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Optimal Interface Error Estimates
for the Mean Curvature Flow

R.H. NOCHETTO - M. PAOLINI - C. VERDI(*)

1. - Introduction

It is known that the singularly perturbed reaction-diffusion equation, with
a smooth double equal well potential T : R 2013~R,

provides an approximation for an interface £(t) evolving by mean curvature

where V is the normal velocity of the interface £(t) and rm is the sum of its
principal curvatures [1,2,3,4,6,7,8,9,13,14]. Such an equation was introduced by
Allen and Cahn [1] in order to describe the motion of antiphase boundaries
in crystalline solids, thus showing its relevance in phase transitions. It was

independently suggested by De Giorgi [6] as a variational approach to the mean
curvature flow. Such a connection has been rigorously established by Evans,
Soner and Souganidis [9], who have proved convergence of the zero level
set of u, to the generalized motion by mean curvature [10], even beyond the
onset of singularities, provided the limit interface does not develop interior; see
also [2,4,13]. Asymptotic analyses were carried out prior to those convergence
results, but they apply only to smooth evolutions [3,7,8,14].

For the quartic double well potential ~(~) = ( 1 - s2)2, the solution u,
exhibits a transition layer of width 0(e) across the interface, satisfies lUg  1

in the whole R7 x (0, +oo), and tends exponentially fast to the limit values ±1.
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Numerica e Matematica Computazionale") and CNR (IAN and Contract 91.O 1312.01 ) of Italy.
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This is specially inconvenient for numerical purposes because of the need to
solve the problem in the entire domain, even though the action takes place
in a relatively small region. Computational evidence shows that the location
of the approximate interface may be very sensitive to the boundary condition
for bounded domains, and thus somehow unstable. It is thus important for
computational purposes, and of theoretical interest as well, to examine the
effect of substituting the smooth potential by

In fact, the solution Uê of the resulting double obstacle PDE attains the values
u, = ±l outside a narrow transition layer of order 0 (~), thus reducing the
computation of u, to a thin n-dimensional strip (see [5,15]).

Suppose the initial interface 1(0) is a smooth, bounded, and closed

hypersurface. It is a consequence of the Maximum Principle that l(t) is contained
in the convex hull of 1(0), conv(1(0)), and that l(t) eventually disappears for
finite time [10, Thm, 7.1b; 3,12]. We can then set the double obstacle problem
in a bounded domain Q c containing conv(L(O), impose a vanishing flux
condition on aSZ and study the evolution up to a finite time T.

The goal of this paper is to prove an optimal error estimate, valid before
the onset of singularities, for the distance between the mean curvature flow l(t)
and the approximate interface Lê(t) = {x u~(x, t) = 0}. In fact, assuming
that I f (x, t) E SZ x [0, T] : x E l(t)l is sufficiently regular (see Section 5.1)
and u, 0) has the correct shape (see Section 5.2), we prove that

where CT is a constant depending on T but independent of e and dist is the
Hausdorff distance. This estimate is optimal and improves the results obtained
by Chen for the regular potential [4] and by Chen and Elliott for the double
obstacle potential [5], who show a first order error estimate via comparison
arguments.

Both the order and optimality of the interface error estimate are a

consequence of the Maximum Principle and the explicit construction of sub
and supersolutions, which in turn are inspired by, and indeed rely on, the
formal asymptotics developed in [15]. It is not obvious that the resulting
asymptotic expansion for u, converges, not even for fixed number of terms
and 6 1 0, as in [7,8] for the smooth potential. This is an interesting open
problem, which would also lead to a rate of convergence for interfaces, via

nondegeneracy properties of both the continuous and truncated solutions. In

this light, a nontrivial by-product of the rigorous asymptotic analysis of De
Mottoni and Schatzman [7,8] would be an 0(82) interface error estimate for
the regular potential, but under higher regularity restrictions on E than in
the present discussion. Regardless of convergence, the formal asymptotics of
Section 3 still provides valuable information on the shape of u~, which, together
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with a modified distance function and the nondegeneracy property of sub and
supersolutions, plays a fundamental role in our subsequent rigorous analysis;
see Section 5.3 and Sections 6 and 7.

The paper is organized as follows. In Section 2 we introduce a nontrivial
1- D solution associated with the double obstacle potential. Formal asymptotics
for a contracting circle is presented in Section 3. This derivation provides the
basis for the construction of several special functions which, properly combined,
lead to the sub and supersolutions of Sections 5 and 7. A simple but crucial
comparison result is proved in Section 4. The sub and supersolutions are fully
examined in Section 5 and then used in Section 6 to derive interface error
estimates. In Section 7 we return to the special case of a circle evolving by
mean curvature and show rigorously that our estimate is sharp.

