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Precise Regularity up to the Boundary of
Proper Holomorphic Mappings

BERNARD COUPET

This paper is devoted to the precise regularity up to the boundary of
proper holomorphic mappings between equidimentionnal strictly pseudoconvex
domains. For two bounded strictly pseudoconvex domains in Cn of class Cm
with m &#x3E; 2, we shall prove the following:

MAIN THEOREM. Any proper holomorphic mapping f from D into D’ admits
an extension in the class 11~_ 1~2 to the boundary bD of D, or equivalently, if k
is the greatest integer smaller than or equal to m, then the derivative of order
k + 1 of f satisfies:

Moreover, for any Cm defining function r’ of D’ the function r’ o f is Cm on the
closure of D.

It follows immediately from this result that the if m is an integer then
the derivative of order m - 1 is a 1/2-Lipschitz map on P.

Biholomorphic mappings between strictly pseudoconvex domains have long
been a central topic in several complex variables theory. One of the major
results obtained for Coo domains is Fefferman’s theorem [Fe], whose original
proof involves a deep analysis of the boundary behavior of the Bergman kernel
and metric. This result was reproved using different methods: see S. Bell and E.
Ligocka [Be-Li]. Later, S. Bell in [Be] discovered a new method for the study
of proper holomorphic mappings, but this uses also the Bergman projection.
These methods rely on the a-Neuman theory and are not elementary.

For real analytic strictly pseudoconvex domains the behavior at the

boundary of biholomorphic mappings can be obtained by a reflection [Lw],
[Pi 1 ] and [We]. Webster’s approach is based on the edge of the wedge theorem
by associating a maximal totally real manifold to every strictly pseudoconvex
domain. However, a more direct approach was discovered by L. Nirenberg, S.

Pervenuto alla Redazione 1’ 8 Marzo 1991 e in forma definitiva il 14 Gennaio 1993.
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Webster and P. Yang in [Ni-We-Ya]. An important step in their proof is the
verification of Condition A, which is rather elementary but tricky and long. In
their arguments the infinite differentiability assumption can be weakened, but
the relation between the differentiability of the biholomorphic maps and that of
the domain is not easy to gain.

E. Ligocka in [Li] proved the Cm- 7/2 -extension by constructing an almost
orthogonal projection on the Bergman space. Later on, L. Lempert in [Le]
improved this result using the Kobayashi extremal discs and emphasized the
importance of the complex structure on the boundary.

Recently in several papers H. Hasanov, Hurumov and S. Pinchuk have
obtained a proof of the first part of our main theorem provided the regularity
is not an integer, and Hurumov has proved the sharpness of this result.

In this paper, we shall give a complete proof of the main theorem. Our
method and that of S. Pinchuk and his students are close but have different

aspects. At the beginning, our idea was to apply the results obtained in [Co2]
about the behavior of holomorphic mappings near a totally real manifold. These
results rely on Webster’s method. This method needs continuity on a wedge, and
attempting to use Rosay’s theorem about the boundary values along a totally real
manifold we had to take up the dilatations introduced by S. Pinchuk in [Pi2].
In fact, it is only necessary to get Condition A for biholomorphic mappings
and the simplest way to do this is to use the scaling method, which is available
for C2 domains. This condition is metric and can be useful for other problems
concerning proper mappings. Next, we obtain the best regularity by using the
results of [Co2], which connect the regularity of a holomorphic function on a
closed wedge to that on the edge in the same way as in a polydisc (see [Ru1])
or more generally in an analytic polyedron (see [Er]). Our method also allows
us to deal with arbitray values of the regularity of the domains and thus to

obtain the last part of the theorem.
In this paper, we have tried to give a complete account of the regularity

problem by developing all the ideas of the proofs.
The first version of this paper was written when the author was enjoying

the hospitality of the Washington University in Seattle during Spring quarter in
1989. It was revised and completed after the conferences of S. Pinchuk at the
AMS Summer Institute on Several Complex Variables and Complex Geometry
at Santa-Cruz.

1. - Notations and preliminary results

1.a. Lifting of a strictly pseudoconvex domain

Let D be a bounded strictly pseudoconvex domain in ~n with Cm-boundary,
with m &#x3E; 2, defined by a function r of class Cm, strictly pluri-subharmonic
in a neighborhood of the boundary of D and, such that its gradient does
not vanish on the boundary. Thus, in a neighborhood of the boundary,
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the vector a z does not vanish and extends to a Cm-1 1 map which
8z 

( ) 
_ 

p

never assumes the value zero in a neighborhood of D. The complex orthogonal

comlement tz of 9r z will be called the complex tangent space at z. Thisp z 

8z 
( ) p g p

definition is only intrinsic on the boundary but it is convenient for our purpose.
If z is a boundary point, then tz is just the usual complex tangent space defined
as the complex hyperplane contained in the real tangent space.

