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Pseudoconvexity of Rigid Domains
and Foliations of Hulls of Graphs

E.M. CHIRKA - N.V. SHCHERBINA

1. - Introduction

It was proved in the paper [Sh1] of one of the authors that the polynomial
hull of a continuous graph r(~p) : v = ~p(z, u) in C2,. over the boundary of a
strictly convex domain G cc c~z x is a graph over G, which is foliated
by a family of complex analytic discs. Moreover, these discs are graphs over
correspondent domains in Cz of holomorphic functions with continuous boundary
values, and the boundaries of these discs are contained in In this paper, we

study the conditions on G (weaker than the strict convexity) which guarantee the
same properties of hulls in G x R for continuous graphs over bG. This question
appears to be closely related to the description of the domains GC x R for
which the rigid domains G x R C C2 are pseudoconvex. The problem of finding
a characterization of such domains is interesting itself. That is a reason why
we consider it in the general situation, with G a domain in ,lvl x R, where M
is a Stein manifold.

Denote by 7r the natural projection (z, u) - z in .M x R, and introduce
the notion of a covering model 9 of G over N as the factor of G by
the following equivalence relation: (z’, u’) ~ (z", u"), if z’ = z" and all the

points (z’, tu’ + (1 - t)u"), 0  t  1, are contained in G. We introduce in 9
the factor-topology induced from G (which is not Hausdorff in general). The
projection 7r’ of 9 onto 7r(G) induced by 7r is open and has at most countable
fibres. 7r(G) is a local homeomorphism (this is a condition
on G), we can introduce in 9 the structure of a complex manifold, namely, the
(Riemann) domain over ,M with the holomorphic projection 7r’.

The boundary of G with respect to the projection 7r has two distinguished
parts: b+G consists of the upper ends of maximal intervals in the u-direction
(from -oo to +oo in R) contained in G, and b- G is constituted by lower ends
of such intervals. If 9 is a domain over N , the sets btG are obviously represen-
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ted as graphs over 9 of lower and upper semicontinuous functions, respectively.
The following theorem gives a complete characterization of domains

G c .M x R such that G x R are pseudoconvex domains in N x C~ .

THEOREM 1. Let G be a domain in ,M x R, where M is a Stein manifold.
The rigid domain G x II~ in .M x C~ is pseudoconvex if and only if the following
conditions are satisfied:
(a) The covering model 9 of G is a domain over M, and this domain is

pseudoconvex,
(b) b-G and b+G are the graphs over 9 of a plurisubharmonic and a

plurisuperharmonic function, respectively.

The covering model 9 is a domain over .M, if, for instance, the closure
of each maximal interval in G along u-direction is a maximal segment in G.

" 

lver, in this case the covering model 9 can be geometrically represented
as the set of centers of maximal intervals in the u-direction contained in G.
For domains G with smooth boundaries the conditions (a)-(b) of Theorem 1
can be written in terms of standard defining functions.

Let h:f:(~) be, respectively, the upper and lower ends of the interval

corresponding to a point ~ E ~C. It follows from Theorem 1 that the pseudoconvex
rigid domain G x R is biholomorphically equivalent to a rigid domain

where h- and - h+ are plurisubharmonic in 9 (see Sect. 2). This "straightened"
model is much simpler for many purposes then the original domain G x R.

The topological structure of rigid pseudoconvex domains G x R described
above can be considerably complicated, even for .M = We show, for instance,
that an arbitrary finite 1-dimensional graph embedded in C x R (e. g. , an arbitrary
knot in is isotopic to the diffeomorphic retract of a rigid pseudoconvex
domain G x R C C C~ 2 .

Note, that for the case (not so rich topologically), when the projection ~’
of 9 onto 7r(G) is one-to-one, the circular version of Theorem 1 was proved by
E.Casadio Tarabusi and S. Trapani (see Proposition 3.4 of [CTI ]). Note also, that
pseudoconvexity of the covering model 9 for domains G with pseudoconvex
G x R was proved in more general situation by C. Kiselman (see Proposition
2.1 of [K]).

As we mentioned above, the pseudoconvexity of G x R is essentially
related to the structure of hulls of graphs over bG with respect to the algebra
A(G x R) of functions holomorphic in G x R and continuous in G x R. The
situation with hulls for dim .M &#x3E; 1 has proved to be much more complicated
due to the example of Ahem and Rudin [AR], see also [An]. This is the
reason why we consider in this paper 2-dimensional graphs only, so the mani-
fold .M considered is a noncompact Riemann surface (or simply the plane C).
We show that for any G c c C x R such that G x R is not pseudoconvex, there is
a smooth function on bG such that the hull in G x R of the graph
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r(p) : v = ~p(z, u) over bG contains a Levi-flat hypersurface in G x R which is
not a graph over G (i. e., is not schlicht). Moreover, there is a smooth y~ such
that contains a nonempty open subset of G x R. Thus, the condition of
pseudoconvexity of G x R in .M x C (with dim.M = 1 ) is a necessary assumption
for the good structure of hulls of graphs over bG.

We have to assume also some regularity of the domain G. We say that G
is a regular domain in .M x R if the following two conditions are satisfied:

a) The covering model 9 of the domain G is a domain over N and,
moreover, this domain is a relatively compact subdomain with locally
Jordan boundary in a bigger domain over .M ,

b) There is 6 &#x3E; 0 such that for each point z E 7r( G) the minimal distance
between two different maximal intervals in w- I (z) n G is not less than ê.
The following theorem describes the structure of hulls for the case,

when domains G x R are pseudoconvex and functions y~ are continuous.

