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Uniform Foliation Associated with the Hamiltonian System Hn

HIRONOBU KIMURA

Dedicated to Professor Tosihusa Kimura
on his 60-th birthday

0. - Introduction

In the last decade, the Painlev6 equations are objects of many reserches.
The Painlev6 equations are six non-linear second order differential equations
whose solutions are free from movable branch points (branch points whose po-
sitions change under the variation of integration constants). They are discovered
by P. Painlev6 [Pain] in the aim of defining new transcendental functions. We
denote by Pj (J = I, ... , VI) the equations of Painlev6. For example, Pvl is

where a, 3, -1 and 6 are complex constants.
The adjective "new" implies that these transcendental functions are irredu-

cible over the classical transcendental functions, that is, they cannot be expressed
by using the exponential function, algebraic functions, functions which satisfy
linear differential equations with algebraic coefficients, etc. (for the precise
definition of irreducibility, see [Ume]).

Inspired by the work of Painlev6, certain mathematicians tried to generalize
the results of Painlev6 in two direction.

Firstly, in [Bur], [Chaz], [Gar. I], the authors have tried to classify all
the algebraic ordinary differential equations of order greater than 2 free from
movable branch point using the a-method initiated by Painlev6 (we refer the
reader to [Inc] and other literatures for the detail).

Pervenuto alla Redazione 1’ 1 Settembre 1990 e in forma definitiva il 10 Luglio 1992.



2

In other direction, many nonlinear differential equations and completely
integrable Pfaffian systems are obtained using the theory of monodromy
preserving deformations for linear ordinary differential equations. Non-existence
of movable branch points are established for a large part of these equations by
[Miw], [Malg]. This property is called the Painlevi property. Nevertheless, we
have not yet arrived at the state where we can say that these equations define
new special functions, because we know very little about the properties of their
solutions. For the Painlev6 equations Pj, a number of articles are devoted to
the study of their general solutions.

In [Gar.2], [KimH.2], [Tak.2], [Shim.1 ], [YosS], they studied the local

problem, i.e., the study of solutions at fixed singular points (a singular point is
said to be fixed when it is not a movable one).

On the other hand, in [Okm.I], K. Okamoto has studied the equations
Pj from a geometric point of view. For each equation Pj, he has constructed
explicitly a locally trivial complex analytic fiber space in which the equation
Pj defines a uniform foliation (see § 1 for the definition).

The purpose of this paper is to realize the geometric interpretation, which
is established for Pj in [Okm. I], for a completely integrable Pfaffian system
(see below) enjoying the Painleve property and generalizing Pvl.

The system )In is a Hamiltonian system with independent variables

t = (tl, ... , tn): 1

with Hamiltonians:

where

{ ~ , ~ } stands for the Poisson bracket
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and j i are given by

if distinct,
if

if

if

if

if

Here the symbol stands for the summation over

and

Note that are symmetric with respect to

and that and satisfy

In case n = 1, the Hamiltonian H := HI of the system is

and this system is equivalent to the sixth Painlev6 equation in the sense that
PvI is obtained from ,~1 by eliminating p.

The independent variables t of the system )In is considered in
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Fig. 1

In the case n = 2, the singularity 3 = pnBB of ~ln gives the line

configuration drawed in Figure 1.

By virtue of the celebrated theorem of Miwa [Miw] and Malgrange [Malg]
and the fact that the system Mn is equivalent to 2 x 2 Schlesinger system ([YIKS]
§3.6.4), we obtain the following result.

PROPOSITION 0.1. [KO.2] The system is completely integrable and
it enjoys the Painlevé property. Moreover, any solution of Mn is continued

meromorphically on the universal covering space B of B.

In order to formulate precisely a problem to be considered, we prepare
several terminologies.

Let P := (E, 7r, B) be a locally trivial complex analytic fiber space consi-
sting of complex manifolds E of dimension m + n and B of dimension n, and
of a surjective holomorphic mapping 7r : E -~ B. The manifolds E and B are
called the total space and the base of P, respectively. Let 7 be a nonsingular
complex analytic foliation of codimension m defined in the total space E of
p . Locally, the foliation 7 is defined by m linearly independent holomorphic
1-forms .

DEFINITION 0.2. A leaf of a nonsingular foliation Y’ in P is called T-leaf
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if it is transversal to the fibers of P. A leaf of .F is said to be vertical when
it is entirely contained in some fiber of P.

DEFINITION 0.3. A nonsingular complex analytic foliation ~ in P =
(E, 7r, B) is said to be uniform for P if i) any leaf of 7 is T-leaf and ii)
any path i in B can be lifted in a leaf if a point is given in the intersection
of the leaf and the fiber over the origin of ~y.

Consider, in particular, a completely integrable Pfaffian system of the form

where Gij E C(t)[x]. Let E C be the set of fixed singular points of the
system (P), i.e., is a union of a projection image of pole divisors of Gij’s to
the t-space and of a hyperplane at infinity in pn(t). Set B := Suppose
that the system (P) enjoys the property stated in Proposition 0.1, and consider
the system (P) in the total space of a trivial bundle Q ° := (cm x B, 7r, B). The
system (P) defines a nonsingular complex analytic foliation 70 in em x B whose
leaves are all T-leaves. However, is not uniform for QO in general because
the second condition for the uniformity is not necessarily fulfilled.

DEFINITION 0.4. A fiber space P = (E, 7r, B) is called a P-uniform fibration
(P-fibration) for the system (P) if

(i) (cm x B, 7r, B) is a fiber subspace of P such that x B is a

proper analytic subset of E,
(ii) the foliation f° prolongs to a uniform foliation 7 for E,
(iii) any leaf of 7 in the total space E intersects with the total space x B

of Q 0.

