphism, *-isomorphism and ${ }^{*}$-automorphism between H^{*}-triple systems are defined in an obvious way. A ${ }^{*}$-isomorphism F between the H^{*}-triple systems V and V^{\prime} is said to be an isogeny if there exists a real positive number λ, called the constant of the isogeny, such that $(F(x) \mid F(y))=\lambda(x \mid y)$ for any $x, y \in V$. If F is a continuous morphism between the H^{*}-triple systems V and V^{\prime}, we denote by $F^{\square}: V^{\prime} \rightarrow V$ the adjoint operator of F and by $F^{*}: V \rightarrow V^{\prime}$ the morphism given by $F^{*}: x \mapsto\left[F\left(x^{*}\right)\right]^{*}$. A subspace I of a triple system V is said to be an ideal of V if it satisfies $\langle I V V\rangle+\langle V I V\rangle+\langle V V I\rangle \subseteq I$. An H^{*}-triple system V is topologically simple if the triple product is non-zero and contains no proper closed ideals. In an H^{*}-triple system V we define the annihilator $\operatorname{Ann}(V)$ of V to be the set $\{x \in V:\langle x V V\rangle=0\}$. We observe that if V is an H^{*}-triple system, then $\operatorname{Ann}(V)=\{x \in V:\langle V x V\rangle=0\}=\{x \in V:\langle V V x\rangle=0\}$, and the involution * is isometric if $\operatorname{Ann}(V)=0$ ([3], [4] and [5]). $\operatorname{Ann}(V)$ is a closed self-adjoint ideal of V. The centroid $Z(V)$ of an H^{*}-triple system V is the set of
${ }^{1}$ This work was partially supported by the "Plan Andaluz de Investigación y Desarrollo Tecnológico".

Pervenuto alla Redazione il 26 Luglio 1991.
linear maps $F: V \rightarrow V$ such that $F\langle x y z\rangle=\langle F(x) y z\rangle=\langle x F(y) z\rangle=\langle x y F(z)\rangle$ for any $x, y, z \in V$. In [6] we proved that if V is a topologically simple H^{*}-triple system then $(Z(V), 口)$ is $\left(\mathbb{C}\right.$ Id, $\left.{ }^{-}\right)$in the complex case and either (\mathbb{C} Id, ${ }^{-}$) or $(\mathbb{R} \mathrm{Id}, \mathrm{Id})$ in the real case.

Proposition 1. Let V and V^{\prime} be two H^{*}-triple systems with continuous involution and $F: V \rightarrow V^{\prime}$ a continuous morphism with dense range. Then $F^{*} \circ F^{\square}$ lies in $Z\left(V^{\prime}\right)$.

Proof. For any $x, y, z \in V, t \in V^{\prime}$, we have

$$
(F\langle x y z\rangle \mid t)=\left(\langle x y z\rangle \mid F^{\square}(t)\right)=\left(x \mid\left\langle F^{\square}(t) z^{*} y^{*}\right\rangle\right)
$$

and on the other hand

$$
\begin{aligned}
(F\langle x y z\rangle \mid t) & =(\langle F(x) F(y) F(z)\rangle \mid t)=\left(F(x) \mid\left\langle t F(z)^{*} F(y)^{*}\right\rangle\right) \\
& =\left(x \mid F^{\square}\left\langle t F(z)^{*} F(y)^{*}\right\rangle\right) .
\end{aligned}
$$

Hence $F^{\square}\left\langle t F(z)^{*} F(y)^{*}\right\rangle=\left\langle F^{\square}(t) z^{*} y^{*}\right\rangle$. Substituting y for y^{*} and z for z^{*}, we can write $F^{\square}\left\langle t F^{*}(z) F^{*}(y)\right\rangle=\left\langle F^{\square}(t) z y\right\rangle$, and by applying F^{*} to both members, we obtain

$$
F^{*} F^{\square}\left\langle t F^{*}(z) F^{*}(y)\right\rangle=\left\langle F^{*} F^{\square}(t) F^{*}(z) F^{*}(y)\right\rangle .
$$