2. - Double Well Potential

The subdifferential graph 2 ’P’ is given byg p Y= 
2 

g y

We seek solutions of the double obstacle problem

that correspond to absolute minimizers of the functional

where

It is not difficult to see that any absolute minimizer y must be nondecreasing.
Since the inequality

holds for any nondecreasing function E D( ~), then the desired minimizers
I satisfy -1’(x) = It turns out that imposing 1(0) = 0, the unique
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nondecreasing solution -y E of (2.1) is given by

Hence, y E see Figure 3.1. This function will be used in Section 5.2
to define the initial datum u§ for the double obstacle problem.

The following elementary inequality will be useful in the sequel:

for all and 0  h « 1. It is a trivial consequence of the

relation

3. - Formal Asymptotics for the Radial Case

We propose here a brief discussion of formal asymptotics for the simplest
situation, the radially symmetric case. Even though this presentation is only
formal, it motivates several crucial aspects of our subsequent rigorous analysis
such as the definition of initial datum and sub and supersolutions in Sections 5
and 7.

Consider in R~ a circle of radius 0(t) which evolves by mean curvature,
that is

Since v’f=2t, we see that the circle shrinks to a point at time t* = ~. If
the initial datum u~( ~ , 0) of the double obstacle problem is radially symmetric,
so is the solution u~( . , t). Using polar coordinates, we denote by r = the

zero level set of Ug, that is
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In addition, the PDE satisfied by u, within the transition layer  1}
reads

Let us introduce the stretched variable and denote

whence

that

With the notation U~k~ = we realize

and

Suppose that both Uê and 4Jê can be expressed in terms of - (inner expansion)
as follows:

This and (3.2) entail t) = 0 for all i &#x3E; 0, po(0) = 1 and = 0 for all

We now intend to derive explicit expressions of, and compatibility
conditions for, the first terms of these formal asymptotic expansions; see [15].
Using (3.4), together with

we can substitute U, into (3.3) and collect all resulting terms containing like
powers of ê. In the sequel we skip details and simply examine the first four
summands in increasing order and equate them to zero, thus starting with the
1
-r-term:62

Determining boundary conditions for the inner expansion is a delicate
issue that typically involves matching with the outer expansion. The presence
of obstacles, however, creates an interesting difference with respect to usual
matched asymptotics: the boundary of the transition region should be allowed
to move independently of the zero-level set, and so adjust for the solution
to be globally Such a formally correct asymptotics, involving a further
expansion for the transition region width, is an intriguing open problem that is
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worth exploring. We simply overcome this difficulty upon imposing continuityof the truncated inner expansion S) = Ei--06iUi with the far field u~ - ~ 1
at y - ±2013, which in turn yields homogeneous Dirichlet conditions for Ui

2

at y - +27 for i &#x3E; 1. This arbitrary choice leads to a uniform transition
2

layer { |y|  ’27/2} and provides the essential information near the interface at the- 2

expense of giving up 1 regularity of SI. The resulting formal series may not
converge, not even in the sense of [7,8], namely for - 10 but fixed 1. Adding
further corrections partially compensates for the lack of regularity, as explained
at the end of this section, and results in the rigorous construction of barriers of
Sections 5 and 7.

We clearly obtain

The 1-term yields
e

For this problem to be solvable a compatibility condition between the right-hand
side of the ODE and span{Uo} must be enforced (Fredholm alternative), where
span{Uo} is the kernel of Q" + Q subject to vanishing Dirichlet boundary
conditions. This reads

and shows that po must satisfy (3.1 ); thus

and

Since at U° = 0, the -O-term leads to the boundary value problem

and corresponding compatibility constraint
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Then pi must satisfy p[(t) - = 0 subject to = 0, whose solution is

pl(t) = 0. Therefore U2 = 0. Therefore U2 solves

We introduce the odd function ~ E defined by

(see Figure 3.1 ), which satisfies

Note that ~’ exhibits a jump discontinuity at
realize that

We then

We conclude our discussion with the s-term, which, in view of Ul = 0, reads

Imposing the L2-orthogonality constraint between the above right-hand side and
Uo, we deduce an ODE for ~p2, namely,

Consequently
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and U3 satisfies

We indicate with u e the even function

(see Figure 3.1 ), which satisfies

Note that u’ is discontinuous at

write

Since u(0) = 0, we can

We stress that the functions

Fig. 3.1 - Functions I, ç, u, and (dashed lines) ~, ~+, and (dotted line) ~~7.