REMARK 0.5. Let P = (E, 7r, B) be a P-fibration for the system (P) and
let w : : 8 - B be the universal covering space of B. Then the system (P)
defines a uniform foliation ! on the induced fiber space (w* E, 7r, B). Each leaf
of the foliation ! is mapped biholomorphically to the base B. Furthermore, the
general solution of (P) defines an isomorphism between any two fibers 
and of the bundle P.

DEFINITION 0.6. A fiber of the P-fibration for the system (P) is called a

space of initial conditions of (P).

Heuristically speaking, in order to construct a P-fibration for the system
(P), we study the behavior of its integral manifolds when they tend to "infinity"
as we continue them analytically. To this end, we consider a locally trivial

complex analytic fiber space Q = (F, 7r, B) whose fiber is an algebraic manifold
and is a compactification of Since the system (P) is algebraic, it extends

naturally to the system on F given by holomorphic 1-forms, and it defines, in
general, a singular foliation (see [R]) on F whose singular locus is the set of
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points where the 1-forms are linearly dependent. The system in F thus obtained
is called the prolonged system of (P).

Let D be the singularity of the prolonged system in F and let .7 be
the foliation in FBD defined by the prolonged system of (P). Note that if a
point p E D is contained in a closure of some T-leaf which pass through a
point in a total space C 14 x B of then, by virtue of the Painleve property
assumed above for (P), a solution of the prolonged system which gives this
leaf is continued meromorphically to this point. This observation leads to the
following definition.

DEFINITION 0.7. A point in p E D is called an accessible singular point
of the foliation Y" (or of the prolonged system) if it is contained in a closure
of a T-leaf of 1’.

Now we propose to study the following problem:

PROBLEM 0.8. Construct a space of initial conditions for the Hamiltonian
system Mn.

To present our problem more concretely, we consider, as an example, the
Riccati equation:

where a(t), b(t) and c(t) are holomorphic in a simply connected domain B of
C.

Fig. 2
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If we consider a change of variable:

then the equation of Riccati is transformed into

We can interpret this procedure geometrically in the following manner. Given
the Riccati equation (0.5) in a trivial bundle:

then the fact that the equation (0.7) is obtained from (0.5) by the change of
variable (0.6) implies that the equation (0.5) can be prolonged to a differential
equation without singularity in the total space of fiber bundle: P = 1 x B, x, B)
and this equation defines a foliation in the total space P ~ 1 x B of P whose leaves
are transversal to the fibers.

Moreover, the Painlev6 propery of the Riccati equations is deduced from
the compactness of fibers by virtue of the theorem of Ehressmann. That

is, if a point (yo, to) E I~ 1 x B and a solution y(t; to, yo) of the equation
(0.6) with the initial condition y(to; to, yo) = yo are given, then this solution
is continued meromorphically along any path in B and gives, for ti E B

arbitrary, the biholomorphic correspondence between two fibers IP1
and ~-1 (t 1 ) ^_· I~ 1: 

1 1

Hence we can say that P ~ 
1 parametrizes all the solutions of the Riccati equation.

In order to study the same problem for the system ).In, we find a manifold
of dimension 2n which is a 2n-dimensional analogue of the Hirzebruch surface
Eo (see Remark 1.4). We will see that this generalization is obtained in a natural
way from the symmetries of the system Mn.

In Section 1, we study the symmetries of the system Nn. The structure of
the group of symmetries suggests us to define a generalization La of Hirzebruch
surface to 2n dimensional manifold and to prolong the system Mn to the
total space of trivial bundle La X B -~ B. After reviewing on a monoidal
transformation we state the main theorem. In Section 2, we describe explicitly
how the system Mn, given in the total space of (c2n x B, 1r, B), is prolonged
to a system in Ea x B. Moreover, the set of singular points of is
studied. Section 3 is devoted to the determination of accessible singularity of the
prolonged system And finally, in Section 4, we complete the demonstration
of the theorem.
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1. - Symmetries of )In and the main theorem

1.1. Symmetries of ,~n

Consider a Pfaffian system:

P:

where 0) are rational functions in (x, t) = xm, t 1, ~ ~ ~ , tn)
depending on parameters The system P with a parameter 0 is denoted
by P(9). For a birational transformation S : (x, t) -~ (x’, t’), we denote by S. PCB)
the system of differential equations in the variables (x’, t’) obtained from PCB)
by the transformation S.

DEFINITION 1.1. A symmetry for the system P is a (S, h) of
a birational transformation S : (x, t) - (x’, t’) and an affine transformation
h : such that S - P(8) = P(h(0)).

Let a = (S, h) and u’ = (S’, h’) be symmetries for the system P. The

product (7 ’ (J’ and the inverse (J -1 defined a’ = (S o S’, h o h’) and
(J -1 = (S-l , h -1), are again symmetries of P.

Let V fO = (9i,".,~+2~oo) C be the space of parameters for
the system )In, and let be the system Mn with fixed parameters 0. Let us
define the birational transformation Sm : (q, p, t) - (q’, p’, t’) as follows:
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where Rim are given by (0.1 ) and

Let hm : V - V be affine transformations defined by

Let L := (U 1, - - - , an+2) be the group generated by
Then we have

PROPOSITION 1.2. [KimH.5], [YIKS] The group L is a group of symmetries
for the system and is isomorphic to the symmetric group Sn+3 on n+3 letters.