It follows, from continuity of F and the fact that F^{*} is a morphism, that F^{*} has dense range. Taking into account the above equality we have

$$
F^{*} F^{\square}\langle t u v\rangle=\left\langle F^{*} F^{\square}(t) u v\right\rangle,
$$

for any $u, v \in V^{\prime}$. Analogously we can prove that

$$
F^{*} F^{\square}\langle t u v\rangle=\left\langle t F^{*} F^{\square}(u) v\right\rangle=\left\langle t u F^{*} F^{\square}(v)\right\rangle,
$$

for any $u, v \in V^{\prime}$ and therefore $F^{*} F^{\square} \in Z\left(V^{\prime}\right)$.
PROPOSITION 2. (a) Let V be an H^{*}-triple system with zero annihilator of norm $\|\cdot\|$. If V is endowed with another norm $\|\cdot\|_{1}$ such that $\left(V,\|\cdot\|_{1}\right)$ is a complete normed triple system, then $\|\cdot\|$ and $\|\cdot\|_{1}$ are equivalent.
(b) Let V and V^{\prime} be two H^{*}-triple systems with zero annihilator and $F: V \rightarrow V^{\prime}$ an (algebraic) isomorphism. Then F is continuous.

Proof. (a) Let V_{1} be the triple system V with the norm $\|\cdot\|_{1}$. For any $x, y \in V$, we have $L(x, y) \in B L(V) \cap B L\left(V_{1}\right)$. So

$$
L(x, y)^{\square} L(x, y) \in B L(V) \cap B L\left(V_{1}\right) .
$$

From the Banach inverse map theorem, we obtain

$$
r\left(B L(V), L(x, y)^{\square} L(x, y)\right)=r\left(B L\left(V_{1}\right), L(x, y)^{\square} L(x, y)\right) .
$$

So

$$
r\left(B L\left(V_{1}\right), L(x, y)^{\square} L(x, y)\right) \leq\left\|L(x, y)^{\square} L(x, y)\right\|_{1},
$$

and therefore

$$
\begin{equation*}
\|L(x, y)\|^{2} \leq\left\|L(x, y)^{\text {ㄱ }}\right\|_{1}\|L(x, y)\|_{1} \leq\left\|x^{*}\right\|_{1}\left\|y^{*}\right\|_{1}\|x\|_{1}\|y\|_{1} . \tag{3}
\end{equation*}
$$

As in [7, (1-2-36)], it can be shown that * is continuous for the topology induced by the norm $\|\cdot\|_{1}$, hence there exists a positive real k such that

$$
\begin{equation*}
\left\|x^{*}\right\|_{1} \leq k\|x\|_{1} \tag{4}
\end{equation*}
$$

for any $x \in V_{1}$. Let $\left\{z_{n}\right\}$ be a sequence of elements of V with $\lim _{n \rightarrow \infty} z_{n}=0$ in V_{1} and $\lim _{n \rightarrow \infty} z_{n}=z$ in V. It follows from (3) and (4) that

$$
\|L(x, y)\| \leq k\|x\|_{1}\|y\|_{1}
$$

and therefore

$$
\left\|L\left(z_{n}, y\right)\right\| \leq k\left\|z_{n}\right\|_{1}\|y\|_{1}
$$

The limit of the sequence $\left\{L\left(z_{n}, y\right)\right\}$ with the norm $\|\cdot\|$ is therefore zero. Since relative to the norm $\|\cdot\|$, we have $\lim _{n \rightarrow \infty} L\left(z_{n}, y\right)=L(z, y)$, it follows that $L(z, y)=0$ and $z=0$. The closed map theorem implies that $x \mapsto x$ is a continuous map of V_{1} to V. The Banach inverse map theorem finishes the proof.
(b) We define a new norm $\|\cdot\|_{1}$ on V by means $\|x\|_{1}=\|F(x)\|$. Then $\left(V,\|\cdot\|_{1}\right)$ is a complete normed triple system. Part (a) proves that $\|\cdot\|$ and $\|\cdot\|_{1}$ are equivalent and this implies the continuity of F.