are still solutions of equations (3.5) and (3.7), respectively, for any a, b E R.
The choice of a and b, which can be viewed as extra degrees of freedom, will
be crucial in constructing the barriers of Section 5.3 and Section 7.
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4. - Comparison Lemma

In this section we prove an elementary Comparison Lemma similar to
that in [5], Let Q c R" be a bounded Lipschitz domain. Consider the double
obstacle problem

for all ~p E H1(S2; [-1,1]) and a.e. t E (0, T). Hereafter ( ~ , ~ ~ stands for either
the scalar product in or the duality pairing between (H 1 (SZ))’ and 

Let v satisfy the following auxiliary problem

for all p E [0, +oo)) and a.e. t E (0, T), with

Then v is a subsolution of the double obstacle problem (4.1 ), i.e.,

In order to prove (4.3), set e = max(v - u~, 0). Then take p = u, + e E

L~(0,r;~~Q;[-l,l])) in (4.1) e E L 2(0, T ; [0, +oo)) in (4.2),
and subtract the resulting inequalities. After integration on (0, t), we get

Assertion (4.3) follows from Gronwall’s Lemma, which implies = 0

and thus e = 0 a.e. in SZ x (0, T).
The Comparison Lemma for supersolutions can be stated in a similar

fashion and is thus omitted.
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5. - Subsolution and Supersolution

In this section we construct a sub and supersolution for the double obstacle
problem (4.1). Such functions will be used in Section 6 to derive an optimal
interface error estimate.

,Section 5.1. Interface.

Let E(t) be a mean curvature flow such that dist(conv(L(O», aQ) &#x3E; 6 &#x3E; 0,
and set E = {(x, t) E Q x [0, T] : x E Y-(t)l. Assume Y-(t) is an oriented closed
manifold of codimension 1 and set 0(t) = Outside of E(t), I(t) = Inside of l(t).
The signed distance d is then defined for t E [0, T] ] by

We introduce a tubular neighborhood T = {(x, t) E 0. x [0, T] : x E T (t)} of E
defined by

for some fixed I

sufficiently small. The interface error estimate in Section 6 will be proved under
the assumption

We denote by n(x, t) the inward unit vector normal to E(t) at x E E(t) and by
t) the sum of the squares of the principal curvatures of l(t) at x E l(t).
It follows from (5.1) that, for any (x, t) E T, there is a unique s(x, t) E E(t)

such that

With an abuse of notation, we henceforth indicate with n and xS the composite
functions n(s(x, t), t) and t), t), defined for all (x, t) E T, and point out
that (5.1) yields

Finally, the following properties of the distance function hold for all (x, t) c T;
see [4,7,8,11,15] :



203

Section 5.2. Initial Datum.

In setting the initial datum uo of the double obstacle problem we would like
to fit the initial interface L(O), that is = 1(0), and at the same time avoid
an initial transient due to inadequate shape of uO. In case u° E [ -1, 1 ] )
only satisfies CEI log 61 for Cellog el, then it takes a short

time, of order for the solution Uc to attain the value luc(x, t)1 = 1
provided Id(x, t)1 I &#x3E; Cc I log - 1; see [5]. Here C &#x3E; 0 may not be the same at

each occurrence but is always independent of 6-. Inspired by the asymptotics of
Section 3, we define

Even though this particular choice might seem restrictive, the formal results
of Section 3 strongly suggest that other choices would not perform better in
terms of approximating the mean curvature flow. This is known for the PDE

involving a smooth double well potential [4,7,8].

Section 5.3. Subsolution.

We start out by introducing a modified distance function, which combines
a shift with a shape correction. For any (x, t) E Q x [0, T] set

where K &#x3E; 0 and Cl, C2 &#x3E; 1 will be determined later on indepen-
dently of ~.

Hereafter, the notation ~ = will stand for lçl  with a constant
C &#x3E; 0 independent of ~, Cl and C2, and ~ = 0c,(e") will mean lçl  with
C &#x3E; 0 possibly depending on C} and C2 but not on ~; C may change at each
occurrence.