1.2. Compact manifold generalizing Hirzebruch’s surface

We introduce a compact complex manifold of dimension 2n, which is a
pn-bundle over P". This manifold will serve as fibers of the fiber bundle over
B into which the system Mn is prolonged.
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Let be the homogeneous coordinates of be
the i-th affine coordinate chart, i.e., and 1S
defined by

We make use of the following convention: the symbols and

pn(Ç") denote the complex projective space of dimension n with homogeneous
coordinates t, z and ~, respectively.

First we construct a non-compact complex manifold which is an affine
bundle over pn(Z) with fibers isomorphic to and will be compactified to
give a generalization of the Hirzebruch’s surface ([Hirz], [Kod]).

Set WZi = Ui x C n (1  i  n). Then (Wii, 7r, Ui ), with the projection 7r to

the first factor, is a trivial bundle over Ui. Let

be a system of coordinates in Wii. In we define an equivalence relation

as follows: two points (zi, qj) E Wii and are equivalent when

where a is a complex constant. Let Ean be a complex manifold defined as a
quotient space of by the above equivalence relation.

Next we define a complex manifold obtained by compactifying fibers
of by p n. Consider a trivial P"-bundle over Let

be the coordinates in Wi, where is the homogeneous
coordinates of

In Wi, we define an equivalence relation as follows: points
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Wi and (z~ , ~~ ) E Wj are identified when we have ( 1.1 ) and

Let I’ be the quotient space of U Wi by the relation defined above.
Oin

The set Ea has a natural structure of pn-=bundle over and will be called

the Hirzebruch manifold. If there is no fear of confusion, we write Ea and 10,
instead of Ea and Eon, respectively.

Set

Note that forms an atlas consisting of affine charts of Hirzebruch
manifold and Ea is an open submanifold of Ea with coordinate covering

REMARK 1.3. In each chart Wi2 of there exists a natural symplectic
structure The coordinate change Wjj - W j j defined by ( 1.1 ) and
(1.2) is a symplectic transformation.

REMARK 1.4. The manifold Eo is a Hirzebruch surface (see [Kod]) and

{ Ea } « is its deformation of complex structure parametrized by a constant a.
This surface was used for the construction of a space of initial conditions for
the Painlev6 equations ( [Okm.1 ] ) .

1.3. Monoidal transformation

In this paragraph, we recall on monoidal transformations (blowing up)
which we use in this paper.

Let M be a complex manifold of dimension m + n and let C be a complex
submanifold of M of dimension n. Let Vj (j E J) be open sets of M such that
M = U Vi and let J’ _ {j E J; c n We can suppose that we have the

jEJ
coordinates system on Vj ( j E J’):
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such that

Let ~ = (~o, ... , ~m-1 ) be the homogeneous coordinates of The monoidal
transformation of M along C is a pair (M, f ) consisting of a complex manifold
M such that dim M = dim M and a holomorphic mapping f : M -~ M defined
as follows.

be a subvariety of defined by

For j E JB J’, we set Y~ - Let i ~. -~ Y~ be a holomorphic mapping
induced from the projection to the first factor p : V~ x 1 

--~ V~ for j E J’
and let fi = id. for j E JBJ’.

We set Then the complex structure of M induces the

equivalence relation in and the mapping are compatible with

these relations. As a consequence, we have the manifolds:

and a holomorphic mapping satisfying

is a fiber bundle over C with fibers isomorphic to
is biholomorphic.

In this paper we utilise the notation

and the manifold 6 is called a exceptional manifold.

1.4. Main results

In this part we explain our strategy and state the main result.
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We want to consider the Hamiltonian system Nn in a trivial fiber bun-
dle = (La x B,,7r, B) with base B defined by (0.4), where La is a Hirzebruch
manifold of dimension 2n with

To fix the idea, suppose the system Nn is defined in (Woo x B, 7r, B), where
Woo = U° x C~ is a coordinate chart of 10. Let N)°) denote the prolonged system
of Nn in La x B.

I. In Section 2, we shall show the following results:

(I-a) The set of singular points of N)°) is a submanifold DO := x B of

Ea x B (Proposition 2.2). Let 1(0) be a nonsingular foliation in E° x B
defined by the system ~(n°&#x3E;. The leaves of F(O) are all transversal to the
fibers of 7r : Y-0 x B --&#x3E; B;

(I-b) The set of accessible singular points of ~(n°~ is contained in n + 3 mutually
disjoint complex submanifolds C8,..., of DO such that

(i) 7r : C$ - B is a locally trivial fiber subspace of B),

(ii) dim Cm(t) = n - 1. where Cm(t) := Cm n 1r-1(t) (Proposition 2.4).

We set

II. By the definition of accessible singularities, an infinite number of T-leaves
of may prolong holomorphically to a point of CO. We try to separate all

these T-leaves by performing a monoidal transformation in Ee, x B along CO.
In fact we will show that, for any t E B, a family of T-leaves depending on
2n - 1 parameters pass through each component of 

After performing a monoidal transformation pco in Ea x B along CO,
we obtain a locally trivial fiber space := (E~l~, 7r(l), B) whose fiber over
t c B is E~1~(t) := (La) and a Pfaffian system which is a prolongation
of the system M,(,O) to E~l~. Let us denote by D~ the exceptional manifold

c (0  m  n + 2) and denote by the same symbol Do the
submanifold of EO) which correspond to DO C La x B by the mapping 
Note that DO and Dm form locally trivial complex analytic fiber spaces:
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Fig. 3

Then we shall show in Section 4, the following results:

(II-a) The singularity of the system ,~nl&#x3E; consists of n + 4 submanifolds DO,
such that

is a submanifold of . and ; 1 forms a locally
trivial fiber subspace of such that dim

is a subvariety of DO of dimension 3n - 3 (Proposi-
tion 4.1 ) .