THEOREM 2. Let G be a regular domain in .M where .M is a noncompact
Riemann surface. Suppose that the functions h- and - h+ are continuous in ~C,
Holder continuous and subharmonic but nowhere harmonic in g.
Let Sp be a real continuous function on bG and is its graph in bG x R.
Then

1) The hull of r(p) with respect to the algebra A(G x R) is the graph
of some continuous function (D on the closed domain G,

2) The set is (locally) foliated by one-dimensional complex
submanifolds.

If, moreover, G is homeomorphic to a 3-ball, then

3) The set is the disjoint union of complex analytic discs Sa,

4) For each a, there is a simply connected domain Qa C 9 and a holomorphic
function fa in K2,, such that the disc Sa is the -graph of fa over Qa.

If, moreover, h- = h+ over the boundary of g, then, for each a,

5) The function fa extends to a continuous function f a on the closure K2,, in
y, and the graph of f,,*, over bi2,, is contained in and coincides with
the boundary bSa = Sa B Sa of Sa,

6) The set 9 B Qa contains no connected component relatively compact in ~C.
If, moreover, the functions hi:. o g, where g is a conformal mapping of the unit
disc A c C onto g, are Hölder continuous in A, then, for each a,

7) The set K2. C ~C does not bound any connected component of the set

9 B f2a,
8) The set bS2« B can not be a union of a finite or a countable family of

connected components.

This theorem has a natural corollary.
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COROLLARY 1.1. Let G be a bounded domain in C x R such that the
domain G x R is strictly pseudoconvex. Let Sp be a real continuous function on
bG and r(p) is its graph in bG x R. Then

1) The hull of with respect to the algebra A(G x R) is the graph
of some continuous function (D on the closed domain G,

2) The set r(p) is (locally) foliated by one-dimensional complex
submanifolds.

Note that the statement of Corollary 1.1 is nontrivial even for the case of
smooth functions p. In fact, if bG has a positive genus, then the surface r(~p)
can be without any elliptic points, and so Bishop’s method of constructing the
complex discs with boundaries on r(p) cannot be applied. Moreover in this
case some complex submanifolds of can be even everywhere dense in
IF(V) (see Example 5 below).

The paper is organized as follows. The proof of Theorem 1 is contained in
Section 2. In Sect.3 we consider some examples motivating the restrictions on
the domain G in Theorem 2. The property 1) in Theorem 2 is proved in Section
4. In Sect.5 we collect some properties of a Levi-flat foliation, in particular, we
prove that, at the conditions of Theorem 2, the maximal leaves of the foliation
are closed in G x R. The property 2) in Theorem 2 is proved in Section 6. The
proof presented here differs from the proof of this property in [Sh1], the main
difference being that instead of the paper of Bedford and Klingenberg [BK]
we use more transparent paper of Bedford and Gaveau [BG]. The properties
3)-8) in Theorem 2 are proved in Sect.7 by repeating essentially the proofs of
correspondent properties in [Shl, Sh3].

The work on the subject was started when the authors were visitors of
Scuola Normale Superiore in Pisa. We are thankful to our colleagues in Scuola
Normale and especially to Prof. G. Tomassini for the nice visit, the support and
fruitful discussions. We thank Prof. S. Trapani for the references [CT 1 ], [CT2].
We are indebted and grateful to Prof. B. Bemdtsson for some ideas which we
used in the proof of Theorem 2.

2. - A characterization of rigid pseudoconvex domains

We prove here Theorem 1 and its natural corollaries.

Sufficiency of the conditions (a)-(b).
Let the covering model 9 of a domain G be a domain over .M

endowed with the complex structure induced by the locally one-to-one projection
~r’ : ~C ~ 7r(G). Moreover, let this complex manifold 9 be Stein.

The factor-mapping G -~ ~C has the form (z, u) F- ~(z, u) E ~C,
and the projection 7r’ : ~(z, u) ~--* z is locally biholomorphic. Thus, we can
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"straighten" the domain G with respect to the projection 7r, substituting the
Stein manifold M by another Stein manifold ~C . It is better to consider this
transformation on the rigid domain G x R c M x C, where it becomes a

biholomorphic map F : (z, w) F-+ (~(z, u), w). The image F(G x R) is a rigid
domain in 9 x C of the form G’ x R, where G’ is a domain in 9 x R. The
advantage of this new representation is that now the fibres of the projection
7r" : G’ -~ ~C with 7r" : (~, u) - g are connected (intervals), and the domain G’
itself is given by global inequalities h-(~)  u  h+(~), ~ E g, where h- is an

upper semicontinuous, and h+ is a lower semicontinuous functions on the Stein
manifold ~C. The domain G’ x R biholomorphic to G x R is defined in 9 x C
by the same inequalities

(u + iv = w is the complex variable in C).
As h- and -h+ are plurisubharmonic functions in 9 by the condition (b),

the domain G’ x R is pseudoconvex in 9 x C. As G x R is biholomorphically
equivalent to G’ x R, it is also pseudoconvex.

Necessity of the conditions (a)-(b).
Assume that the domain G x R is pseudoconvex.

Step 1. We show firstly that 9 is a domain over M.
For an arbitrary given point (zo, uO) E G we have the maximal interval

through (zo, uO) in G in the u-direction, corresponding to the point ~o = ~(zO, uO)
in ~C. Let U° be a neighbourhood of z° in 7r(G) C .M, which is a ball in local
holomorphic coordinates z, and such that U° x is contained in G. Then
we consider two special domains over U° : the connected component VO of

containing (z°, u°) and the union WO of all maximal intervals in G
along u-direction intersecting U° x luol. Let T: G --~ ~C be the factor-mapping.
Then 7r’ : is a homeomorphism. Since ’P(Vo) is a neighbourhood
of g° in 9, it is enough to show that VO = M~.

