Is an operator on weak L P which commutes with translations a convolution ?
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 21 (1994) no. 2, pp. 267-278.
@article{ASNSP_1994_4_21_2_267_0,
     author = {Brandolini, Luca and Colzani, Leonardo},
     title = {Is an operator on weak $L^P$ which commutes with translations a convolution ?},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {267--278},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 21},
     number = {2},
     year = {1994},
     mrnumber = {1288367},
     zbl = {0815.47036},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1994_4_21_2_267_0/}
}
TY  - JOUR
AU  - Brandolini, Luca
AU  - Colzani, Leonardo
TI  - Is an operator on weak $L^P$ which commutes with translations a convolution ?
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1994
SP  - 267
EP  - 278
VL  - 21
IS  - 2
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1994_4_21_2_267_0/
LA  - en
ID  - ASNSP_1994_4_21_2_267_0
ER  - 
%0 Journal Article
%A Brandolini, Luca
%A Colzani, Leonardo
%T Is an operator on weak $L^P$ which commutes with translations a convolution ?
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1994
%P 267-278
%V 21
%N 2
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1994_4_21_2_267_0/
%G en
%F ASNSP_1994_4_21_2_267_0
Brandolini, Luca; Colzani, Leonardo. Is an operator on weak $L^P$ which commutes with translations a convolution ?. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 21 (1994) no. 2, pp. 267-278. http://archive.numdam.org/item/ASNSP_1994_4_21_2_267_0/

[1] L. Colzani, Translation invariant operators on Lorentz spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987), 257-276. | Numdam | MR | Zbl

[2] M. Cwikel, On the conjugate of some function spaces. Studia Math. 45 (1973), 49-55. | MR | Zbl

[3] M. Cwikel, The Dual of Weak Lp. Ann. Inst. Fourier (Grenoble) 25 (1975), 81-126. | Numdam | MR | Zbl

[4] N.J. Kalton, Representations of operators between function spaces. Indiana Un. Math. J. 33 (1984), 639-665. | MR | Zbl

[5] W. Rudin, Invariant means on L∞. Studia Math. 44 (1972), 219-227. | Zbl

[6] A.M. Shteinberg, Translation invariant operators in Lorentz spaces. Functional Anal. Appl. 20 (1986), 166-168. | MR | Zbl

[7] P. Sjögren, Translation invariant operators on Weak L 1. J. Funct. Anal. 89 (1990), 410-427. | MR | Zbl

[8] E.M. Stein - G. Weiss, Introduction to Fourier analysis on euclidean spaces. Princeton University Press, Princeton, 1971. | MR | Zbl