The domain D is lifted to the domain D x Pn-i 1 in C~n Its boundary
bD is lifted to the manifold R where R = { (z, p) e C~n x E bD and

p = tz } . This definition as well as the following lemma are due to S. Webster
[We].

LEMMA 1.1. ,N is a maximal totally real submanifold of en x l of class

Here, maximal means the maximal dimension allowed for a totally real
manifold in ~n x Pin- 1, which is 2n - 1. To parametrize R, we shall assume
that 0 E bD and that the real tangent space at 0 in R2n-l. We can write

r(z) = -yn+F(’z, xn) where ’z is (zl, ... , = (’z, zn) and F is a C"-function
satisfying F(’z, xn) = 0(lzI2). The equation of the complex tangent space at 0 is
Zn = O.

A parametrization of bD is given by the mapping (D with

where ’zj = Xj + y~ ( 1  j  n - 1) and zn = xn + iF(’z, xn). Since the problem we
are studying herein is local, we shall consider the embedding of Ñ into (~2n-1.
The mapping T from JR2n-l to C2n-l 1 defined by T(X) = (Q(X ), P(X )) with

P(X) = ... &#x3E; pn-1( X )) and pj - where rj - ar is a parametrizationP(X) = (pi(A’),... and pj = rj were rj = 2013, 
is a parametrization

n 8zj
of Since R is totally real, T can be extended to a map, denoted again by T,
from c2n-l into such that for any integer p the derivatives of order p of
the (0, -components of dTj are We shall say that the derivatives
vanish up to order m - 1 on 

I.b. Wedge constructed on Ñ

The image under T of the real ray ’z = 0, Xn = 0 and 0  yn is a curve
which is transverse to bD x Pn- I and extends to the open set D Therefore,
there exists an open cone A in JR2n-l 

I such 

is contained in D x where B(O, R) is the ball centered at 0 with radius
R. By composition with a real linear map of we may assume that
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is contained in A. The wedge is then Wand the edge We obtain the

following important estimates:

PROPOSITION 1.2. In a neighborhood of 0 in for (z, p) in W we

have:

PROOF. First, note that T is a C’- 1 diffeomorphism of a neighborhood
of 0 in onto a neighborhood of T(0) that maps IR.2n-l 1 to ~/. Thus, if X
and Y are near 0, the distance from T (X + iY) to R is equivalent to I Y 1. . Since

and this distance is equivalent to

Y2n 1 if Y is near 0 in Ac. This proves the first assertion.
Now, write Since the maps

P(X + iY) to tz are Coo and agree at Y = 0, their difference is 0(1 Y 1). This
proves the rest of the proposition. ·

I.c. Lifting of a proper mapping

Let f be a proper mapping between two strictly pseudoconvex domains
D and D’. We recall the following fundamental properties of f (see [Pi2]):
1 - f preserves the distances; that is dist( f (z), bD’) ~ dist(z, bD) for z in D;
2 - f extends to a 1/2-Lipschitz mapping from P to D’;
3 - f is locally biholomorphic.

Property 1 is a direct consequence of Hopf lemma and property 2 follows
from estimates about Caratheodory or Kobayashi distance. S. Pinchuk has proved
property 3 using the scaling method. We will give later new proofs of properties
2 and 3.

The lifting of f is the mapping f defined on D x Pn-i 1 by f (z, p) -
( f (z), f’(z)(p)) where f’(z)(p) is the image under f’(z) of the hyperplane p.

By property 3 above this definition makes sense. By property 2 it is possible
to extend f to Ñ by setting f (z, tz) _ ( f (z), t f~z~). Then, f is a holomorphic
mapping from the lifting of D to that of D’ which is 1/2-Lipschitz from R to
N

l.d. The Kobayashi distance and its consequences

Let A be the unit disc in C and D a bounded domain in The

infinitesimal Kobayashi distance measures the length of a complex vector v
at a point z of P. It is defined by:

is holomorphic,



465

An important property of this metric is the following.

PROPOSITION 1.3. Let D be a strictly pseudoconvex domain in en. FD
satisfies the estimate:

The proof can be found in [Ni-We-Ya] or [Si] and, with a more precise state-
ment, in [Gr].

