@article{ASNSP_1995_4_22_2_275_0, author = {Karp, Lavi}, title = {On {Liouville} type theorems for second order elliptic differential equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {275--298}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 22}, number = {2}, year = {1995}, mrnumber = {1354908}, zbl = {0840.35025}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1995_4_22_2_275_0/} }
TY - JOUR AU - Karp, Lavi TI - On Liouville type theorems for second order elliptic differential equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1995 SP - 275 EP - 298 VL - 22 IS - 2 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1995_4_22_2_275_0/ LA - en ID - ASNSP_1995_4_22_2_275_0 ER -
%0 Journal Article %A Karp, Lavi %T On Liouville type theorems for second order elliptic differential equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1995 %P 275-298 %V 22 %N 2 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1995_4_22_2_275_0/ %G en %F ASNSP_1995_4_22_2_275_0
Karp, Lavi. On Liouville type theorems for second order elliptic differential equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 22 (1995) no. 2, pp. 275-298. http://archive.numdam.org/item/ASNSP_1995_4_22_2_275_0/
[1] Sobolev Spaces, Academic Press, New York, 1975. | MR | Zbl
,[2] On Positivity and decay of solutions of second order elliptic equations on Riemannian manifolds, Methods of Functional Analysis and Theory of Elliptic Equations (D. Greco ed.), Liguari Editore, Napoli, 1982, 19-52. | MR | Zbl
,[3] Une théorème de Liouville pour des équations elliptiques à coefficients périodiques, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), 245-250. | MR | Zbl
- ,[4] LP bounds on singular integrals in homogenization, Comm. Pure Appl. Math. 44 (1991), 897-910. | MR | Zbl
- ,[5] Schauder estimates and existence theory of entire solutions of linear elliptic operator, Proc. Roy. Soc. Edinburgh Sect. A 110 (1988), 101-123. | MR | Zbl
- ,[6] Linear Partial Differential Equations. Foundations of Classical Theory, Partial Differential Equations I (Yu. V. Egorov and M.A. Shubin, eds), Encyclopedia of Math. Sci., 30, Springer-Verlaga, Berlin-Heildelberg-New York, 1991. | MR | Zbl
- ,[7] Bounded entire solutions of elliptic equations, Pacific J. Math. 44 (1973), 497-507. | MR | Zbl
,[8] Generalized Newton potential and its applications, J. Math. Anal. Appl. 174 (1993), 480-497. | MR | Zbl
,[9] Fredholm properties of a class of elliptic operators on non-compact manifolds, Duke Math. J. 48 (1981), 289-312. | MR | Zbl
,[10] On elliptic system in Rn, Acta Math. 150 (1983), 125-135. | MR | Zbl
- ,[11] The behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math. 32 (1979), 785-795. | MR | Zbl
,[12] On elliptic operators in Rn, Comm. Partial Differential Equations 5 (1980), 913-933. | MR | Zbl
,[13] An expansion about infinity for solutions of linear elliptic equations, J. Math. Mech. 12 (1963), 247-264. | MR | Zbl
,[14] Partial Differential Equations of Elliptic Type, second edition, Springer-Verlag, Berlin-Heildelberg -New York, 1970. | MR | Zbl
,[15] On a Liouville type theorem for linear and nonlinear equations on a tours, Bol. Soc. Brasil. Mat. 23 (1992), 1-20. | MR | Zbl
- ,[16] Isomorphism theorems for elliptic operators in Rn, Comm. Partial Differential Equations 9 (1984), 1085-1105. | MR | Zbl
,[17] On construction of Martin boundaries for second order elliptic equations, Publ. Res. Inst. Math. Sci. 26 (1990), 585-627. | MR | Zbl
,[18] The null spaces of elliptic partial differential operators in Rn, J. Math. Anal. Appl. 42 (1973), 271-301. | MR | Zbl
- ,[19] On positive solutions of second second order elliptic equations, stability results and classification, Duke Math. J. 57 (1988), 955-980. | MR | Zbl
,[20] On the equivalence Green functions of second order elliptic equations in Rn, Differential Integral Equation 5 (1992), 481-493. | MR | Zbl
,[21] A smooth linear elliptic differential equations without any solution in a sphere, Comm. Pure Appl. Math. 14 (1961), 599-617. | MR | Zbl
,[22] Principles of Functional Analysis, Academic Press, New York, 1971. | MR | Zbl
,[23] Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, New Jersey, 1971. | MR | Zbl
- ,