We argue by contradiction and suppose that Then there is a point
E V° contained in the boundary of We can assume u1 1 &#x3E; u°, by

changing w onto -w, if it is necessary. Let U1 C U° be a ball containing zl
and such that Ul 1 x CC VO. Then there is an interval I 3 u 1 in R such
that U x I C C VO. As is a boundary point of it follows that there
is a point (z2, u 1 ) C WO with z2 C U 1.

Since the domain G x R is pseudoconvex and U° is a ball in the
domain VO x R is also pseudoconvex in U° x Cw C en+1. As G x R is rigid and
the pseudoconvexity is the local property in boundary points, the image D of
G x R with respect to the locally biholomorphic mapping (z, ~) ’2013~(~~= e’) is
pseudoconvex in all points where the last coordinate does not vanish. The domain
D is a Hartogs domain in C) x Cl1 with the Hartogs diagram {(z, eu) : (z, u) e G}.
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By the construction, D contains a neighbourhood of a compact set

It follows by the Kontinuitatssatz that each function holomorphic in a

neighbourhood of K extends holomorphically into the domain U 1 x le-0 
I  But by the construction, there is u’, u°  u’  such that

(zl, W° (it is because (zl, ul) ~ W°), and thus (zl, eu’) D. This contradicts
the pseudoconvexity of D and shows that WO = VO. Thus, in a neighbourhood
of g° is parametrized by the ball U°, which implies that 9 is a domain over M.

Step 2. Let us show that the function h+ : ~ H (upper end of the interval
corresponding to ) is plurisuperharmonic (or - +oo) and the function h- : H
(lower end of the interval corresponding to 03B6) is plurisubharmonic (or - -oo)
in ~C. The statement is local, so it is enough to prove it on an arbitrary given
coordinate chart (U, z) in ~C, with U being a ball with respect to the holomorphic
coordinates z. Let, as above,

and let D be the image of V x R under the mapping (2~) ~ (z, e~’). We have
shown in Step 1 that V x R is biholomorphic to a connected component of
(Gn7r~(!7))xR. Thus,

is a pseudoconvex Hartogs domain. But then it is well known (see, e.g., [V])
that h+ is plurisuperharmonic and h- is plurisubharmonic in U.

Step 3. We show now that 9 is pseudoconvex.
For n = 1 it is true because in this case 9 is a domain over a noncompact

Riemann surface .M, and thus it is itself Riemann and noncompact. Therefore,
we can assume in what follows that n = dimc .M &#x3E; 2.

If 9 is not pseudoconvex, there is (by [DG]) a continuous family of
mappings ft : 0 ~ ~C, ,0  t  1, holomorphic in the unit disc A and of class
C°° in A such that

(1) 1 ft(ba) c K for some compact set 

(2) the family converges to a mapping fi : K uniformly on b0 as
t -~ 1, but

(3) the points ft(0) E 9 leave an arbitrary compact subset of 9 as t 2013~ 1 (go
to the "boundary" of ~C).
The function h+ o ft - h- o ft is positive and lower semicontinuous on

the compact set b0 x [0, 1], hence there is a constant m &#x3E; 0 such that
h+ o ft &#x3E; h- o ft + m. It follows that there exists a smooth function ut on
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b0 x [0, 1] such that h- o ft  ut  h+ o ft. Solving the Dirichlet problem in A
with the boundary data ut for each t, we obtain a continuous function lit on
A x [0, 1], harmonic in A and smooth in A for each fixed t E [0, 1]. As h- o ft t
is subharmonic, h+ o ft is superharmonic in A and h- o ft  ut  h+ o ft on b0,
we have h- _o ft  lit  h+ o ft on A for each t E [0, ]. Let ih be a continuous
function on A x [0, 1] ] which is harmonically conjugate to lit for each fixed t (it
exists evidently). Then

is a continuous family of analytic discs in the complex manifold G’ x R
biholomorphic to G x R and described in the first part of the proof. The
boundaries of these discs are contained in a compact set ~’ c G’ x R,
limt-I Ftlbi1 exists, but Ft(0) has no limit in G’ x R as t -; 1. Thus, assuming
that 9 is not pseudoconvex, we obtain, via the Kontinuitatssatz, a contradiction
to the pseudoconvexity of G x R.

The proof of Theorem 1 is complete. D

An equivalent formulation of Theorem 1 is the following statement for
Hartogs domains. Here the covering model for a Hartogs domain D is its factor
with respect to the equivalence relation: (z’, w’) ,~ (z", w") with I w’l  I w" 1, if
z’ = z" and the annulus { z’ } x  Iwl  is contained in D.

COROLLARY 2.1. Let D c M x Cw be a Hartogs domain over a Stein
manifold M and D is its covering model. The domain D is pseudoconvex if and
only if the following conditions are satisfied:
(a) D is a domain over Jvl, and this domain is pseudoconvex,
(b) D B ~w = 01 is biholomorphic to a Hartogs domain

where + log ~~ are plurisubharmonic functions (or -= - oo) on Ð.