COROLLARY 5. Let V and V^{\prime} be topologically simple H^{*}-triple systems and $G: V \rightarrow V^{\prime} a^{*}$-isomorphism. Then G is an isogeny.

Proof. By Proposition 3, G is continuous. It follows from Proposition 1 and $\left[6\right.$, Teorema 14] that $G G^{\square}=\lambda \operatorname{Id}(\lambda \in \mathbb{R})$. For any $x, y \in V^{\prime}$, we have

$$
\left(G^{\square}(x) \mid G^{\square}(y)\right)=\left(x \mid G G^{\square}(y)\right)=(x \mid \lambda y)=\lambda(x \mid y) .
$$

Hence λ is a positive real number and G is an isogeny of constant λ.
DEFINITION 6. Let V be a triple system over \mathbb{K} and $D: V \rightarrow V$ a linear map. We say that D is a derivation if it satisfies

$$
D\langle x y z\rangle=\langle D(x) y z\rangle+\langle x D(y) z\rangle+\langle x y D(z)\rangle
$$

for any $x, y, z \in V$.
LEMMA 7. Let V be a complex H^{*}-triple system with non-zero triple product, F a continuous automorphism of V and D a continuous derivation of V. Then
(a) there exist $\lambda, \mu, \nu \in \operatorname{Sp}(F)$, such that $\lambda \mu \nu \in \operatorname{Sp}(F)$;
(b) there exist $\lambda, \mu, \nu \in \operatorname{Sp}(D)$, such that $\lambda+\mu+\nu \in \operatorname{Sp}(D)$;
(c) $\operatorname{Sp}(F)$ cannot be contained in a halfine of origin 0 different from \mathbb{R}^{+}and \mathbb{R}^{-};
(d) $\operatorname{Sp}(D)$ cannot be contained in a line other than for the lines containing the origin.

Proof. Let F be the Banach space of the continuous trilinear maps of $V \times V \times V$ into V. For any $T \in B L(V)$ we define the maps $\stackrel{a}{T}, \stackrel{b}{T}, \stackrel{c}{T}, \stackrel{d}{T} \in B L(F)$ by

$$
\begin{aligned}
& \stackrel{a}{T}(f)(x, y, z)=T(f(x, y, z)) \\
& \stackrel{b}{T}(f)(x, y, z)=f(T(x), y, z) \\
& \stackrel{c}{T}(f)(x, y, z)=f(x, T(y), z) \\
& \stackrel{d}{T}(f)(x, y, z)=f(x, y, T(z))
\end{aligned}
$$

If $f_{0}(x, y, z)=\langle x y z\rangle$ then T is an automorphism iff $\stackrel{a}{T}\left(f_{0}\right)=\stackrel{b}{T} \stackrel{c}{T} \stackrel{d}{T}\left(f_{0}\right)$ and T is a derivation iff $\stackrel{a}{T}\left(f_{0}\right)=(\stackrel{b}{T}+\stackrel{c}{T}+\stackrel{d}{T})\left(f_{0}\right)$. The map $T \mapsto \stackrel{a}{T}$ is a continuous morphism which preserves the unity and the maps $T \mapsto \stackrel{x}{T}, x \in\{b, c, d\}$, are continuous skewmorphisms which preserve the unity. Hence

$$
\begin{equation*}
\operatorname{Sp}(\stackrel{x}{T}) \subset \operatorname{Sp}(T), \quad x \in\{a, b, c, d\} \tag{8}
\end{equation*}
$$