Next we introduce a special orthonormal basis ~‘ (z) _ (e 1 (z), ~ ~ ~ , en(z)) of
en en(z) is a unit vector orthogonal to tz and (e 1 (z), ~ ~ ~ , en_ 1 (z)) is
an orthonormal basis of tz. We may assume that the mapping z -~ S(z) is a
Cm-1 1 map. We have:

PROPOSITION 1.4. Let f be a proper mapping between two strictly
pseudoconvex domains D and D’. The matrix A(z) of the automorphism f’(z)
with respect to the bases S(z) and S’( f (z)) has the following form:

where On_ 1 ( 1 ) is an (n - 1 ) x (n - 1) matrix. In particular, f extends to a

1/2-Lipschitzian mapping between the domains.

PROOF. Using the decreasing property of the Kobayashi metric, we have
for (z, v) in D x (Cn that FD~ ( f (z), f’(z)(v))  F(z, v). By Proposition 1.3, there
exists a constant C depending only on D, D’ and f such that

Since f preserves the distance, we see that if v is a complex tangential vector
then

The estimate for a complex normal vector can be obtained using similar

arguments. The first part of the proposition now follows. In particular, we
have so that by Hardy and Littlewood’s lemma
[Ra] we see that that f is 1/2-Lipschitz.

I.e. The scaling method

We shall give a quick description of the scaling method introduced by S.
Pinchuk in [Pi2] for strictly pseudoconvex domains. This method is very useful
for other problems too (see [Pi3]).

We consider two strictly pseudoconvex domains D and D’ in en and a
holomorphic map f from D to 9’. Let (z’) be a sequence in 9 which converges
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to a point p of bD. For any boundary point t E bD we consider the change of
variables at defined by:

cxt maps t to 0 and D to a domain Dt. The real normal at 0 to bD is mapped
by at to the line ~’ z = 0, Yn = 0}. For every k, we denote by tk projection

onto bD and by a k the change of variables at with t = tk. Since f
extends continuously to P, the sequence (Wk = converges to the point
q = f (p). Let u kbe the projection of w~ onto bD’ and let (3k be the corresponding
mapping. The map fk := ,~~ o f o 1 satisfies -6k) = (0, -~~), where
bk = dist(zk, bD) and êk = dist(wk, bD’). We define the inhomogeneous dilatations

The interest of the method is summarized in the following:

THEOREM 1.5. The sequence is a normal family on every compact
subset of the defined by and

every cluster point f has the following form:

where U is a unitary transformation of Cn-1.

PROOF. In the change of variables ak the domain D is transformed to a
domain Dk defined by a function We may suppose that p = q = 0 and that

in a neighborhood of 0 we have r(z) = + R(z), with R(z) = 0(lzI2).
By Taylor’s formula, we get the estimate = 2Re(zn)+Hk(z)+Bk(z)+Rk(z)
where Hk is Hermitian, B~ is bilinear and the remainder Rk is 0(lzI2) uniformly
in a neighborhood of 0. As k goes to infinity, the limit of the matrix of Hk is
the identity and the limit of B~ is 0. Consequently, there exists a neighborhood
U of 0 such that for every k and z E U we have 2 Re(zn ) + 1/2lzl2. In
the change of variables the domain Dk becomes Dk and is defined by
the function 

Now, let L be a compact subset of E. As pk goes to 0 uniformly on L,
pk(L) is contained in U for large k’s. Therefore fk converges to A uniformly
on L; in particular, it is non-positive and then L c Dk, which implies that the
expression of fk makes sense. Since f is continuous up to the boundary, the
sequence fk o pk converges to 0 uniformly on L and we can use the estimate
for r’k to get:
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and consequently:

The real part of the function ff is negative and hence the sequence is
normal on L. Since this sequence converges at the point (’0, -1 ), it is bounded
on the compact set L and by the above inequality the sequence is also
bounded and forms a normal family on every compact set contained in X. Since
f" converges to A uniformly on compact sets, any cluster point f has values
in E. Since I is strictly pseudoconvex and /(~0, 20131)= (’0, -1 ) it follows that f
is I-valued.