PROOF. Note that the Hartogs domain D c .M x Cw is pseudoconvex
if and only if D B {w - 0} is pseudoconvex (see, e.g., [D]), so we can

assume that D does not intersect the hypersurface {w = 0}. Then D has a
barrier at all boundary points of the form (z, 0). In a neighbourhood
of an arbitrary other boundary point, D is biholomorphic to the rigid domain
D = ~ (z, w) : (z, e") e D} with the "base" G = ((z, u) E .M x R : (z, e~ ) E D } . The
covering models 9 and D essentially coincide (the mapping (~(z, u) t-~ eu)
commutes with projections into .M and thus it is biholomorphic). The rest

follows from Theorem 1. D

It is interesting to show how the Bochner tube theorem follows from
Theorem 1.

COROLLARY 2.2. A tuhe domain where D is a domain in C 

is pseudoconvex if and only if it is convex.
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PROOF. In one direction the statement is trivial, so we assume that 
is pseudoconvex and show that D is convex. 

Consider firstly the case n = 2 (for n = 1 the statement is trivial). Represent
D + i in the form G x where G = D x JRYl C CCZ1 x is as in Theorem
1. As G x RY2 is pseudoconvex, the covering model 9 of G is a domain over
C. But this model can be obviously represented in the form , x JRYl where ,
is the covering model of the domain D C R2x with respect to the projection
7T: (Xl, X2) H It follows evidently that , must be a graph over the interval

C Rz , that is, D n (zi = is connected (an interval) for each c 1 E 
Using linear transformations of C2 with real coefficients we obtain that D n L
is connected for each real line L C JR2x. This means precisely that D is convex.

In a general case, let a, bED and li U ... U IN be a polygon in D
connecting a and b. By induction in N we show that the interval (a, b) is
contained in D. Let c be the end of l2 and A C be a real 2- plane contained
li U l2. After a linear transformation of the coordinates (with real coefficients)
we can assume A to be the coordinate plane R2 C Rn . By the first part of the
proof, the interval (a, c) = l2 is contained in D. But then we can substitute the

; polygon l U " ’ U lN by l2 U... U lN with N -1 intervals only. By the induction,
D

Theorem 1 admits the following improvement.

COROLLARY 2.3. Let G be a domain in M xR where .M is a Stein manifold
and

where 1jJ- and -,0’ are plurisubharmonic functions in 7r(G) such that 1jJ+ - ê &#x3E;

1jJ &#x3E; 1jJ- +ê for some constant - &#x3E; 0 and some function V) defined and continuous
in 7r(G). The domain D is pseudoconvex if and only if the following conditions
are satisfied:
(a) The covering model 9 of G is a domain over ,M, and this domain is

pseudoconvex (the last property is satisfied automatically, if dime = 1 ),

(b) b-G and b+G are the graphs over 9 of a plurisubharmonic and a
plurisuperharmonic function, respectively.

PROOF. If the conditions (a)-(b) are satisfied, the domain G x R is

pseudoconvex by Theorem 1. As the functions 1jJ-(z) - v and v - are

plurisubharmonic in G x R, the domain D is also pseudoconvex.
Now let D be pseudoconvex. This property is a local property of boundary

points. By assumption, D is pseudoconvex at each boundary point (z, u + 
with (z, u) E bG. But then the domain G x R is pseudoconvex at each boundary
point (zo, uo + ivo) because the translation (z, w) H (z, u + i(v - v0 + ’0 (zo)))
sends a neighbourhood of this point biholomorphically onto a neighbourhood
of and is itself an automorphism of G x R. By Theorem 1, it

follows that conditions (a)-(b) are satisfied. D

As we mentioned in the introduction, the topology of a pseudoconvex
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rigid domain G x R, even for Gee x R can be very complicated. We use
below the notion of a graph from another area of mathematics. By definition,
a finite one-dimensional graph K piecewise smoothly imbedded in a smooth
manifold M is a connected compact finite union of smooth Jordan arcs -yj C M
such that the set ,; n ïj for i # j is either empty set or a common endpoint of
ïi and In the second case the curves -yi and -yj have to be transversal at
the common endpoint.

PROPOSITION 2.1. Let K be a finite one-dimensional piecewise smoothly
imbedded graph in .M x R, where M is a noncompact Riemann surface. Then
there is a graph K’ isotopic to K in .M x II~ and a domain GeM x R, such
that G x R is pseudoconvex and K’ is a retract of G.

PROOF. Let 9 be the set of inner (not end-) points of -1j. Then there are
neighbourhoods Uj D such that Ui n U~ _ ~ for i ~ j , and 1J C U~ U ïj.
There is a diffeomorphism gj of Uj onto itself, smooth in Uj, flat at the

endpoints of ïj, equal to the identity on Uj B Vi, and such that the projection
of ïi = into ,M is a smooth immersion. (Such gj obviously exists because
dimR Uj &#x3E; 3.) The mapping g which is equal to gj in Uj and the identity in
(.M x R) B is a diffeomorphism of J~l x R. Thus, the graph K’ = Uïi is

isotopic to K in .M x R.
Let {av } be the set of end-points of all ïj and Wv be a neighbourhood

of av such that the projection of K n Wv into ,M is a "star", that is, a finite
union of Jordan arcs avk such that avk n Àv1 = for all As the set

is finite, we can choose Wv with mutually disjoint closures. As K fl W~
is the graph of a real function over the star Ukavk, it extends to the graph
of a continuous function over a neighbourhood of 7r(a,). This gives a surface
Sv D K’ n W)’ for some neighbourhood Wv CC W) of av. Shrinking Wv we
can assume that ,Sv n Wv is compact.

For j fixed, let ak, a1 be the endpoints of ïi. is an immersion,
there is a smooth 2-dimensional surface 6~ C Vj such that:
1. . contains -i’j,
2. 6~ nWk" andsjl are contained in and Sl n Wi’, respectively,
3. is an immersion.