Let ~’~1~ be a nonsingular complex analytic foliation in

defined by

(II-b) The set of accessible singular points of the system ,~nl~ is contained in

III. In order to separate T-leaves of which pass a point of C1, we perform
once again a monoidal transformation lic, in EO) along C1. Then we obtain a
locally trivial complex analytic fiber space:
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and a prolonged system ,~(n2&#x3E; in E(2) derived from ,~nl &#x3E; . Let D£ := 
be the exceptional manifolds in E (2) obtained from Cm (0  m  n + 2) by
the monoidal transformation lici. Let us denote by the same symbols DO and
Dm (0  m  n + 2), as in II, the submanifold of E (2) which correspond to
D° C E(’) and Dm c E(’) by the mapping tic,, respectively. Then we shall
prove in Section 4, the following assertions.

(III-a) The singularity of the system Mn(2) is DO c E (2) (Proposition 4.3). Let
7(2 ) be the nonsingular foliation in defined by ~(n2~.

(III-b) There is no accessible singularity for ,~n2~ (Proposition 4.4).

(III-c) The submanifolds D~ (0  m  n + 2) are filled with vertical leaves of
~~2~ (Proposition 4.5).

(III-d) The leaves of ]"(2) in are transversal to the fibers of

Q (2) (Proposition 4.6).

(III-e) There is no leaf in which is entirely contained in

(Proposition 4.7).

By virtue of the results (III-a),... ,(III-d), we arrive at the situation where
all leaves of are separated into two groups; one consisting of leaves in

and the other consisting of leaves in the leaves of

the former are transversal to the fibers and those of the latter are vertical
ones. Moreover, by virtue of (III-e), we see that, for any t E B, there is a

(2n - l)-parameter family of solutions of which pass through 

Let us denote by P := (M, 7r(2) , B) the fibration over B obtained from Q (2)
by removing the singularity of the system ,~n2&#x3E; and all vertical leaves of ]"(2):

and let 7 be the foliation in M obtained by restricting ~’~2&#x3E; to M.

Here is the principal result of this paper.

THEOREM 1.5. The triplet P := (M, 7r(2), B) is a locally trivial fiber space
and it gives a P-uniform fibration associated with the system So the manifold
M(t) := M n (1r(2»)-1(t) is a space of initial conditions for 
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COROLLARY 1.6. For any t E B, there is a (2n - I)-parameter family of
solutions of which pass through CO(t).

1.5. Particular solutions of )In and complex structure of 1,,,

Before terminate this section, we remark the relation between the analytic
structure of La and particular solutions of )In.

In [KimH.4], we have shown that

as complex manifolds, where denotes a complex analytic fibers bundle
on obtained starting from the cotangent vector bundle on by compacti-
fying the fibers Cn by pn in a natural way. Moreover the manifold PT*pn is
not isomorphic to the trivial bundle pn x pn. Recall that, for a construction of
a space of initial conditions for we used the manifold Ea where the constant
a is given by

where
I 

stands for a summation over

PROPOSITION 1.7 [OK]. Suppose that the parameters 0 in the system )In
satisfies the condition a = 0. Then the system )In admits particular solutions
(q, p) _ (q(t), 0) of the form

(i - 1, ... , n), where u(cx, ,Ql , ... , ,Qn , ~y; t) is any solution of the system of
differential equations defining the hypergeometric functions FD (a,,31, ... (3n, 7; t)
of Lauricella:
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The system of linear differential equations in the proposition is called a
hypergeometric equation FD of Lauricella.

This proposition can be understood in the following manner. When cx = 0,
the bundle := admits a subbundle (N, 7r, B) with fibers

isomorphic to pn, i.e., N = {zero section of x B. Since it can be seen

that N is preserved by the Hamiltonian flow of ~(n°&#x3E;, we can restrict the system
on N. On the other hand, since the time evolution

of any solution of can be expressed by using solutions of some linear
differential equations of rank n + 1. This explains why 4n admits a solution
expressed in terms of solutions of FD.

2. - System and its singularity

2.1. Singularity of the system 

Suppose that the system Mn is defined in a total space of subbundle

(Woo x B,7r,B) of x B, 7r, B), where Woo is the coordinate chart of

10 given in the definition of We take the constant a as

Then we have

PROPOSITION 2.1. The Hamiltonian system prolongs to a Hamiltonian
system on 10 x B with holomorphic Hamiltonians on Yo x B. That is in each
subbundle (Wmm x B, 7r, B) (0  m  n), the prolonged system of Nn is written in
the form of Hamiltonian system with polynomial Hamiltonians in the coordinates
of with holomorphic coefficients in t E B.

PROOF. Define



18

Then and are given by

and

Let

be the transition map of manifold Y-0 x B defined by ( 1.1 ) and (1.2). Define a
birational map Wm by

Moreover, for each m = 1, ... , n, let Hi(q,p,t) and Him(q,p,t) be the
Hamiltonians of and respectively. If we define functions

Ki(q’,p’, tm) by

then the map Wm extends to a symplectic transformation
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The composition q¡ moT m is shown to be equal to 4$m and is extended to the
symplectic transformation

Therefore the system Nn in Woo x B is transformed into the Hamiltonian system
on Wmm x B with Hamiltonians Km = (K~ ) j=1,,..,n. Since Hm = are

polynomials in (q, p), so are Km = (Kim)j=,,...,n by virtue of (2.1)..