If f is biholomorphic, using the same construction with g - /-1, it is

easy to prove that a cluster point is a biholomorphic map from E onto 1. If

f is only proper, S. Pinchuk has also proved that the cluster point is a proper
mapping onto L, so that by Alexander’s theorem [Al], it is biholomorphic (here,
we must use the proof of W. Rudin in order to avoid the use of Fefferman’s

theorem). The mapping is biholomorphic from E

onto the ball of en and T = p o f o ~p-1 is an automorphism of the ball fixing
the origin. By Cartan’s theorem [Ru2], T is a unitary transformation of If

T(’O, 1) = (’a, a) with + = 1, we have for any positive real t:

In order to get ’a = 0 and a = 1 it is sufficient to prove that A[ f(0, -t)] goes to
infinity as t tends to infinity. Since f preserves the distance, there is a constant
C &#x3E; 0 such that r’ ( f (z)) ~ &#x3E; C dist(z, Consequently, we have

Since ak-1 (’o, -6kt) is projected onto bD at tk, we get
I --. -

converges to A uniformly on compact sets of E, by letting k - +oo we get
the inequality IÀ(¡(’O, -t))1 ~ Ct. This is true because is bounded from
below by a positive constant and f preserves the distance. Now it is easy to
conclude. *

2. - Continuity of the lifting of a biholomorphic mapping

An important step in this method is the continuity of the lifting up to the
boundary on the wedge W. The proof requires the knowledge of the behavior of
the normal component near the boundary. The underlying idea in this proof is
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to use J.R. Rosay’s theorem about boundary values along totally real manifolds
[Ro], which is equivalent to the study of the behavior of f on the manifolds
jie = I(z, tz) : r(z) = 61 which approach ji in the C1 1 topology, or also to the
study of f’(z)(tz) as z tends normally to a point zo of bD. Now, it is clear
that we must examine the tangential and normal components of f’(z)(tz) with
respect to t fez)’ If the first component is easily controlled by the Kobayashi
metric, the second one is more difficult to handle, and this is the reason for
which we have to appeal to Condition A of Nirenberg-Webster-Yang: if v is the
unit complex normal vector field, v(r’ o f ) is not vanishing near the boundary
of the domain; that is, we must have the inequality, for z near the boundary:

CONDITION A. There exists a constant A &#x3E; 0 such that

In this paragraph we will give a short proof of the fact that Condition A implies
the continuity of the lifting of a biholomorphic mapping. Moreover, the good
estimates that we have in the wedge allow us to avoid using Rosay’s theorem.

THEOREM 2.1. Let f be a biholomorphic mapping between D and D’. If
g = f -1 satisfies Condition A then the lifting of f is continuous on W.

PROOF. Let a be a point on the boundary of D, a be its lifting on ji and
((z k, be a sequence in which converges to a. We can assume that pk
is a unit vector in We shall prove that the sequence of hyperplanes defined
by q~, where qk = tg’(wk)pk and wk = converges in IPn-1 1 to the complex
tangent space at b = f (a) (we shall denote by tx the transpose of a vector x). To
do so, it is enough to show that the first n - 1 components with respect
to the dual basis of ,S(b) tend to 0 and the last one is greater than a constant,
as k goes to infinity. Since the mapping S is C1 we can replace S(b) by S(wk).

If we introduce the unit normal complex vector at zk, by Proposition 1.2,
we can write pk = tk + O(6k), where 6k is the distance of Zk from the boundary.
Since 0(8;1/2), we have qk = tg’(wk)tk + O(51~2). Then, it is enough
to prove the result for t~. But, by Proposition 1.4, the components of 
with respect to the dual basis of S(wk) are the elements of the last column of
the matrix of with respect to the special bases, the first n - 1

components are 0(8~/2) and tend to 0 as k tends to infinity. By checking the
last component, we find exactly the quantity of Condition A which has been
supposed to be greater than a constant. This proves the theorem. ·

REMARK. In the proof of Theorem 2.1 we might replace condition A by
the following weaker condition.
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CONDITION A,. There exists a constant A &#x3E; 0 such that

We have been unable to prove this weaker estimate by other methods.

3. - Verification of condition A

As we have proved in the previous section, Condition A implies the con-
tinuity of the lifting. Now, making use of the rescaling method, we will prove
that this condition is satisfied by every biholomorphic mapping. Another proof,
which is elementary but lengthy and tricky, has been given by Nirenberg,
Webster and Yang. J.E. Fornaess and E. Low have obtained a more natural

approach but only on a open set in the boundary, see [Fo-Lo].

THEOREM 3.1. Every proper mapping between equidimensional strictly
pseudoconvex domains in Cn verifies Condition A.