Set S = (Uv(Sv fl W)’)) By the construction, ,S is a (Riemann) domain
over .M containing K’, and there is a fundamental sequence of neighbourhoods
of K’ on S, each of which can be retracted onto K’.

Let 6 = (z, 26’) E K’, (z, u") E K’, u’ ~ u" 1. As K’ is compact
and 7rlKl is locally one-to-one, this number 6 is positive. By the approximation
theorem on noncompact Riemann surfaces, there is a harmonic function in a
neighbourhood S’’ of K’ on ,S such that ]p(g) - u(~)~  6/6 on ,S’ (here u(~) is
the u-coordinate of a point ~ E S’ C .M x Ru). Shrinking S’ we can assume that
K’ is a retract of ,S’ .

The imbedding of S into .M x R gives (z, u) as the function of ~, so we
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can define a domain G in Jvl x R as

(each ~ E S’ defines an interval in M x R along u-direction, and these intervals
constituting G are mutually disjoint). As lp(~) - u(~)i  6/6 for ~ E S’, the
surface S’’ is contained in G. By the construction (and the definition of 6) S’
is a covering model of G and a retract of G. As K’ is a retract of S’, it is a
retract of G as well. As ~p is a harmonic function on S’, the domain G x R is
pseudoconvex in M x C by Theorem 1. D

REMARK 1. The topology of the domain G in Proposition 2.1 reflects the
imbedded topology of the graph K which is substantial already for imbeddings
of the circle into IL~3, where we have a beautiful and far advanced theory of
knots.

REMARK 2. As we mentioned in the introduction, the covering models
of the domain G C C M x R can be represented geometrically as the set ,S of
the centers of maximal intervals in u-direction contained in G, if the closure
of each maximal interval in G along u-direction is a maximal segment in G.
In this case, the statement of Proposition 2.1 can be inversed. The surface S’ is
obviously a retract of G (along u), and there is (for n = 1) a one-dimensional
graph K on S’ which is a retract of ,S and thus a retract of G.

REMARK 3. For n &#x3E; 1 the imbedded topology of the pseudoconvex domain
G x R c M x C can be more complicated. Note firstly that G can be always
retracted onto a real n-dimensional CW-complex imbedded into .M x R. If G
satisfies the conditions of Remark 2, it can be done by a retraction of G onto
the "middle segment" realization S of ~C, and then by a retraction of S using
a strictly plurisubharmonic Morse function on ~C . As the indexes of all critical
points of the Morse function on an n-dimensional complex manifold are not
more than n, the resulting CW-complex will be not more than n-dimensional.
We do not know, if the n-dimensional version of Proposition 2.1 is true, but
we can prove a slightly weaker statement.

PROPOSITION 2.2. Let M C M x R be a smooth compact manifold with
dimR M = n = dime M such that the projection is a totally real immersion
of M into M. Then there is a domain G in .M x R which can be retracted onto
M and such that the domain G x R is pseudoconvex in Jvl x C.

PROOF. As 7r I M is an immersion, there is a neighbourhood U D M in
M x R and a real hypersurface S closed in U, containing M and such that

is a local homeomorphism. Thus, S is a domain over ,M which can be
endowed with the complex structure induced from .M such that r|S is a local
biholomorphism.

As the immersion r|M is totally real (i.e., 7r*(TaM) is a totally real

subspace in T7r(a) Jvl for each a E M), the manifold M is totally real in S. Then,
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as is well known (see, e.g., [HW], [Cl]), there is a nonnegative function p
defined and strictly plurisubharmonic in a neighbourhood V of M in S such that
M coincides with the zero-set of p. For each S &#x3E; 0, let Sb = { ~ E S : p(~)  6}.
As M is compact, there is 60 &#x3E; 0 such that Sbo is relatively compact in V.
Moreover, since is an immersion and M is compact, we can choose So so
small that

Then, for each 6  60, the manifold S6 is a strictly pseudoconvex domain
over .M . The imbedding of into N x R defines the "coordinate functions"

z(~), u(ç), ç E so, for each C &#x3E; 0 and 6, 0  6  60, we can define a
corresponding domain G in .M x R as

Since the function p(~) is strongly plurisubharmonic in S80’ it follows that
the functions u(~) + Cp(~) and -(u(~) - Cp(~)) are also plurisubharmonic for
sufficiently large values of the constant C. Then the corresponding domain
G x R c M x R is pseudoconvex by Theorem 1. Moreover, by construction,
the hypersurface S in M x R is a retract of G, if 6 is small enough. Hence,
M is also a retract of G. D

REMARK 4. If c : M 2013~ M is a totally real immersion, then there is

evidently an imbedding i’ : M --~ ,M x R such that 1 = 7r o c’ . Thus, the manifolds
in Proposition 2.2 cover the class of manifolds admitting a totally real immersion
into M. For .M =Cn the class of compact smooth n-manifolds admitting a totally
real immersion into Cn consists precisely of those manifolds M for which the
complexified tangent bundle is trivial (see, e.g., [SZ], [C3]). Note
however that the essential matter in Proposition 2.2 is the imbedded topology
of M ~--~ M x R (see Remark 1).

3. - Hulls of graphs: some examples

We study the problem of existence of a Levi-flat hypersurface in C2 with
a prescribed boundary, which is in general a topological 2-manifold. We restrict
ourselves to the case of boundaries which are graphs over some 2-manifold in
C x R. More precisely, we consider a relatively compact domain G cc C x R,
the graph r(p) of a continuous function on bG, and look for conditions which
guarantee the existence of a Levi-flat hypersurface in C2 with the boundary r(~p).
We take into account the result from [Sh1]: if G is strictly convex, then such
a surface exists, coincides with the polynomial hull of r(~p), and is itself the
graph of a continuous function over G.



