Orbifold Riemann surfaces and the Yang-Mills-Higgs equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 22 (1995) no. 4, pp. 595-643.
@article{ASNSP_1995_4_22_4_595_0,
     author = {Nasatyr, Ben and Steer, Brian},
     title = {Orbifold {Riemann} surfaces and the {Yang-Mills-Higgs} equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {595--643},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 22},
     number = {4},
     year = {1995},
     zbl = {0867.58009},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1995_4_22_4_595_0/}
}
TY  - JOUR
AU  - Nasatyr, Ben
AU  - Steer, Brian
TI  - Orbifold Riemann surfaces and the Yang-Mills-Higgs equations
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1995
SP  - 595
EP  - 643
VL  - 22
IS  - 4
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1995_4_22_4_595_0/
LA  - en
ID  - ASNSP_1995_4_22_4_595_0
ER  - 
%0 Journal Article
%A Nasatyr, Ben
%A Steer, Brian
%T Orbifold Riemann surfaces and the Yang-Mills-Higgs equations
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1995
%P 595-643
%V 22
%N 4
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1995_4_22_4_595_0/
%G en
%F ASNSP_1995_4_22_4_595_0
Nasatyr, Ben; Steer, Brian. Orbifold Riemann surfaces and the Yang-Mills-Higgs equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 22 (1995) no. 4, pp. 595-643. http://archive.numdam.org/item/ASNSP_1995_4_22_4_595_0/

[1] M.F. Atiyah - R. Bott, The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A, 308 (1982), 523-615. | MR | Zbl

[2] D.M. Austin - P.J. Braam, Morse-Bott theory and equivariant cohomology. To Appear in the Memorial Volume to Andreas Floer, ed. H. Hofer, C.H. Taubes and E. Zehnder. | MR | Zbl

[3] L. Bers, Uniformization, moduli and Kleinian groups. Bull. London Math. Soc., 4 (1972), 257-300. | MR | Zbl

[4] H.U. Boden - K. Yokogawa, Moduli of parabolic Higgs bundles and parabolic K(D) pairs over smooth curves: I. Preprint, 1995. | Zbl

[5] S.K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri. J. Differential Geom., 18 (1983) 269-277. | MR | Zbl

[6] S.K. Donaldson, Twisted harmonic maps and the self-duality equations. Proc. London Math. Soc. (3), 55 (1987), 127-131. | MR | Zbl

[7] C.J. Earle - J. Eells, A fibre bundle description of Teichmüller theory. J. Differential Geom., 3 (1969), 19-43. | MR | Zbl

[8] R.H. Fox, On Fenchel's conjecture about F-groups. Matematisk Tiddskrift B, 61-65, 1952. | MR | Zbl

[9] T. Frankel, Fixed points and torsion on Kahler manifolds. Ann. of Math., 70 (1959), 1-8. | MR | Zbl

[10] M. Furuta - B. Steer, Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points. Adv. Math., 96 (1992), 38-102. | MR | Zbl

[11] O. García-Prada, The Geometry of the Vortex Equation. PhD thesis, Oxford University, 1991.

[12] R.C. Gunning, Lectures on Riemann Surfaces. Princeton University Press, Princeton, 1966. | MR | Zbl

[13] R. Hartshorne, Algebraic Geometry. Springer-Verlag, New York, 1977. | MR | Zbl

[14] N.J. Hitchin, The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3), 55 (1987), 59-126. | MR | Zbl

[15] D. Hulin - M. Troyanov, Prescribing curvature on open surfaces. Math. Ann., 293 (1992), 277-315. | MR | Zbl

[16] A. Jaffe - C.H. Taubes, Vortices and Monopoles. Birkhäuser, Boston, 1980. | MR | Zbl

[17] M. Jankins - W. Neumann, Homomorphisms of Fuchsian groups to PSL(2,R). Comment. Math. Helv., 60 (1985), 480-495. | MR | Zbl

[18] T. Kawasaki, The Riemann-Roch theorem for complex v-manifolds. Osaka J. Math., 16 (1979), 151-159. | MR | Zbl

[19] T. Kawasaki, The index of elliptic operators over v-manifolds. Nagoya Math. J., 84 (1981), 135-157. | MR | Zbl

[20] S. Kobayashi, Differential Geometry of Complex Vector Bundles. Iwanami Shoten and Princeton University Press, Princeton, New Jersey, 1987. | MR | Zbl

[21] R.C. Mcowen, Point singularities and conformal metrics on Riemann surfaces. Proc. Amer. Math. Soc., 103 (1988), 222-224. | MR | Zbl

[22] E.B. Nasatyr, Seifert Manifolds and Gauge Theory. PhD thesis, Oxford University, 1991.

[23] E.B. Nasatyr - B. Steer, The Narasimhan-Seshadri theorem for parabolic bundles - an orbifold approach. Phil. Trans. R. Soc. Lond. A (1995). In press. | MR | Zbl

[24] T. Parker, Gauge theories on four dimensional Riemannian manifolds. Comm. Math. Phys., 85 (1982), 563-602. | MR | Zbl

[25] I. Satake, On a generalization of the notion of manifold. Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 359-363. | MR | Zbl

[26] P. Scott, The geometries of 3-manifolds. Bulletin London Math. Soc., 15 (1983), 401-487. | MR | Zbl

[27] C.T. Simpson, Harmonic bundles on noncompact curves. J. Amer. Math. Soc., 3 (1990), 713-770. | MR | Zbl