@article{ASNSP_1994_4_21_2_157_0, author = {Sakaguchi, Shigeru}, title = {Critical points of solutions to the obstacle problem in the plane}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {157--173}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 21}, number = {2}, year = {1994}, mrnumber = {1288362}, zbl = {0823.35068}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1994_4_21_2_157_0/} }
TY - JOUR AU - Sakaguchi, Shigeru TI - Critical points of solutions to the obstacle problem in the plane JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1994 SP - 157 EP - 173 VL - 21 IS - 2 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1994_4_21_2_157_0/ LA - en ID - ASNSP_1994_4_21_2_157_0 ER -
%0 Journal Article %A Sakaguchi, Shigeru %T Critical points of solutions to the obstacle problem in the plane %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1994 %P 157-173 %V 21 %N 2 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1994_4_21_2_157_0/ %G en %F ASNSP_1994_4_21_2_157_0
Sakaguchi, Shigeru. Critical points of solutions to the obstacle problem in the plane. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 21 (1994) no. 2, pp. 157-173. http://archive.numdam.org/item/ASNSP_1994_4_21_2_157_0/
[1] Critical points of solutions of elliptic equations in two variables. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 229-256. | Numdam | Zbl
,[2] Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. | Zbl
- ,[3] On the local behaviour of solutions of non-parabolic partial differential equations. Amer. J. Math. 75 (1953), 449-476. | Zbl
- ,[4] Starshapedness of level sets for the obstacle problem and for the capacitory potential problem. Proc. Amer. Math. Soc. 89 (1983), 637-640. | Zbl
,[5] An Introduction to Variational Inequalities and Their Applications. Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980. | Zbl
- ,[6] A note on branch points of minimal surfaces. Proc. Amer. Math. Soc. 17 (1966), 1254-1257. | MR | Zbl
,