If F is an automorphism then $\stackrel{a}{F}\left(f_{0}\right)=\stackrel{b}{F} \stackrel{c}{F} \stackrel{d}{F}\left(f_{0}\right)$, that is, $(\stackrel{a}{F}-\stackrel{b}{F} \stackrel{c}{F} \stackrel{d}{F})\left(f_{0}\right)=0$, and therefore $0 \in \operatorname{Sp}(\stackrel{a}{F}-\stackrel{b}{F} \stackrel{c}{F} \stackrel{d}{F})$. It follows from the fact that $\{\stackrel{x}{F}\}_{x \in\{a, b, c, d\}}$ is a commutative set, that $0 \in \operatorname{Sp}(\stackrel{a}{F})-\operatorname{Sp}(\stackrel{b}{F}) \operatorname{Sp}(\stackrel{c}{F}) \operatorname{Sp}(\stackrel{d}{F})$ (see [11, p. 280]). So there exist $\rho \in \operatorname{Sp}(\stackrel{a}{F}), \lambda \in \operatorname{Sp}(\stackrel{b}{F}), \mu \in \operatorname{Sp}(\stackrel{c}{F}), \nu \in \operatorname{Sp}(\stackrel{d}{F})$, such that $0=\rho-\lambda \mu \nu$. Part (a) now follows from (8). In a similar way part (b) can be obtained. Parts (c) and (d) are consequence of (a) and (b).

Let V be a Hilbert space and $F \in B L(V)$. We recall that F is a positive operator if F is self-adjoint and $(F(x) \mid x) \geq 0$ for any $x \in V$. In the complex case the self-adjointness follows from the last condition.

LEMMA 9. Let V and V^{\prime} be two topologically simple complex H^{*}-triple systems and $F: V \rightarrow V^{\prime}$ an isomorphism. Then either $\left(F^{*}\right)^{-1} \circ F$ or $-\left(F^{*}\right)^{-1} \circ F$ is a positive operator.

Proof. By [6, Teorema 14] and Proposition 1 we have $F^{*} \circ F^{\square}=\lambda$ Id $(\lambda \in \mathbb{C})$. Firstly we prove that $\lambda \in \mathbb{R}-\{0\}$. The fact that $\lambda \neq 0$ is obtained from the invertibility of F. So

$$
\left(F^{*}\right)^{-1} \circ F=\frac{1}{\lambda} F^{\square} \circ F .
$$

Since $F^{\square} \circ F$ is a positive operator

$$
\operatorname{Sp}\left(\frac{1}{\lambda} F^{\square} \circ F\right) \subset \frac{1}{\lambda} \mathbb{R}^{+}
$$

and, by Lemma $7, \lambda \in \mathbb{R}-\{0\}$. Then we have either $\left(F^{*}\right)^{-1} \circ F$ or $-\left(F^{*}\right)^{-1} \circ F$ is a positive operator. This finishes the proof.

From the following lemmata we shall prove that the unique positive root of $\left(F^{*}\right)^{-1} \circ F$ or $-\left(F^{*}\right)^{-1} \circ F$ is also a morphism. Next we generalize a well know result (see [10, Lemme 8 p. 313]).

Lemma 10. Let E be a complex Banach space and \hat{F} the Banach space of the continuous multilinear maps of E^{n} into E. Let $D \in B L(E)$ and $F=e^{D}$. We define $D^{\prime} \in B L(F)$ and $F^{\prime} \in B L(\hat{F})$ by

$$
\begin{aligned}
\left(D^{\prime} f\right)\left(\varsigma_{1}, \varsigma_{2}, \ldots, \varsigma_{n}\right)= & \left.D\left(f\left(\varsigma_{1}, \varsigma_{2}, \ldots, \varsigma_{n}\right)\right)-f\left(D \varsigma_{1}, \varsigma_{2}, \ldots, \varsigma_{n}\right)\right) \\
& \quad-f\left(\varsigma_{1}, D \varsigma_{2}, \ldots, \zeta_{n}\right)-\cdots-f\left(\zeta_{1}, \varsigma_{2}, \ldots, D \zeta_{n}\right) \\
\left(F^{\prime} f\right)\left(\varsigma_{1}, \varsigma_{2}, \ldots, \varsigma_{n}\right)= & F\left(f\left(F^{-1} \varsigma_{1}, F^{-1} \varsigma_{2}, \ldots, F^{-1} \zeta_{n}\right)\right)
\end{aligned}
$$