PROOF. The proof is by contradiction. If the conclusion of the theorem
does not hold then there must exist a sequence (z’) in P having a limit point
on the boundary such that lim f) = 0. Using the rescaling method for
this sequence, we get a mapping f on E of the form 1(’ z, Zn) = ( U (’ z), Thus,
the condition lim v(zk)(r’ o f) = 0 gives

Indeed, using the notations of Theorem 1.5, we have and

hence, as pk and V)k are linear, and

By the equality 3k of and the definitions of ak and /~ it is

easy to check the equality Since the ratio

is bounded, it follows from the hypothesis about the sequence (Zk), that

since the sequence (lk) and its derivatives converge uniformly on compact
subsets of E. This is a contradiction and the theorem is proved.
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4. - Continuity of the lifting of a proper mapping

The proof of this continuity is similar to the proof for biholomorphic
mappings. The outline is the same. The method requires a control on the Jaco-
bian inverse matrix of the proper mapping. First, we have to find an estimate
for the Jacobian determinant.

THEOREM 4.1. The modulus of the Jacobian determinant Jac of a proper
mapping between two strictly pseudoconvex domains is bounded away from 0
by a positive constant.

PROOF. The proof is by contradiction again. If the assertion of the theorem
does not hold then there exists a sequence in D having a limit boundary point

I

a such the limit of Jac f(z) is 0. We can assume that

with b = f (a). Using the scaling method, we obtain an automorphism of X,
f, such that Det( f )’(’o, -1) = 0. Indeed, we have (with the same notations as
above):

Since 0 =Jac f (’0 - 1 ) = lim Jac f k (‘0, -1 ) we get the contradiction..

Now, it is easy to control the inverse matrix:

PROPOSITION 4.2. Let f be a proper mapping between two strictly
pseudoconvex domains D and D’. The inverse matrix of the automorphism
f’(z) with respect to the bases S’( f (z)) and S(z), has the following form:

PROOF. By Proposition 1.4 the matrix of f’(z) has the above form and
hence its Jacobian determinant is bounded. Using the previous theorem we get

1 which implies the conclusion. -

Now we can prove the continuity of the lifting.

THEOREM 4.3. Let f be a proper holomorphic mapping between D and
D’. Then its lifting is continuous on W.

PROOF. We pattern this proof after that of Theorem 2.1. Let a be a point
on the boundary of D, a be its lifting to R and ((zk, [P’l))k be a sequence

which converges to a. We can assume that the vectors pk are unit. We
must prove that the sequence of hyperplanes defined by qk = with
wk = converges in JPn-l I to the complex tangent space at b = f (a). To
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do so, it suffices to show that the first n - 1 components of qk with respect
to the dual basis of ,S(b) go to 0 and the last one is greater than a constant,
as k goes to infinity. Since the mapping is Cl we can replace S(b) by 
Now, if we introduce the unit normal complex vector at zk, Proposition 1.2

implies that pk = th + O(S~), where 6k is the distance from the boundary.
Since If’(zk)1 = O((sk)-1/2) we have q k = t f’(zk)-ltk + 0(6112) . Then, it suffices
to prove the result for tk . The components of with respect to the
dual basis of form the last column of the matrix of with respect
to the special bases, so that by Proposition 1.4 the first n - 1 components tend
to 0 as k tends to infinity.

To find an estimate for the last component, we shall apply the scaling
method to the sequence (zk)k. Using the notations of Theorem 1.5, we have
f k = o f o ak-’ o pk and so if D denotes the derivative we have

pk and lbk being linear. By definition, if is the canonical basis of

, we have be the matrix of

in the canonical basis; the matrix of

(Uk is a (n - 1) x (n - 1)-matrix, C’k is a (n - I)-column, Rk is a (n - I)-row
and ak is a complex number). Consequently, the vector

and so we have Since

by Theorem 1.5 the limit of a k is 1, the conclusion follows.

5. - Regularity of proper mappings

In this section we shall prove our main theorem. We first, describe the
method: the main idea is to apply the results of [Col] concerning the regularity
of holomorphic mappings on totally real manifolds to the lifting; we get that
the map is We shall gain the best regularity by studying the mapping
r’ o f, the essential remark being that some of the derivatives of this function
can be considered as the boundary values along a totally real manifold of a
holomorphic function on a wedge. From this we obtain that r’ o f is Cm. The
strict pseudoconvexity enables us to conclude.
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We recall some basic facts about the Am spaces. Let D be a domain in
R~, m be a positive real number and f be a bounded function on D. If m  1,
we say that f is in if it is m-Lipschitz. If m = 1, we say that f is in

A I (D) if

is finite. If m &#x3E; 1, we write m = 1~ + a where k is an integer and 0  0152 ~ 1, and
we say that f belongs to Am (D) if its partial derivatives of orden k belong to
Ao:(D). When m is not an integer coincides with C~. Some informations
about these spaces can be found in [Kr] or [Str]. We shall use the following
criterion which is a consequence of the mean value theorem and Cauchy’s
formula.