718

The following examples show that the situation in general case (even for
real-analytic bG and p) can be essentially more complicated.

EXAMPLE 1. Let G1 1 be the domain in Cz x defined by the inequalities

(it is the unit ball squeezed from above to inside). Set cp(z, u) = 0 on the
semisphere u = - 1 |z| 2  0 and on bG n 2/ 3 }, but on the rest,

1 V
"squeezed part" of the boundary, set p(z, u) = 2 - u . (Note that the function( 2 
p is of class ck-1(bG1) in the sense of Whitney.) Then there is obviously a
Levi-flat hypersurface S in C2 with the boundary r(~p) which is the union of two

graphs, So : v = 0 over the convex hull co(G1) of G 1, and S1:v=(1/2) over2 
co(G 1 ) B G 1, glueing together by the disc (]z]  2/ 3, w = 1 /2 } . This hypersurface
is foliated by analytic discs parallel to z-plane, but it is not C1-smooth (near
w = 1/2) and it is not a graph 

. 

over a domain in C x R, being two-sheeted
over We can take instead of 2 - u an arbitrary function O(u)

with 03C8(1 /2) = 0. The graph over bG remains continuous, but the singularity atwith V)(112) 0. The graph over bG remains continuous, but the singularity at
w = 1/2 can be very complicated, and the union = r(1/;)} over co(G1)BG1 1
may not even be an imbedded topological hypersurface in ~2. Approximating
G 1 by a domain with a smooth algebraic boundary invariant with respect to the
rotations z H E R, and approximating p by a polynomial, we obtain the
same effect with algebraic bGl and a polynomial function p(z, u).

In these examples there is no Levi-flat hypersurface over G 1 with the

prescribed boundary: the surface So n (Gi x R) does not contain in its boundary
whole the graph Thus, for the understanding of the nature of the surface
,S we must go ouside of G namely, into the hull of holomorphy of G 
But even assuming that this hull is schlicht (imbedded in C2 , as in the case
of G 1 ) we can not hope that the Levi-flat hypersurface with the boundary r(p)
coincides with some hull of r(p), (e.g., with respect to polynomials, to algebra
A(G1 x R), e.t.c.).

EXAMPLE 2. Let G1 be as in Example 1,
and

Then r(~p) is a border of a "Levi-flat hypersurface" ,S = So U Sl where So =

co(G 1 ) x (0) and Sl is given over co(G 1 ) B G 1 by the equation v = Re(z(w -1 /2)).
But here so n sl is the union of the disc 2/3, w = 1/2} and a piece of the
totally real plane {x = v = By Kneser’s theorem (see, e.g.,
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[V]) the hull of holomorphy of S (hence, the hulls with respect to polynomials
or A(G 1 x R)) contains a neighbourhood of {x = v = 0} n ((co(G 1 ) B G 1 ) x II~ ) in
Cl. Thus, the hull of F(p) is far from being a hypersurface in any sense. The
inner points of the hull can also be placed over G x R, as may be seen in the
next variation of this example.

Let G2 be a domain defined by the inequalities

and the function ~p is defined to be zero on
and

Then there is a "Levi-flat hypersurface" S with the boundary on 

S - ,So U S’1, where So = G2 x {0} and Sl is given over some part of

(co(G2) B G2) U (G2 n f izi  2/5 }) by the equation v = Re(z(w - 1 /2)). But
so n 61 n (G x R) contains nonempty piece of a totally real plane {x = v = 0}
and thus, the holomorphic hull of r(lp) contains inner points of G x R.

The constructed examples show that there are essential obstructions in
the considered Plateau problem, and these obstructions are related with the
additional hull of holomorphy of the rigid domain G x R. Using a Docquer
- Grauert criterium of pseudoconvexity [DG], we can construct corresponding
"counterexamples" for an arbitrary relatively compact domain G c M x R such
that G x R is not pseudoconvex. Thus, we assume in the rest part of the paper
that G x R is pseudoconvex, i.e., conditions (a)-(b) of Theorem 1 are fulfiled.
A lack of the strict convexity at boundary points can generate some additional
difficulties in the construction of a Levi-flat hypersurface with the boundary on
a continuous graph over bG.

EXAMPLE 3. Let G3 be the cutted ball

Then G3 x R is convex (hence pseudoconvex) in C’, but the boundary of
this domain contains the flat part over u = 1/2, Izl  V3/2, foliated by
one-parametric family of analytic discs Ilzl  vf3-/2,w = 1~2 + it}, t E R.
Let p be the function on bG3 vanishing on u  1/2 and equals q0/2 - Izl
on bG3 n {u = 1/2}. Then the graph is the boundary of the Levi-flat
hypersurface S = So U S, where So = G3 x {0} and Si = = 1/2, 0 
v  ~/3/2- ~}, but this hypersurface is not a graph over G3. We can obviously
modify G3 and p making them smooth, with the same phenomenon for S. To
avoid this new obstruction we must choose the values of p in some special
way: either along a leaf of the foliation of Levi-flat part of bG x R, or in such
a way that the intersection of r(cp) with the Levi-flat part of bG x R is totally
real, e.t.c.
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We will not specify the problem further. Note only that the described

phenomenon can occur each time when bG has a piece of the form u = h(z)
where h is a harmonic function (in a domain in C). Trying to avoid the details
demanding additional technical complications we exclude from our consideration
the domains G with such "harmonic" parts on the boundary.

