@article{ASNSP_1994_4_21_3_475_0, author = {Bartz, J. and Struwe, M. and Ye, R.}, title = {A new approach to the {Ricci} flow on $S^2$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {475--482}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 21}, number = {3}, year = {1994}, zbl = {0818.53050}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1994_4_21_3_475_0/} }
TY - JOUR AU - Bartz, J. AU - Struwe, M. AU - Ye, R. TI - A new approach to the Ricci flow on $S^2$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1994 SP - 475 EP - 482 VL - 21 IS - 3 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1994_4_21_3_475_0/ LA - en ID - ASNSP_1994_4_21_3_475_0 ER -
%0 Journal Article %A Bartz, J. %A Struwe, M. %A Ye, R. %T A new approach to the Ricci flow on $S^2$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1994 %P 475-482 %V 21 %N 3 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1994_4_21_3_475_0/ %G en %F ASNSP_1994_4_21_3_475_0
Bartz, J.; Struwe, M.; Ye, R. A new approach to the Ricci flow on $S^2$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 21 (1994) no. 3, pp. 475-482. http://archive.numdam.org/item/ASNSP_1994_4_21_3_475_0/
[H1] The Ricci flow on surfaces. Contem. Math. 71 (1988), 237-262. | MR | Zbl
,[H2] Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306. | MR | Zbl
,[H3] Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), 153-179. | MR | Zbl
,[Ch] The Ricci-Hamilton flow on the 2-sphere, J. Differential Geom. 33 (1991), 325-334. | MR | Zbl
,[Gi-Ni-Nir] Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243. | MR | Zbl
- - ,[S] Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math., 118 (1983), 525-571. | MR | Zbl
,[Y] Global existence and convergence of the Yamabe flow, J. Differential Geom. 39 (1994), 35-50. | MR | Zbl
,