LEMMA 5.1. Let f be a c2 function on a C2 bounded domain D in en.

(a) If

then f is an element of 

(b) If f is holomorphic on D, then f belongs to Arn(D) if and only if, for
any integer .~ &#x3E; m, DR fez) = O(8(z)m-R).

5.a. Regularity for non-holomorphic functions

Here, we would like to give some slight improvements to the results of
where non-holomorphic functions with a a controlled on a model wedge

are studied.

Let Wo be the wedge R~ + with edge The regularity of a function
on Wo is related to its regularity on IRn and to the estimates of its a on Wo.
We have several more precise results; the first one connects the regularity of
the function on to that of its real part.

THEOREM 5.2. Let u be a continuous function on W o with a compact
support and Coo on Wo such that:

(1) the restriction of the real part of u to I~n is ~1m (0  m);

Then u is Am on Rn.

The second result connects the regularity of the function on Wo to that of
its restriction to Rn.

THEOREM 5.3. Let u be a continuous function on W o with a compact
support and Coo on Wo such that:
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(1) the restriction of u to is 11m (0  Tn);

(2) there exists 6 &#x3E; 0 such that

Then u is l,m on W p.

These theorems are proved in [Col] ] if m is not an integer. By the same
methods, it is possible to improve these results for other values; we shall give
the proof only for integer m.

PROOF OF THEOREM 5.2. We shall treat only the case m = 1. We begin
with the case n = 1.

By the generalized Cauchy formula, we have for every real x

where v = Re(u) and P is the upper halfplane in C. Since v is in Aj I (R), the first
integral F, defines a function in ~11 (R) (see [St]). and satisfies the inequality:

where c is a universal constant. If we call the second integral F2 we get that
for x and h in EL

Changing variables, we have:

so that Im(u) E ~11 (1Ft) and its norm in is less than or equal to 
where c is a uni.versal constant, since the above integral is finite.

Now we treat the case n &#x3E; 1. Let x and h be vectors in R~. If all the

components of h are positive, we consider the function uh defined on P by
It is easy to verify that uh satisfies the same hypothesis

as u with the same constants, so that the right inequality holds with a constant
independent on h since Uh(lhl) This is also true if all the components
of h are negative. Otherwise we can write h = h’ - h" where all the components
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of h’ and h" are positive, and then:

Now we apply the previous cases to these expressions and conclude..

PROOF OF THEOREM 5.3. We shall treat only the case m = 1. Let z = x + i y
be an element of Wo and Q be a rational function of degree -1 on C whithout
poles in the closed upper plane and taking the value 1 at i. By Stokes theorem
we get the integral formula:

The first integral F, satisfies for z + h, z - h and z in Wo:

The second one is a differentiable function on Wo and its gradient is
and so u belongs to This. proves the theorem.

5.b. Regularity for holomorphic functions on a wedge

As a consequence of the above results we have the following:

THEOREM 5.4. Let W be a wedge constructed on a maximal totally real
manifold M of class Cm (I  m, m E and f be a continuous function on
W, holomorphic on W. Then, for any smaller wedge W’ C W, we have:

(a) if the real part of f is Am on M, f is Am on W’.
(b) if the restriction of f to M is Cm, f is Cm on W’.

In the same way, one can get a general theorem about the regularity of
continuous functions on a closed wedge (constructed on a maximal totally real
manifold), holomorphic on the open wedge and transforming the edge in another
maximal totally real manifold.

THEOREM 5.5. Let m be an integer greater than 2, M and M’ be two
maximal totally real submanifolds in C~n and CP of class Cm and f be a
continuous mapping on a closed wedge constructed over M, holomorphic on
the open wedge and transforming the edge M into M’. Then f is of class Am
on any smaller closed wedge.
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The reader is addnessed to [Al-Ba-Ro], [Co2] and [Ha-Pi] for a complete
proof of this result, but we would like to make some remarks. Now, the strategy
is clear: we shall try to apply this theorem to the lifting of a proper mapping.
Unfortunately, if the regularity of the strictly pseudoconvex domain is less
than 3, we cannot apply it since we lose one degree of differentiability when
lifting. Therefore, we must work a bit more. If we go back to the proof of the
above theorem, the most difficult part in the proof is the following estimate for
distances: dist( f (z), M’) = O(dist(z, M)). The rest is easy to get.