Now we consider the prolongation of the system Mn to the total space

La x B of bundle Q (0) = (Ea x B, 7r, B) and obtain the system 

PROPOSITION 2.2. If any solution of passes through
Woo x B.

PROOF. Let be a foliation in 1,,0, x B defined by Suppose that
there is a leaf of 7(0) contained entirely in x B. Then, for some

1  m  n, this leaf is expressed by a solution of the
Hamiltonian system satisfying 0. As it is seen in the

proof of Proposition 2.1, the system is taken into by
the transformation So there is a solution (q(t), p(t)) of satisfying
qm(t) - 0. On the other hand, an equation for qm of Nn(£m(0)) has the form

where

The equalities (2.2) and (2.3) contradict with the existence of solution (q(t), p(t))
of Nn(£m(0)) such that qm(t) =- 0. This proves the proposition, a

Let us give explicitly the set of singular points of the prolonged
system ).(~O).
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PROPOSITION 2.3. The singularity of the system is .

PROOF. We study the system ~ln°~ ins
be the coordinates of 1 and let be the affine
coordinates in the m-th affine chart

Then we have

orj

and

The system ,~~°~ in Woo x B coincides with Nn by definition, hence it can be
written as

where Hj is obtained by replacing in the Hamiltonians
of Nn. In the system is written as

where are given by
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Here, for f E C (q, x, t), a symbol f ,i i denotes the partial derivative of f with
respect to qi .

We see that AT and Bm are not divisible by xm; it follows that the

singularity of in is Collecting these- -.... " - -,.

sets for m = 1, ... , n, the singularity of in is

Taking the proof of Proposition 2.1 into consideration, we see that the set of
singular points of ,~n°~ is given by

which is written in the form This is what we want to prove.

2.2. Accessible singularity of

Now let us determine the set of accessible singular points of the system
,~~°~ . Note that has the Painleve property. This fact implies that if a
T-leaf in 1:,0,, x B contains a singular point of N)°) in its closure, a solution
representing this leaf can be continued holomorphically to this point. In order
to fix the idea, we consider in Wo x B. In an affine chart Worn x B, we
have the system in explicit form (2.7). We see in the proof of Lemma 3.1
that a necessary condition for a point (q, xm, t) E Wom x B to belong to the set
of accessible singular points is

In other open set Wi x B (1  i  n) of Ea x B, we will have the system of
algebraic equations analogous to (2.8). By solving this system, we have
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PROPOSITION 2.4. The set of accessible singular points of the system 
is given by mutually disjoint n + 3 submanifolds c8, CIO, ... in Do of
dimension 2n - 1 :

where is the homogeneous coordinates of P’ used in the

definition of Ea such that I and

This proposition will be proved in Section 3.

REMARK 2.5. 7r : C° -; B is a locally trivial fiber space whose fibers
E B are compact submanifolds of of dimension n - 1.

2.3. Symmetry of the accessible singularity

The generators ui i (1  i  n + 2) of group L of symmetries of Nn, which
are given in Section 1.1, can be extended in a natural manner to the bundle
automorphism a i (1  i  n + 2) of bundle Q (0). Denote by L := (ri,...,o+2)
the group generated by 

PROPOSITION 2.6. The group L acts transitively on the set of connected
components of accessible singularity {Co , ... , of 

Let Tm (1  m  n) be the elements of L defined by fm = o ~ n+2 ) ~
a n+l 0 (am 0 d.+2)-i. Then the action of the group L on C°+2 } is given
by the following table: where * denotes the manifold noted in the box at the
first row and at the column where * is marked. For example, the table reads
that the action of a n+1 is
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PROOF OF PROPOSITION 2.6. To show the proposition, it is sufficient to
establish the above table. Let (z, ~) be the system of homogeneous coordinates
in the chart Wo of La. If we restrict a to x B) n Wo x B, we can write
it in the form:

where Ai and Bi are the matrices with coefficients in C~ (t) and C(t)[z],
respectively. In fact, for each dim, we obtain explicitly the matrices Ai and
Bi and the transformation t ~ t’ as follows.
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where diag(ao,..., an) denotes a diagonal (n + 1)-matrix whose (i, i)-component
is ai.

Moreover, for Tm (1  m  n), we obtain the following representation:
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From the expressions of am, we see for example that

Hence we obtain the results stated in the table for Un+1, since a closure of

02 n (Wo x B) in Ea x B is 02. We can prove in the same manner the results
for i i’s and for Tm’s.

3. - Proof of Proposition 2.4

We determine the accessible singularity of the system ).(~o) in an open set
Taking account of the proof of Propo-
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sition 2.1, the accessible singularities in the other will be found

from that in

Let (q, ~) be coordinates in I and be the

covering by affine charts The affine coordinates
in Wom are defined by

Note that the coordinates (q, in Wom (m f0) are related with (q, xo) in Woo
by

In the following, we consider the system M,,( 0) in W°m x B for some fixed
m &#x3E; 1. To avoid complexity of notations we write x = instead of

xm = (xm, ... , to denote the affine coordinates in Wom.
Recall the system is given in Woo x B. The system M,( 0) restricted on

