@article{ASNSP_1995_4_22_3_375_0, author = {Friedman, Avner and Liu, Yong}, title = {A free boundary problem arising in magnetohydrodynamic system}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {375--448}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 22}, number = {3}, year = {1995}, mrnumber = {1360544}, zbl = {0844.35138}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1995_4_22_3_375_0/} }
TY - JOUR AU - Friedman, Avner AU - Liu, Yong TI - A free boundary problem arising in magnetohydrodynamic system JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1995 SP - 375 EP - 448 VL - 22 IS - 3 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1995_4_22_3_375_0/ LA - en ID - ASNSP_1995_4_22_3_375_0 ER -
%0 Journal Article %A Friedman, Avner %A Liu, Yong %T A free boundary problem arising in magnetohydrodynamic system %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1995 %P 375-448 %V 22 %N 3 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1995_4_22_3_375_0/ %G en %F ASNSP_1995_4_22_3_375_0
Friedman, Avner; Liu, Yong. A free boundary problem arising in magnetohydrodynamic system. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 22 (1995) no. 3, pp. 375-448. http://archive.numdam.org/item/ASNSP_1995_4_22_3_375_0/
[1] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959), 623-727. | MR | Zbl
- - ,[2] Existence and regularity for a mimimum problem with free boundary. J. Reine Angew. Math. 325 (1981), 105-144. | MR | Zbl
- ,[3] Variational problems with two phases and their free boundaries. Trans. Amer. Math. Soc. 282 (1984), 431-461. | MR | Zbl
- - ,[4] A theorem of real analysis and its application to free-boundary problems. Comm. Pure Appl. Math. 38 (1985), 499-502. | MR | Zbl
- ,[5] A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are C1,α. Rev. Mat. Iberoamericana 3 (1987), 139-162. | Zbl
,[6] A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz. Comm. Pure Appl. Math. 42 (1989), 55-78. | MR | Zbl
,[7] A Harnack inequality approach to the regularity of free boundaries. Part III: Existence theory, compactness, and dependence on X. Ann. Scuola Norm. Sup. Pisa 15 (1988), 583-602. | Numdam | MR | Zbl
,[8] Boundary behavior of non-negative solutions of elliptic operators in divergence form. Indiana Univ. Math. J. 30 (1981), 621-640. | MR | Zbl
- - - ,[9] Conditional gauge and potential theory for the Schrödinger operator. Trans. Amer. Math. Soc. 307 (1988), 171-194. | MR | Zbl
- - ,[10] On estimates of harmonic measures. Arch. Rational Mech. Anal. 65 (1977), 272-288. | MR | Zbl
,[11] Geometric measure theory. Springer-Verlag, Berlin, 1969. | MR | Zbl
,[12] Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions. Comment. Math. Helv. 51 (1976), 133-161. | MR | Zbl
- ,[13] Variational principles and free-boundary problems. Wiley-Interscience, New York, 1982. | MR | Zbl
,[14] Elliptic partial differential equations of second order. Second edition, Springer-Verlag, Berlin, 1983. | MR | Zbl
- ,[15] A free boundary Tokamak equilibrium. Comm. Pure Appl. Math. 27 (1974), 39-57. | MR | Zbl
- - ,[16] Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46 (1982), 80-147. | MR | Zbl
- ,[17] Regularity in elliptic free boundary problems, I. J. Analyse Math. 34 (1978), 86-119. | MR | Zbl
- - ,[18] Regularity in elliptic free boundary problems, II: Equations of higher order. Ann. Scuola Norm. Sup. Pisa 6 (1979), 637-683. | Numdam | MR | Zbl
- - ,[19] Regularity in free boundary problem. Ann. Scuola Norm. Sup. Pisa 5 (1978), 131-148. | Numdam | MR
- ,[20] Multiple integrals in the calculus of variations. Springer-Verlag, New York, 1966. | MR | Zbl
,[21] A non-linear eigenvalue problem: The shape at equilibrium of a confined plasma. Arch. Rational Mech. Anal. 60 (1975), 51-73. | MR | Zbl
,[22] Remarks on a free boundary value problem arising in the plasma physics. Comm. Partial Differential Equations 2 (1977), 563-585. | MR | Zbl
,[23] On the linear stability analysis of magnetohydrodynamic system. In "Lecture notes in numerical and applies systems", Vol. 5: Nonlinear Partial Differential Equations in Applied Science. Proc. U.S. - Japan Seminar, Tokyo, 1982. Editors: H. Fujita, P.D. Lax and G. Strang, North-Holland, Kinokuniya (1981), 333-344. | MR | Zbl
,[24] Green functions and conditional gauge for a 2-dimensional domain, Seminar on Stochastic Processes, Progress in Probability and Statistics 15, Birkhäuser (1988), 283-294. | MR | Zbl
,