In fact, for the lifting of a proper mapping it is possible to get a better
estimate and, perhaps, in a simpler way: dist((z, p), .N). The
reason is that the known regularity of the lifting is 1 /2- Lipschitz on ~/.

5.c. Distance estimates

In this section we shall give the following estimates for the lifting of a
proper mapping between two strictly pseudoconvex domains:

PROPOSITION 5.6. Let f be a proper mapping between two strictly pseu-
doconvex domains of class Cm with m greater than 2. We have:

PROOF. We begin with the simplest estimate. We have:

To prove the other inequality, we are going to use the previous theorems several
times. First, by Theorem 5.4, f is 1/2-Lipschitzian on any closed wedge 

I

contained in W. Now, assuming the same result for 0 instead of 1/2, it follows
from the Cauchy inequalities that the components of the maps u = f o T and
v = S o u satisfy:

We shall distinguish two cases. If 0 is less than 1 /m - 1, since the imaginary
part of v is zero on 1 by Theorem 5.4 and inequality (5.2), u and v are
8(m - 1 )-Lipschitz on because S is a C 1-diffeomorphism. Since 8(m - 1)
is less than 9 + m - 2, by ( 1 ) u is 9(m - 1 )-Lipschitzian on Wo. Therefore, f is
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0(m - 1 )-Lipschitz, which is better than O-Lipschitz. If 8 is greater than 11m - 1
(it is necessarily the case if m &#x3E; 3), by Theorem 5.4 and the above estimates
about v, this mapping is C’ on JR2n-1 and f is C’ on N. Since ®(m - 1) &#x3E; 9,
it follows that f is always c1, and the estimates about distances are proved.

.

Now, it is possible to apply Theorem 5.3 to get the following property of
1:

THEOREM 5.7. The lifting of a proper niapping between two strictly
pseudoconvex domains is of class 11m_l.

PROOF. The proof is not difficult but needs some computations. The
estimates will be given by the following.

LEMMA 5.8. Let a and Q be two C°° niappings such that a ~ ~ exists.

Then, ii,e haB’e the esthnate:

it’here the summation l,S taken over the set of’ all the integers q  sand

oil the lllCl j)S ~‘J = (p¡,...,pq) fY’OIYt ~ l, 2, ... , (~’~ lYltO ~ 1 . 2, ... , s~ such that

PROOF. This is a consequence Taylor’s formula.
Using this lemma and Proposition 5.6, it is easy to prove the estimates:

for ul the integers s  m -1 I and j  2n -1. By Theorem 5.4, the last inequality
gives the ;esuli. a

5.d. ho.sr regularity

In this section, we shall prove the main theorem. In his lectures at

Santa-Crux, S. Pinchuk gave this result if the regularity of the domains is

not an integer and referred it to Hurumov. Here, we shall give a general proof
which works for all the values of the regularity and moreover, it derives from

the previous theorems.
Hurumov’s method is based on the study of the regularity of the real

function  r’ o f which is obtained using the classical theory of elliptic partial
derivatives equations (in fact potential theory). The essential remark is the

tollowing : to check the Laplacian of r’ o f only first order derivatives of f are
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needed, because f is holomorphic. It is easy to conclude that r’ o f has the same
regularity as the domains. But it is well-known that this theory is satisfactory
only when the regularity of the domain is not an integer [Gi-Tr] and this was
one of the reasons why the spaces Am have bee introduced [St].

Our method also consists in studying some derivatives of r’ o f. The
essential fact is that these derivatives can be considered as the boundary value
along ji of a holomorhic function on the wedge "W and, then, the previous
theorems can be applied to get sharp estimates on the derivatives of f. First of
all, we would like to emphasize the importance of r’ o f by giving the following
elementary result on strictly pseudoconvex domains:

PROPOSITION 5.9. Let D a strictly pseudoconvex domain in defined hv
a function r o, f class with 0  0152  I and let g be holomorphic map from
P into en such that:

Then, we have

PROOF. By (5.5) the complex normal component of g(z) is 0(6(z) I+fl).
Since D is strictly pseudoconvex, there exists a constant l~« such that for any z
lying in D, for any complex tangent vector u at z such that Jul  and for

any complex number A in the unit disc of C the point z + belongs to
P and 1 /2b(z)  6(z + ab(z) 1 ~2u)  26(z). By (5.5), for 1).,1  I we have:

Since r is C2+a, by the mean value theorem, we have also:

Calling cp the function on the unit disc, by (5.6) we have:

where A(z) is the matrix and is the

matrix Using A = I on the boundary of the unit disc and the maximum
principle for the function
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we get the estimate
Since the matrix is positive definite on the complex tangent space at z

(uniformly in z), we get that the complex tangential component of 9(z) is

We can use the same argument again to get the next estimates ( =
O(8(z)J1n) where the sequence satisfies the relation inf(-3/2 +,3, J-ln + a/2).
Since this sequence is constant when n is large we can conclude..

We introduce now holomorphic vectors fields L 1, L2, ... , Ln defined in a
neighborhood of P by:

and the functions

- 

These vector fields are linearily independent near 0 and L 1, ..., Ln-1’ Ln -
an Ln are tangent to the boundary. We are ready to prove the main theorem:

THEOREM 5.10. Every proper mapping between equidimensionnal strictly
pseudoconvex domains of class Cm extends to a Am-1/2-map up to the boundary.
Moreover r’ o f is also Cm in the interior.

PROOF. We write m = k+ a with k integer and 0  a  1. The crucial point
consists in establishing the following estimates for any n) and
for any holomorphic derivation (ak) of length k:

Assume for a moment these estimates are proved; let us introduce the holo-

morphic vectors fields LI,L2,...,L,, defined in a neighborhood of W by

If g is a holomorphic function on D (and so also on W ) lying into 
these complex vectors fields are connected to LI, L2,..., Ln by the following
relations, where ak denotes a holomorphic derivation of length k:
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this is true because for and in W we

have
Now we prove the above estimates, starting with j = n. By direct inspec-

tion we get 
--

on ji we have and so coincides

on k with the holomorphic function

Since Ln - is tangent to the boundary, we have g = anbng on the edge
By decreasing, if necessary, the wedge, the function log(g) is well defined

since, by condition A, Ln(r’ o f ) does not vanishing on 6P and its imaginary
parts is 1 as an and bn. By Theorem 5.4, log(g) is Am-i 1 and therefore g is
also Since g is a holomorphic function in the derivatives of
order k verify: p)) = O(dist(z, p)- "’) so that

(with the convention = 1) and since f is Am-i I we can deduce

and

since the functions and are C 1 on V and coincide on the edge. The

proof of the estimate for arbitrary j is similar. Indeed, is the

value on R of the holomorphic function Since Lj is tangent

to the boundary we have the equality on b D and

thus Therefore h is is Am-Ion k. As in the previous proof
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the conclusion follows. To obtain the regularity of f we apply Proposition 5.9.
Indeed r = r’ o f is a defining function for D of class (at least) and since
f is Am- j I up to the boundary we have:

where is a holomorphic derivation of length k + 1. According to the above
proposition we get

that is to say that f belongs to 
The regularity of r’ o f is also easily obtained. According to Lemma 5.8,

in the expression of its derivative of order 1~ we only have to consider the

terms of the form since in all the other terms there

are only derivatives of of order less than 1~ - 1 so that these terms are Ca.

Now, by the above estimates, the derivative of R is 0(6-"o) and so, if m is
not an integer, R and D k(r’ o f ) are Ca. If m is an integer, we consider the
derivative of order m - 1. Bur by splitting the terms, we have to weight up

The functions are Cm-1 1 on
0-1 1

D so that, by Theorem By the above proof, g and hj

( 1  j  n - 1) belong to and thus belongs to 

In particular it is continuous on

we see that extends continuously to P;

that is,

To be comprehensive about the question, we must give examples to show
that this result is sharp. The idea is due to Hurumov. Let y~ be a holomorphic
function on the unit disc lying in more precisely we are going to assume that

= with m = integer and 0  cx  1. We consider
the shear f defined by: f(ZI, Z2) = (Zl, Z2 + cp(zl )). It is a biholomorphic map
from the unit ball in ee2 onto a strictly pseudoconvex domain 9 of class Cm+ 1 /2.
Indeed a defining function r of D is given by r(zi, Z2) = z2 - y~(zl ) ~ 2 - 1.
Checking the derivarives, it is easy to prove that r is C,+1/2 because on D we
have: (1 -IZI12)1/2. Therefore the regularity of the shear is exactly

which proves that our result cannot be improved.
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