For convenience we remove the superscript -, thus denoting d, = dj, and
introduce the layer % _ ~ (x, t) E S2 x [0, T] : x E T,(t)1, where

Observe that, depending on D, K, Cl, C2 and T, there exists 0  ~  1

so that T, C T for all 0  -  ~ , that is I  D provided
I  Moreover, for (x, t) E Te and 0  - ::; e we can write

27 

- 

2 
-

- 7r 11 &#x3E; &#x3E; CID E2) _ C2ê2e2KT and thus deduce that
2



204

In view of (5.2) and (5.4), we have

for all (x, t) E TE. Note the presence of de instead of d on the right-hand sides.
Our next task is to introduce the subsolution v- for the double obstacle

problem (4.1). Its definition is motivated by the asymptotics of Section 3 in
that v. consists of several corrections, in shape and location, of the obvious
candidate u. Set

and note that ~- e is non-negative and satisfies (3.5), and £I is

discontinuous at x = - 2 because but C’ 2 - ~" (I) = 0;
see Figure 3.1. 

2 
~ 2 4 

~ 

2 
- (,2r) = o;

Then we introduce

where y(x, t) = is a modified stretched variable, and proceed to prove) 
ê 

p p

that v. is a subsolution for (4.1). Since no confusion is possible, we will use
the notation v,, = v; .

First, note that IVg(x, t)1 I  1 in if e is sufficiently small (depending
on K), and IVg(x, t)1 = 1 in (0. x [o, T ] )B T~ . In fact, for any a &#x3E; 0 sufficiently
small, the function

satisfies and whence

strictly increasing in I thus  1 for all x E R. See Figure 5.1.

Then, it is easy to check that

In fact, set and note that, for t = 0 and x E Te(0),

for 6- sufficiently small (depending on Ci and C2). Since we only have to

(2.2) leads to 1(Z) - Y(Y) &#x3E;1/4 Then
2 2 

) 1’( ) 7Cy) 
4x
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provided C2 &#x3E; 1 is chosen sufficiently large but independent of e.
Set now

For all t E (0, T) ad any non-negative p e we have

where and v~ is the outward unit vector normal to

Since

and

.

we have II  0. From (5.7) we also have III  0. Hence, it only remains to
establish that the first term is non-positive. A simple calculation yields

for all (x, t) E Te. Using (2.1) and (3.5) in (-2,2and properties (5.5), we obtain2 2
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whence

The first term on the right-hand side reveals the correction effect of the middle
term in (5.3). In fact, since x (x) + ’ (x) &#x3E; 1 for all x E R, selecting ~2 &#x3E; 2013 Ci,
we have 

( ) ~ ~ g 
_K 

m

We then realize that a suitable choice of 1, sufficiently large but indepen-
dent of 6, leads to

for c sufficiently small (depending on Cl and C2). Hence, applying the Com-
parison Lemma of Section 4 we conclude that vj = vE verifies

The construction of a supersolution vl’ is entirely similar and is thus omitted,
where

Fig. 5.1 - Functions -1, ~:F (x :F cc), (dashed lines),
and ~:F(x :F ce2) (dotted lines).

and
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6. - Interface Error Estimate

On using the subsolution v; and supersolution vl defined in Section 5.3,
it is now possible to deduce the following error estimates, valid before the onset
of singularities, for interfaces evolving by mean curvature.

THEOREM 6.1. Let l(t) be a mean curvature flow which satisfies (5 .1 ).
Let Lê(t) = {x E Q : u,(x, t) = 0} be the zero level set of the solution u, of
the double obstacle problem 4.1 with "1 

d(x, 0) . Then there exist
0  C  1 and a constant CT depending on T such that for all 0  6  ~ the

following estimate holds:

PROOF. Set {x vT(x, t) = 01. Invoking the nondegeneracy
property of vi around the interface, namely, Blvi. n = -1 + 0(6-) providedp p Y E Y E 

e 
( ) P

di(x, t) = 0, in conjunction with the property = D (E2) for = 0,
we have that

x E £7 (t) implies t) = 0 (~3 ).
Hence, (5.4) shows that x E yields d(x, t) = O(g2), and so

The inequalities   for all (x, t) E Q x [0,T] then lead
to

and the assertion follows. 0

Without regularity or qualitative assumptions on the initial datum u§, (6.1)
is still valid for any u§ satisfying

Taylor expansion in (5.6) converts these inequalities into the constraint

C independent of 6*. We point out that corrections to -1 such as u°(x) -

Y(dX,0)) +e2ks(x,0)E ( 0) ) which could be suggested by the formal’Y 
11 

( X,0 )E (d E ) gg Y

asymptotics of Section 3, verify this constraint but do not improve the

approximation quality. Such a claim is a consequence of our next argument.
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7. - Optimality

The purpose of this section is to show that the interface error estimate
stated in Theorem 6.1 is sharp. To this end, we consider a circle evolving by
mean curvature, as described in Section 3, and prove that 