Wom x B, which is obtained from Mn through the change of coordinates (3.2),
is written as

where are given by

denoting polynomials in x divisible by xm and, for f a

symbol fj denoting the partial derivative of f with respect to q .
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Let i and be the symmetric matrices defined
by

and let X be a vector

Then

LEMMA 3.1. If a point belongs to the set of
accessible singular points of it satisfies

where

PROOF. Suppose that (qo, xo, to) E Do n (Worn x B) belongs to the set of
accessible singular points of Y,( 0). By the definition of accessible singularity,
there is a solution (q(t), x(t)) of the system (3.2) which is holomorphic at to
and satisfies xm(to) = 0 and xm(t) 0 0, since DO implies xo = 0. Put
(q(t), x(t)) into the system (3.2). Since the terms xm(t)dqi(t) and xm(t)dxl(t) in
(3.2) vanish at to, the point (qO, XO, to) satisfies a system of algebraic equations:

These equations can be expressed as and (Qij) by using matrices Pi and
respectively. ·

First we seek for solutions of the equations: xm = 0, (Pi ) and (Qj) under
the condition:
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LEMMA 3.2. Under the condition the solutions of the equation
are given by

where , and

PROOF. In case n = 1, the result follows immediately. We may suppose
n &#x3E; 2 and without loss of generality (see the proof below). By virtue of
the hypothesis (3.3), the equation (Pm) is equivalent to = 0, where the
matrix Pg) is written as

where

In P~1 ~, we subtract the first row from the (2  k  n ; and then
we add - (qm - 1) x (first row) and qk x (k-th row) (2  k  n; k fm) to the
m-th row. The equation = 0 is taken into 0 which is equivalent
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to and the matrix is given by

Using the identities (0.3), we see that the equation can be written as

where the third equation of (3.4)
a

implies x = putting it into the second, we have xa = Then

the first equation of (3.4), written as tm(gt - 1) = 0, leads to gt - 1 = 0. This
gives a solution (a). The solutions (b) and (c) can be obtained in a similar way.

LEMMA 3.3. Under the hypothesis solutions of
are given by (a), (b) or (c). k

PROOF. We seek for solutions of the equations (Pi) If n  2, the
result follows immediately. We may suppose n &#x3E; 3 and m without loss

of generality. In a similar manner as in the proof of Lemma 3.2, the equation (PZ)
is taken into an equivalent equation = 0 with the matrix obtained

from by exchanging suffices m and i. Equation = 0 reads
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It is seen that the solutions of these equations are given by (a), (b) or (c) of
Lemma 3.2. ·

REMARK 3.4. The determinants of the matrices Pi ( 1  i  n) are given
by

Next let us find solutions of the equations (Pi)’s and Using the
explicit form of functions given in the Introduction, we get

LEMMA 3.5. Under the condition solutions of the system of

equations (Pi) and are given by

PROOF. 1) Firstly we consider the solution (a) of the equations (Pi )’s
obtained in Lemma 3.2. Putting (a) into Y = ..., ql)X, we have

Using the identities (0.3) and

we obtain
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It follows that (i) is a solution of the equations (Qij).

2) Consider the solution (b) of the equations (Pi )’s in Lemma 3.2. Putting
X = t ( 1, ... ,1 ) into equalities (3.6), we have Y = gl = 1 and

by virtue of the identities (0.3). It follows that (ii) in the lemma is a solution
of 

3) What is left to be considered is a solution (c) of (Pi)’s:

Set we have

Putting these expressions for xa’s into ve obtain
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by virtue of the identities and

Putting Y = C + 1 into the equalities (3.6) and simplifying them by the help of
(3.8), we have

Using the identities (0.3), we deduce

Hence the equation (Qmj) implies C = 0 or C = tm - 1. If C = 0, we obtain
solution (i), and if C = tm - 1, we obtain solution (ii).

Next we seek for solutions of the equations and (Qij) (1  i, j  n;
under the hypothesis:

Note that the equation (Pm) is trivial in this case.

LEMMA 3.6. Under the hypothesis (3.9), solutions of the equation (Pi )
are given by

where
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PROOF. In case n = 2, we have the lemma immediately. Suppose that
on &#x3E; 3. Moreover we can suppose i, without loss of generality. Then by
proceeding in the same way as in the proof of Lemma 3.2, we can show that
the equations (Pi ) are equivalent to

From these equations we conclude that

if then and

if then

if then

where
Moreover

is a solution of (PZ). It is seen that the solutions with some non-zero xa are

given by (i), (ii) or by (iii). ·

LEMMA 3.7. Under the condition the solutions of the

equations (Pi) and are given by

PROOF. 1) First we consider solution (i) of (Pi) (i fm) obtained in
Lemma 3.5. Set

and determine C so that (Qij) are also satisfied by (i). Because
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by putting xa = C/ta into (3.6) and by using the identities (0.3), we can prove

Whence we obtain

Note that C f0 in our case. Let us show C = tm. Suppose the contrary: Ct=tm.
If n &#x3E; 3, the equations imply that there are at least two suffices

such that C = ta = tb. But ta = tb contradicts with the fact that
we consider the system N)°) in La x B with B = (~7)}. If
n = 2, the equation (Qmj) says that there is a suffix j such that j fm and that

On the other hand, we have This is impossible by the
same reason as above. Thus

2) Next let us consider the solution (ii) of the equations

We follow the same line of argument as in the first part. Set C . := Xa

(1  a  n ; am) and let us show that the equations (Qij) are satisfied

if and only if C = 1. Note that By putting Xa = C into
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(3.6), and by using identities (0.3), we obtain

Then

Suppose now that C - 1 ~ 0. If n &#x3E; 3, the equations (Qij) we see that
there are at least two suffices a, b such that C = = 

so t~ = tb. This fact leads to the contradiction. If n = 2, from (Qmj), we obtain
1/ Rjm. On the other hand, we have gl -1 = qj - 1 = 0, which is impossible

because of Consequently, we obtain C - 1 = 0.

