@article{ASNSP_1993_4_20_3_357_0, author = {Cicognani, Massimo and Zanghirati, Luisa}, title = {On a class of unsolvable operators}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {357--369}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 20}, number = {3}, year = {1993}, mrnumber = {1256073}, zbl = {0816.47051}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1993_4_20_3_357_0/} }
TY - JOUR AU - Cicognani, Massimo AU - Zanghirati, Luisa TI - On a class of unsolvable operators JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1993 SP - 357 EP - 369 VL - 20 IS - 3 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1993_4_20_3_357_0/ LA - en ID - ASNSP_1993_4_20_3_357_0 ER -
%0 Journal Article %A Cicognani, Massimo %A Zanghirati, Luisa %T On a class of unsolvable operators %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1993 %P 357-369 %V 20 %N 3 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1993_4_20_3_357_0/ %G en %F ASNSP_1993_4_20_3_357_0
Cicognani, Massimo; Zanghirati, Luisa. On a class of unsolvable operators. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 20 (1993) no. 3, pp. 357-369. http://archive.numdam.org/item/ASNSP_1993_4_20_3_357_0/
[1] A necessary condition of Gevrey solvability for differential operators with double characteristics. Comm. Partial Differential Equations, 14 (1989), 981-1009. | MR | Zbl
,[2] A necessary condition of local solvability for pseudodifferential equations with double characteristics. Ann. Inst. Fourier (Grenoble), 24:1 (1974), 225-292. | Numdam | MR | Zbl
- ,[3] Analytic-Gevrey hypoellipticity for a class of pseudodifferential operators with multiple characteristics. Comm. Partial Differential Equations, 15 (1989), 81-96. | MR | Zbl
- - ,[4] Fourier integral operators of infinite order on Gevrey spaces. Applications to the Cauchy problem for certain hyperbolic operators. J. Math. Kyoto Univ., 30 (1990), 149-192. | MR | Zbl
- ,[5] A global construction for pseudo-differential operators with non-involutive characteristics. Invent. Math., 20 (1973), 209-225. | MR | Zbl
- ,[6] On necessary conditions for local solvability of pseudodifferential equations of principal type. Trudy Moskov. Mat. Obshch., 24 (1971), 24-42 (Russian); Trans. Moscow Math. Soc., 24 (1971), 632-635. | Zbl
,[7] A necessary condition for local solvability of a pseudodifferential equation having multiple characteristics. J. Differential Equations, 19 (1975), 176-200. | MR | Zbl
,[8] Non solvability for analytic partial differential operators with multiple complex characteristic. To appear.
,[9] Powers of Mizohata type operators in Gevrey classes. Boll. Un. Mat. Ital. B (7) 1, 1991. | MR | Zbl
,[10] On a class of elliptic pseudo differential operators degenerate on a submanifold. Mat. Sb., 84 (1977), 163-195; Math. USSR-Sb., 13 (1971), 155-185. | MR
,[11] Almost Mizohata operators. Trans. Amer. Math. Soc., 293 (1986), 663-675. | MR | Zbl
,[12] The analysis of linear partial differential operators, Voll. I-IV. Springer-Verlag, Berlin, 1983-85. | Zbl
,[13] Ultradistributions I, structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 20 (1973), 25-105. | MR | Zbl
,[14] Necessary and sufficient conditions for the local solvability of the Mizohata equations. J. Math. Kyoto Univ., 28:4 (1988), 593-603. | MR | Zbl
,[15] On local solvability of linear partial differential equations, I-Necessary conditions. Comm. Pure Appl. Math., 23 (1970), 1-38. | MR | Zbl
- ,[16] On the local solvability of a class of partial differential equations with double characteristics. Trudy Sem. Petrovsk. 1, (1975), 237-278 (Russian); Amer. Math. Soc. Transl., 118:2 (1982), 51-89. | MR | Zbl
,[17] Gevrey solvability for hyperbolic operators with constant multiplicity. Recent developments in hyperbolic equations, Proc. of Conference "Hyperbolic Equations" - Pisa 1987, Longman Harlow, 1988. | MR | Zbl
- ,[18] Pseudodifferential operators with multiple characteristics, and Gevrey singularities, Comm. Partial Differential Equations, 11 (1986), 673-711. | MR | Zbl
- ,[19] Introduction to pseudodifferential and Fourier integral operators, Vol. I, Plenum Press, New York, 1980. | MR | Zbl
,[20] Remarks about certain first order linear PDE in two variables. Comm. Partial Differential Equations, 5 (1980), 381-425. | MR | Zbl
,[21] Pseudodifferential operators of infinite order and Gevrey classes, Ann. Univ. Ferrara, Sez. VII, Sc. Mat., 31 (1985), 197-219. | MR | Zbl
,