with $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n} \in E, f \in \hat{F}$. Then
(a) $D^{\prime} f=0$ implies $F^{\prime} f=f$.
(b) If $F^{\prime} f=f$, and $\operatorname{Sp} D \subset\left\{z \in \mathbb{C}:|\operatorname{Im}(z)|<\frac{2 \pi}{(n+1)}\right\}$, then $D^{\prime} f=0$.

Proof. We define maps $x_{1}, x_{1}, \ldots, x_{n} \in B L(\hat{F})$ by

$$
\begin{gathered}
\left(x_{0} f\right)\left(\varsigma_{1}, \ldots, \zeta_{n}\right)=D\left(f\left(\varsigma_{1}, \ldots, \zeta_{n}\right)\right) \\
\left(x_{i} f\right)\left(\varsigma_{1}, \ldots, \zeta_{n}\right)=-f\left(\varsigma_{1}, \ldots,{\zeta_{i}}_{i}, \ldots, \varsigma_{n}\right), \quad i \in\{1, \ldots, n),
\end{gathered}
$$

taking into account that $D^{\prime}=\sum_{i=0}^{n} x_{i}$ and that the x_{i} pairwise commute, we can conclude the proof as in [10, Lemme 8 p. 314].

LEMMA 11. Let V be a complex complete normed triple system and F a continuous automorphism of V such that

$$
\operatorname{Sp}(F) \subset\left\{z \in \mathbb{C}:|\arg (Z)|<\frac{\pi}{2}\right\}
$$

There there exists a unique continuous derivation $D: V \rightarrow V$ such that $e^{D}=F$ and

$$
\operatorname{Sp}(D) \subset\left\{z \in \mathbb{C}:|\operatorname{Im}(z)|<\frac{\pi}{2}\right\}
$$

Proof. Let f be the triple product of V and log the principal determination of the logarithm. Let $D=\log (F)$. Because F is an automorphism, it follows that $F^{\prime} f=f$, with F^{\prime} as in Lemma 10. The condition on F implies that

$$
\operatorname{Sp}(D)=\log (\operatorname{Sp}(F)) \subset\left\{z \in \mathbb{C}:|\operatorname{Im}(z)|<\frac{\pi}{2}\right\}
$$

and by Lemma 10 (b) we have that $D^{\prime} f=0$, that is D is a derivation.
PROPOSITION 12. Let V be a topologically simple H^{*}-triple system and F a positive automorphism of V. Then there exists a unique positive automorphism G of V such that $G^{2}=F$. Moreover if $\left(F^{*}\right)^{-1}=F$, then $\left(G^{*}\right)^{-1}=G$.