3) Next we consider solution (iii) of (Pt) for some .~:

Set as above

Then
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by virtue of the equalities and

Let us examine the equation (Qtt). Putting Y = C + xQ into (3.6) and by using
identities (0.3) and (3.11), we obtain

hence

Since we obtain the three cases to be considered:

We prove the followings:

If : , then we have

If : then we have

If then we have

(A’) In fact, we consider the equation From identities (0.3)
and xl = 0, we obtain

hence

Therefore the equations (Qx) leads to xi = 0 m).

(B’) We proceed as in (A’). Using (0.3) and xt = 1, we obtain
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for therefore

Then the equation implies

(C’) Putting in the expressions (3.6) we have

We deduce

by virtue of identities (0.3). Then the equations (Qit) (i 1=£, m) imply the assertion
(3.13). Thus in cases (A), (B) and (C), we have obtained solutions (i), (ii) and
(iii) of (Pi)’s and (Qij)’s, respectively.

4) It is clear that solution of
verifies the equations

Finally by proceeding in the same way as in the proofs of the preceding
lemmas, we can show the following proposition.

PROPOSITION 3.8. All the solutions of the equations (Pi) and
are give by

4. - Demonstration of the theorem

4.1. The first monoidal transformation

In Sections 2 and 3, we have seen the following:
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(i) Accessible singular points of V,( 0) are contained in

where Cm are mutually disjoint submanifolds of of
dimension 2n - 1 given in Proposition 2.4.

(ii) A group L c Aut(Ea x B) acts transitively on as its

permutation group.

Therefore, to study solutions of M,,( 0) at accessible singular points, it is

sufficient to consider M,,( 0) at Cm for some fixed m &#x3E; 1. Moreover, taking into
consideration the fact that Wo x B ---+ Wj x B is biholomorphic and that

is taken into ~n°~ ( W~ x B by fj, we can restrict our study of ,~n°&#x3E; at Com
to its subset Cm n (W° x B). Noting Cm n (W° x B) c Wom x B, we consider
~(n°~ in Wom x B.

Let (q, x, t) := (C~ 1 ~ ... ~ be the affine coordinates of Wom x B
given in (2.1). The system in Wom x B can be written as

where are given by

Note that
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In the course of the demonstration of the theorem, we will see that Co is really
a set of accessible singular points and an infinite number of T-leaves meet at
each point of C~. In order to make these leaves separated from each other, we
perform a monoidal transformation in La x B along C~.

Since CO’s are mutually disjoint, if we take an open set C£ C U C La x B
containing no other C9’s the Pfaffian system in obtained from 

by a monoidal transformation tico, is equivalent to the system in 
obtained from M)°) by the blowing up /-tco. So, it suffices to consider in

Wom x B. 
’~

For the sake of simplicity we write W instead of W°m omitting its suffix.
Let ilco : x B --&#x3E; W x B be a blowing up and let ,~nl&#x3E; be a Pfaffian system
on W ~1~ x B obtained from M,( 0) through In terms of the coordinate system,

is written in the following way.

Let ?7 = (?70,...,771) be the homogeneous coordinates of Then

Set

By definition of W~l~, we can take a coordinate system in as

in

in

where and

We set The mapping is
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expressed as

Denote by the restriction of Then the systems
are written as follows.

In W ~ 1 ~ (o) x B,

where the functions are given by

Explicitly they are written as
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where

In ’ we have

where the functions are determined from . by

Explicitly, we have

where and
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In we have

where are determined from by

We set

where
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and ( Hence we obtain

We denote by 1 the exceptional divisor and denote by the same
symbol DO the proper transform of the

divisor
-,,,

In terms of the coordinates (4.3) in
the sets D~ and DO in the sets Dm and . in y are written
as

Now let us determine the set of singular points Sing ,~~1&#x3E; of the system 
PROPOSITION 4.1.

where Cm is a hypersurface of which is, by setting
given by

where k f 0, m.

PROOF. We see immediately that the set DO belongs to the singularity of
)1,(,’)(k). We shall show that, in x B, the singularity of ,~nl&#x3E;(m) is
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Explicit form of says that the condition that a point
belongs to ; 1 is

where On the other hand, by using the expressions of
and loa in the Introduction, we have

where It follows that

where

A being given by

Moreover
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Hence we have

This proves the assertion for We can prove, in the same manner, that
the singularities of ~lml~(1~) are those given in the proposition..

PROPOSITION 4.2. The set of accessible singular points of the system 
in x B is contained in Cm.

PROOF. From the definition of monoidal transformation, the mapping

is biholomorphic. Since an accessible singular point of ,~n°~ in W x B belongs
to C$, those of ~l~l&#x3E; are in Dm. Noting Dm n Sing ).(~1) = Cm we have the
proposition. ’

4.2. Second monoidal transformation along Cmm
Perform a monoidal transformation : W ~2~ x B - W ~1~ x B along

Cm and let ,~~2~ be the Pfaffian system on W ~2~ x B which is obtained
from &#x3E; on x B. Let us denote by DO and Dm the submanifolds

of given by and respectively.
And let Dm := be the exceptional manifold.

In the rest of this section we will show

PROPOSITION 4.3. The singularity of the system M,,(,2) in W(2) x B is DO.

PROPOSITION 4.4. The system N,,(,2) in W(2) x B has no accessible singularity.
PROPOSITION 4.5. The manifold Dm C W(2) x B is filled with vertical

leaves.

PROPOSITION 4.6. The leaves in W(2) x BB(Do U D’ ) are transversal to
the fibers of w (2) : W ~2~ x B - B.