- E2|Q2(t))| (see also [7,8,15]). We stick to the notation of Section 3 and suppose2 
1 .

that T  t* = 1 is fixed.
2

Let d(r, t) = r - 0(t) and let d:F (r, t) denote the modified distance function

where K = maxtejoTj ’ ~"(~) and Ci, 1 will be determined later on

independently of e. Note that the correction term of order O(e2) in (7.1 ) is now
written which reveals the extra accuracy built into (7.1 )
with respect to (5.3). Likewise, the sub and supersolutions vi defined in (5.6)
are further corrected to read

where t7- is the (even non-positive) function defined by

(see Figure 3.1 ). Note that 6 still satisfies (3.7) and 6 E C2,1 (R ), because

Y, ( 2, 2, o2 2 
°

We then have the following asymptotic result which, in view of the

property Q2(t)  0, shows the optimality of (6.1) for y( r-1 ,e j
together with the fact that moves faster than Q(t).

THEOREM 7.1. Let 0(t) = 1 - 2t be the radius of a circle shrinking

b 
. 

h 
... 

* - 
1 

d 1 () 
1{"2 - 6 log Q(t)

by mean curvature with extinction time t = 2’ and let = 12 .

2 12 0(t)
Let be the radius of the zero level set of the solution u, of the double

obstacle problem (4.1) with uo(r) r - 1 . Then, for any fixed T  t*,

there exist 0  C  1 and a constant CT depending on T such that for all
0  -  ~ the following estimate holds:
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PROOF. Let t* be the extinction time for i.e. = 0. It will turn

out, as a by-product of this analysis, that T  t~  t* for 6 sufficiently small.
We claim that the assertion is a trivial consequence of the estimate

In fact, denote by the radius of the zero level set of v;, i.e., (4)¿(t), t) = 0,
and by the radius such that t) = 0. Then, from (7 .1 ), we have

for all t E [0,T], provided e is sufficiently small (depending on Ci and C2).
Invoking now the nondegeneracy property of vi around the interface, namely

+ 0(6:), in conjunction with 0(e2), as resultsr vE ( re+ ( )t )= 
é 

( )in con ( E ( )t ) =o ( )

from (7.2), we infer that

still if - is sufficiently small. This, together with (7.5), yields

But (7.4) implies 0+(t)  0,(t)  0-(t), and thus the desired estimate follows.
Consequently, it only remains to establish (7.4). To this end, we just prove

because the upper bound can be derived similarly. For convenience we drop the

su p erscri p t - denote v - vj, d, = d. and set y = in Theorem 6.1
e

we intend to apply the Comparison Lemma. If we set

then we see that 1~ (-~+) = a 4 &#x3E; 0, 1~ (~) = 0 and -

-1. Consequently, 1- is strictly increasing in (-27/2, 27/2), for any a,
2 2

/3 &#x3E; 0 sufficiently small; thus  1 for all x e R (see Figure 5.1 ). In
terms of vE, this reads IVg(r, t)1  1 in ’T’E, for E sufficiently small (depending
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on K). Then, for t = 0, we have to show that

where z(r) = 201320132013. On the other hand, since p2(0) = 0, we have for z = 0(1)
11

for e sufficiently small (depending on 01 and C2). We can resort to (2.2) to

deduce that

for C2 &#x3E; 1 sufficiently large. It is worth noting that at z = ~ the second term
between parenthesis vanishes but the first one still provides control because

and so £- (y) + e8(y) = for y = 27/2 - ’ 2 ’

We now realize that, proceeding as in Section 5.3, we only have to

examine the sign of

within the layer The. Making use of the relation
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and (7.1 ), and collecting like powers of 6:, after tedious calculations we get

in 7’E-. In light of the definitions of 7, ~, -d7, 0 and p2 (see (2.1), (3.5), (3.7),
(3.1) and (3.6)), the first four terms on the right-hand side vanish. In addition,

since yy(y/)+Y(y) &#x3E; 1, the choice C &#x3E; 6 C enables us to control bothy’Y(y) ’Y (y) &#x3E;1 the choice 2 _ 
K 

1

-2Cii’(y) and, for Cl 1 large enough, 0 ( 1 ). Finally, for - sufficiently small

(depending on 01 and C2), we get  0 in 7~, and as a consequence (7.6).
The proof is thus complete. D

The estimate (7.3) is still valid for a perturbed initial datum uo satisfying

where v+E are defined in (7.2). Since the perturbation

verifies this constraint, we exploit the optimality result to conclude that further
adjustment of the shape of y cannot improve the rate of convergence (6.1).
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