4. - The hull of a graph is a graph

In the studying of the hulls we follow the general scheme of [Shl], but
due to the generality of the domain of definition we have to overcome some
additional difficulties. They appear firstly in the proof of the graph-structure of
the hull of a graph.

PROPOSITION 4.1. Let 9 be a Riemann surface with nonempty locally
Jordan boundary bg and compact 9 U Let G be a domain in ~C x 11~ of the
form

where h- and -h+ are continuous on 3f, Hölder continuous and subharmonic
but nowhere harmonic functions with h-  h+ in g. Let Sp be an arbitrary
continuous real function on bG and f(V) is the hull of its graph with

respect to the algebra A(G x Il~ ) of functions holomorphic in G x x C
and continuous up to the boundary. Then is the graph of some continuous
function over G.

The special cases of the Proposition 4.1 were considered by H. Alexander
[Al] and Slodkowski and Tomassini [ST].

The condition on 9 means that g.U bg is a compact subset of a bigger
Riemann surface in which 9 is a subdomain with locally Jordan boundary.
We formulate the Proposition for Riemann surfaces 9 not simply for generality.
They appear naturally as covering models in consideration of domains in C x R,
and these models do not in general admit an imbedding into C. On the other
hand, the proof of the Proposition does not simplify, if we restrict ouselves on
domains in C x R only.

PROOF. Step 1: A construction.
Let f° be the set of all lower semicontinuous functions F on G such that
on bG and the domain  F(z, u)} is pseudoconvex. Let ~~ be

the subset of 1~ consisting of functions F such that F(P) = lim F(P’)
for each P E bG. As p is uniformly bounded on bG, this class of functions is
nonempty (it contains at least the function F(P) - M = maxbG p).

Using the Perron method of the construction of weak solutions (in our
case - for nonlinear Levi equation with boundary data p), we define on G the
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functions

We prove eventually that the graph of O coincides with 

Step 2. We show firstly that Q is contained in the hull fi(§5) of the
graph r(§5) of an arbitrary continuous function ~b on G with = Sp.

Suppose not. Then there is a point po E r(O))fi(§5). The graph r(§5) divides
G X R in two disjoint domains where v &#x3E; ~p and v  §5, respectively. Assume
that po c fJ+. By the definition of the hull, there is a function f E A(G xR) such
that f (po) = 1 &#x3E; m = I f 1. Then the real hypersurface E : f ~ _ (l+m)/2 in
G x R is contained in D+ and have nonempty intersection with D- : v  u).
Let D1 be the component of (G x R) B L containing D- . Then D1 is pseudoconvex
(because f E A(G x R)) and thus, the domain

is also pseudoconvex. By the construction, it has the form {v  Fl (z, u)} for
some F1 E On the other hand, 151 contains some points where v  u).
But this contradicts to the definition of C and thus, shows that r(cf» c 
. Now we prove that r(cf» c fi(§5). We argue by contradiction and suppose
that there is po E r(O) ) fi(§5). Then po E 15-. By the construction of

, there is a function F E 1cp and a point pi E (r(F) n D-) B It
means that 1 &#x3E; max+j=&#x3E; lfl I for some f E A(G x R). Let ,S be
an irreducible component containing pi 1 of the one-dimensional analytic set

Then S is contained in D- and its boundary is placed
on the fixed positive distance from fi(§5) (in v-direction). Hence, the analytic
sets St = {(z, w - it) : (z, w) E S}, t &#x3E; 0, have even bigger distances to

fi(§5), and St C {v  F(z, u)}, if t is sufficiently large. As pi and the
domain {v  F(z, u)} is pseudoconvex, we obtain the contradiction with the
Kontinuitatssatz. Thus, we have proved the inclusion r(0) C 

Step 3: cf&#x3E; = p along bG n {z E 
Let (zo, uO) E bG and zO E For proving the continuity of (D at (zO, uO)

and the equality UO) = Sp(z°, u°) it is enough to show, according to Step
2, that fi(§5) n {z = zO} consists of one point pO = (zO, uO + u°)) only.
Let be an arbitrary point in (bG x R) n { z = As is a

domain with locally Jordan boundary in a bigger Riemann surface, there is
a function f (z) E ~ A(G x R) such that 1 and I  1

on g B The set bG n { z = is a segment I :  u  h+(zo)
(possibly, a point), and {z = z°} is just the graph of p over I. This
arc is polynomially convex in the strip I x R parallel to Cw, and this arc

does not contain pl = (z , W I). Thus, there is a polynomial g(w) such that
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g(wl) = 1 &#x3E; m &#x3E; (z°, w) E Let U be a neighbourhood of
= on which I g I is still less then m. Then r(§5) ) U is compact, and

 e  1 on this set. Thus, there is a positive integer N such that f Ng I  m
on r(§5) ) U. As  1 on we have IIN gl  m  1 everywhere on F(~3),
hence on As f Ng = 1 at the point pl, this point is not contained in 

Step 4: I&#x3E; = cp along bG f1 lu = 
Let bG with z° c 9 and u° = h+(z°). Choose some holomorphic

coordinate in a neighbourhood of z° in § and fix a disc A in this

neighbourhood with the center z° % 0 and the radius 6 &#x3E; 0. Let h(z) be
the harmonic function in A with boundary values h+(~-), ~ E b0. As h+ is

superharmonic but not harmonic in A, we have the strong inequality h+(z) &#x3E; h(z)
in A. As h+ is Holder continuous, with an exponent, say, a C (0, 1), there is
a constant C« depending on a only, such that the function h harmonically
conjugate to h in 0 and vanishing at 0 does not exceed in modulus of the
number C« min,,R Ilh+ - is the standard norm in the Holder

space C« (b0). We have also clla   C8a,
where 11.110 is the uniform norm on b0 and C is a constant depending on a and
h+ (but not on 6  60 for some 60 &#x3E; 0). It follows that the real hypersurface
E = {z E A, u = h(z) + u° - h(O)l in A x C through pO = (0, u° + u°)) is
foliated by analytic discs St : w = ft(z) - E R, and
each this disc is placed between two real hypersurfaces, -C6"  v - t  C6".