Proof. Let V be a complex topologically simple H^{*}-triple system. Since $\operatorname{Sp}(F) \subseteq \mathbb{R}^{+}$, by Lemma 11 there exists a unique continuous derivation $D: V \rightarrow V$ such that $e^{D}=F$. Obviously $\frac{1}{2} D$ is a derivation of V, and by Lemma 10 (a) and the spectral mapping theorem, $G=e^{(1 / 2) D}$ is a positive automorphism of V such that $G^{2}=F$. If V is a real H^{*}-triple system with $(Z(V), \square)=(\mathbb{R} \mathrm{Id}, \mathrm{Id})$, the unique positive automorphism \hat{G} of $C(V)$, with $\hat{G}^{2}=C(F)$ can be obtained by arguing over the automorphism $C(F)$ of the complexified $C(V)$ of V given by $C(F):(a+b i) \mapsto F(a)+F(b) i$. A direct calculation proves that $\tau \hat{G} \tau$ is another positive root of $\mathcal{C}(F)$, where τ is the (real) involutive \mathbb{C}-antilinear automorphism of V given by $\tau:(a+b i) \mapsto(a-b i)$. So $\hat{G}(V) \subseteq V$ and $G=\left.\hat{G}\right|_{V}$ is the unique positive automorphism of V such that $G^{2}=F$. Finally, if V is a real H^{*}-triple system with $(Z(V), \square)=\left(\mathbb{C} I d,{ }^{-}\right)$, that is, V is the realization of a complex H^{*}-triple system, then as in [1, Lemma 1.4.3] it can be proved that F is either \mathbb{C}-linear or \mathbb{C}-antilinear. But the (real) positivity of F implies that F must be a \mathbb{C}-linear automorphism of V. Hence this case follows from the complex one.

Suppose now that $\left(F^{*}\right)^{-1}=F$. By Proposition 1, we obtain $\left(G^{*}\right)^{-1}=\mu G$, for some $\mu \in Z(V)(Z(V)=\mathbb{R}$ or $\mathbb{C})$, since G and G^{*} are positive operators $\mu>0$. On the other hand, we have

$$
\mu^{2} F=(\mu G) \circ(\mu G)=\left(G^{*}\right)^{-1} \circ\left(G^{*}\right)^{-1}=\left(F^{*}\right)^{-1}=F
$$

so $\mu=1$ and the proposition is proved.
MAIN THEOREM 13. Let V and V^{\prime} be two topologically simple H^{*} triple systems and $F: V \rightarrow V^{\prime}$ an isomorphism. Then either $F: V \rightarrow V^{\prime}$,
or $-F: V^{b} \rightarrow V^{\prime}$ splits in a unique way

$$
\sigma F=F_{2} \circ F_{1}, \quad \sigma \in\{1,-1\}
$$

where F_{1} is a positive automorphism, F_{2} is a^{*}-isomorphism and V^{b} is the twin of V, that is, the H^{*}-triple system with the same Hilbert space and triple product as V and involution $x \mapsto-x^{*}$.

In particular if V and V^{\prime} are isomorphic, then either V or V^{b} is *-isomorphic to V^{\prime}.

Proof. Let $H=\left(F^{*}\right)^{-1} \circ F$. By Lemma 9 and the proposition above, we obtain that either H or $-H$ has a unique positive root F_{1}. First we suppose that H is a positive operator. A direct calculation prove that $\left(H^{*}\right)^{-1}=H$, and by Proposition 12 we have $\left(F_{1}^{*}\right)^{-1}=F_{1}$. Then $F_{2}=F \circ F_{1}^{-1}$ is a ${ }^{*}$-isomorphism. Indeed from

$$
F_{1}^{-1} \circ\left(F^{*}\right)^{-1} \circ F_{2}=F_{1}^{-1} \circ\left(F^{*}\right)^{-1} \circ F \circ F_{1}^{-1}=F_{1}^{-1} \circ F_{1}^{2} \circ F_{1}^{-1}=\mathrm{Id},
$$

we obtain

$$
F_{1}^{-1} \circ\left(F^{*}\right)^{-1}=F_{2}^{-1},
$$

or equivalently

$$
F_{2}^{*}=F \circ F_{1}^{*} .
$$

It follows from $\left(F_{1}^{*}\right)^{-1}=F_{1}$ that $F_{2}^{*}=F_{2}$, and F_{2} is a ${ }^{*}$-isomorphism. If H is a negative operator we argue over -Id $\circ H$ in a similar way, taking into account that $-\mathrm{Id}: V \rightarrow V^{b}$ shows that $(-\mathrm{Id})^{*}=\mathrm{Id}$. Finally we prove the uniqueness of the factorization. Arguing as in the proof of Lemma 9, we have that $G^{\square}=\lambda(G)\left(G^{*}\right)^{-1}$ for every automorphism G, where $\lambda(G)$ is a non-zero real number. Moreover $\lambda(G)>0$ if G is positive. Suppose that $F=F_{2} \circ F_{1}$ with F_{1} a positive automorphism and $F_{2} \mathrm{a}^{*}$-isomorphism. Then