PROPOSITION 4.7. There is no leaf of the foliation defined by N,,(,2) which
is entirely contained in Dm.

Let us express the system )1,,(,2) in terms of the coordinates in W(2) x B.
Note that

where x B is the affine coordinate neighbourhood given in Subsec-
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tion 4.1, and

Set In this subsection, we consider ,~n2&#x3E; on
The system ,~n2&#x3E; on other 1 will be considered in the

next subsection.

Let ( be an affine change of coordinates in
defined by

so that

Then the system on is written as

The functions are given by

where and

Noting that the defining equations of we have

Moreover W(2)(m) is covered by two affine charts
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and, in each W(2)(m, It), we can take the coordinates

in

in

where

and z, w are defined by

In terms of coordinates (4.13), the map is

expressed as

Let J be the restriction of ; " to Explicitly, in
we have

where. and are determined from and by

In ’
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where and . , are determined from and . by

Note here that

LEMMA 4.8. The system is free from singularities in

LEMMA 4.9. The system is free from singularities in L

SUBLEMMA 4.10. For functions f (x), g(x) holomorphic at x = 0 and

satisfying f (0) = 0, we have

PROOF OF LEMMA 4.8. Let us compute . modulo (um). Use the notation:
and’ 

‘

From the expressions (4.12) and
(4.14) for and and using the equalities

we have, for
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Moreover, by applying Sublemma 4.10 to and

with we have

Hence

for This proves the lemma.

PROOF OF LEMMA 4.9. Set and
We claim that ,

and

In fact, using the expressions (4.12) and (4.15) for Ãlj and we have, for

and applying Sublemma 4.10 to functions and
with we have
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This proves the assertion (4.17). Assertion (4.16) can be proved in a similar way...... , , ,

It follows from (4.16) and (4.17) that a point
is a singular point of , if and only if

where Let us show det under the condition

Indeed, combining (4.17) with

we have, for

and

(mod. z), where A is that given by (4.11). Hence

This is what we want to prove.
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PROOF OF PROPOSITION 4.5 FOR I Note that

As it is seen in the proof of Lemma 4.9, the matrix Li := (e(ti)8/j) for the
system ,~n2~ (m,1 ) is non-singular under the condition z = 0. It follows that

,~n2&#x3E;(m, 1) implies dt1 = ... = dtn = 0 on Dm n (W~(?~ 1) x B). This shows
that any leaf of 1(2) passing through Dm n (W(2)(m, 1) x B) is contained in

Dm n (W(2)(M, 1) x B) and is a vertical one..

PROOF OF PROPOSITION 4.6 FOR W ~2~(m) x B. The result follows

immediately from the form of the systems ,~n2~ (m, 0) and ~1n2&#x3E; (m, 1)..

PROOF OF PROPOSITION 4.7 FOR W ~2~ (m) x B. Note that

Suppose that there is a leaf of 1(2) contained entirely in Dm, and let

(u(t), v’(t), w(t)) be a solution of Jlá2)(m,0) representing this leaf. We have

um (t) - 0. Putting this solution into ~n2~ (m, 0), we have

But this is impossible because of (4.12), (4.14) and (4.18). The proof for
W ~2~(m,1) x B is carried out in the same way.

4.3. Second blowing up along Cmk
As in the second part of this section, we study the set of singularity of the

system ~1n2&#x3E; on W ~2~(l~) x B (k ~ 0, m). First we make a change of coordinates
(q’, xk, Yk) - (u, v) in defined by

so that

Set Then the system
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is rewritten in the form

where are

and setting and are given by

and

Set 1 Noting that is given by (4.19), we
have

Then is covered by two affine charts
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with coordinates systems

in

in

where

and

In terms of these coordinates the blowing up
is written as

Denote by ~ the restriction of i on a chart

In we have

where and are obtained from and in (4.20) by
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In

where

We shall show

LEMMA 4.11. The singularity of the system )tn(2)(k, 0) is contained in

LEMMA 4.12. The set contains no accessible singular
point.

Note here that

PROOF OF LEMMA 4.11. We assert Set

and Note that
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Using (4.20) and (4.22), we have

and applying Sublemma 4.10 to the functions and
with

we nave

These equalities prove the lemma.

PROOF OF LEMMA 4.12. If a point
is an accessible singular point, it satisfies

On the other hand, under the condition we have

Hence we must have

But it is impossible because of (4.18)..

Next we consider the system N)~)(k, 1). Note that a singular point, if it

exists, is contained in either of sets:

and

and

and
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where The first and the third set are

and respectively.
We show

LEMMA 4.13.

and

LEMMA 4.14. The set contains no accessible

singular point.

PROOF OF LEMMA 4.13. First we show Set

and Applying
Sublemma 4.10 to and J
with or we have, for

and



57

Therefore, using (4.18), under the condition z = 0, we have

where Then the lemma follows.

PROOF OF LEMMA 4.14. Suppose that a point
such that 1 is an accessible singular point. By

definition, there is a solution of which is holomorphic
at tu and satisfies

From the form of the system , a point p must satisfies

Taking the formulae in the proof of Lemma 4.12 into consideration, we deduce
from them

But it is impossible because of (4.18).

PROOF OF PROPOSITION 4.5 FOR Note that

As it is seen in the proof of Lemma 4.13, the matrix for

the system is non-singular under the condition z = 0. This shows the
proposition by using the same reasoning in the proof of Proposition 4.5 for
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The proofs of Propositions 4.6 and 4.7 for are carried out in
a similar way as those for
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