$$
\begin{aligned}
\left(F^{*}\right)^{-1} \circ F & =\left(F_{2}^{*} \circ F_{1}^{*}\right)^{-1} \circ F_{2} \circ F_{1}=\left(F_{1}^{*}\right)^{-1} \circ\left(F_{2}^{*}\right)^{-1} \circ F_{2} \circ F_{1} \\
& =\left(F_{1}^{*}\right)^{-1} \circ F_{1}=\lambda\left(F_{1}\right)^{-1} F_{1}^{2},
\end{aligned}
$$

so F_{1} is the unique positive root of the operator $\left(G^{*}\right)^{-1} \circ G$ with $G=\lambda\left(F_{1}\right)^{1 / 2} F$ and, by Proposition 12, $\left(F_{1}^{*}\right)^{-1}=F_{1}$, that is $\lambda\left(F_{1}\right)=1$ and the factorization is unique. In a similar way, we can obtain the uniqueness in the case $-F=F_{2} \circ F_{1}$.

COROLLARY 14 (Essential uniqueness). Let V be a topologically simple H^{*}-triple system over $\mathbb{K}(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$ and V^{\prime} another H^{*}-triple system with the same underlying \mathbb{K}-triple system of V. Then either V or V^{b} is isogenic to V^{\prime}.

REFERENCES

[1] M. Cabrera, H^{*}-álgebras no asociativas reales. H^{*}-álgebras de Malcev complejas y reales, Tesis doctoral, Universidad de Granada, 1987.
[2] M. Cabrera - J. Martínez - A. Rodríguez, Nonassociative real \boldsymbol{H}^{*}-algebras, Publ. Mat. 32, 1988, 267-274.
[3] A. Castellón, Sobre H^{*}-sistemas triples, Tesis doctoral, Universidad de Málaga, 1989.
[4] A. Castellón - J.A. Cuenca, Associative H^{*}-triple systems. In Nonassociative Algebraic Models, Nova Science Publisher (eds. S. González and H.C. Uyung), New York, 1992, 45-67.
[5] A. Castellón - J.A. Cuenca, Compatibility in Jordan \boldsymbol{H}^{*}-triple systems, Boll. Un. Mat. Ital. (7) 4-B, 1990, 433-447.
[6] A. Castellón - J.A. Cuenca, El centroide de un H^{*}-sistema triple, Primeras Jornadas Hispano-marroquíes de Matemática, Tetuán, 1989.
[7] J.A. Cuenca, Sobre H^{*}-álgebras no asociativas, Teoría de estructura de las H^{*}-álgebras de Jordan no conmutativas semisimples, Universidad de Málaga, Málaga 1984.
[8] J.A. Cuenca - A. Rodríguez, Isomorphisms of \boldsymbol{H}^{*}-algebras, Math. Proc. Cambridge Philos. Soc. 97, 1985, 93-99.
[9] J.A. Cuenca - A. Rodríguez, Structure theory for noncommutative Jordan H^{*} algebras, J. Algebra 106, 1987, 1-14.
[10] J. DIXMIER, Les algèbras d'operateurs dans l'espace hilbertien, Gauthier-Villars, 1969.
[11] W. Rudin, Functional Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

Departamento de Algebra, Geometría y Topología Facultad de Ciencias, Universidad de Málaga Apartado 59
(29080) Málaga

Spain

[^0]: © Scuola Normale Superiore, Pisa, 1992, tous droits réservés.
 L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