Fix again a continuous function ~b in G = p and denote

by w(6) its modulus of continuity. Then r(§5) n E is contained in the strip
-W(6’)  v - y~(o, u°)  w(8a). As u° - h(O) = h+(O) - h(O) &#x3E; 0, the boundary
of E (containing the boundaries of all St) has the form -1 x R where -1
is the curve {z E h(z) + u° - h(O)l which has no common point
with G. Thus, c G x R does not intersect bE = Utb,St. It follows, by
the local maximum modulus principle (see [R]) for functions 1/(w - ft(z))
holomorphic in ft(z)}, that is contained in the strip

p(0, uO)B  1J(6") + C8a.
As 6 E (0, 60) is arbitrary, it means that uO) x RPO. According

to Step 2, C is continuous at (zo, uO) and uo) = (p(zo, uo).

Step 5: The domains .

pseudoconvex.
The domain D- in is pseudoconvex as the interior of the intersection

of pseudoconvex domains (G x R) n {v  F(z, ~)}, F E (It follows, by the
way, that the function C itself is contained in the family F..)

Concerning the pseudoconvexity of D+, it is enough to show that each
analytic disc ,S c G x R with boundary bs C D+ also contained in D+. Assume
the contrary, i.e., s n D- is not empty. The domain D- B ,S is pseudoconvex
because bS’ C D+. The same is true for domains D- B {(z, w + it) : (z, w) E S},
t &#x3E; 0. It follows that the intersection of these domains is pseudoconvex. But this
intersection (z, w) E S’ } has the form  



723

where F is lower semicontinuous in G and equals p on bG, i. e., F E Yep. As
this domain is a proper subset of D-, we have F  (D in some points of G,
and this contradicts to the definition of 0.

Step 6: (D is continuous in G and = 

In the Step 5 we have proved that the common boundary 
bD- n (G x R) D n (G x R) of the domains D~ in G x R is pseudoconcave.
Then, by the local maximum principle for plurisubharmonic functions (see [Cl]
or [Sl]), it follows that coincides with the A(G x R)-hull of the set

n (bG x R). As O is continuous on bG (Steps 3 and 4), the last set

coincides with Thus, we obtain that r(cp) = 
Suppose now on the contrary that 4$ is not continuous, i. e. , is not

closed.
Then there is a point (zo, uO) E G such that

the width along v-direction, is positive and maximally possible. (The point is
inside G because (D is continuous on bG.) It follows that is contained in the

pseudoconvex domain Dt = (G x R) n (v  with an arbitrary t &#x3E; 0.

The function - log where dw(p) is the distance from p to bDt n ~z = z(p)~
(the boundary distance in Dt along w-direction) is plurisubharmonic in Dt. It is
uniformly in t &#x3E; 0 bounded on n (bG x R) = because E &#x3E; 0. But its
maximum on tends to +oo as t -~ 0, and this contradicts to the maximum

principle for plurisubharmonic functions (see [C 1 ], [Sl]).
The proof of Proposition 4.1 is complete. D

5. - Some properties of Levi-flat foliations

Before the proving of the existence of a Levi-foliation for the hull 
we obtain some a priori estimates for maximal leaves of such foliations. We
consider in this section only domains in C x R of the form

where h~ are continuous functions in Izl  1 and J

LEMMA 5.1. Let (D be a real continuous function in G and A is a

one-dimensional complex analytic set which is contained in the graph 
Then A has no singular points and it is locally represented as a graph over
domains in Cz.

PROOF. Let a E A. As A is contained in the graph v = u), it contains
no disc on the plane z = z(a). This implies that there is a neighbourhood
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U = Ul x U2 of a such that Ul is a disc in Cz, A n U n {z = z(a)l = {a}
and A n U is an analytic cover over Ul. Shrinking Ul we can assume also
that (A n U) B {a} is a locally one-to-one covering over 1I1 B (see, e.g.,
[C2]). As A c r(C), the projection A’ of A n U into C x R3 has the same
property, A’ B {a’} is a finite locally one-to-one covering over Ul B {z(a)}. It

implies that each connected component A~ of A’ B {a’ } is the graph of a harmonic
function uj in U1 B By the removable singularity theorem, uj extends to
a harmonic function in Ui, and we keep the notation uj for this extension. As
uj(z(a)) = Uk(z(a)), the real harmonic functions uj, uk coincide on the union
of real analytic arcs passing through z(a). As the projection A n U --&#x3E; A’ is

one-to-one, the corresponding irredusible components Aj, Ak of A n U coincide
by the uniqueness theorem for analytic sets (see, [C2]). Hence, Aj = = u~,

and we obtain that A’ is the graph u = u(z) of some harmonic function u(z) in
Ul. But then An U is the graph of a holomorphic function u(z) + iv(z), where
v(z) is a corresponding harmonically conjugate function to u(z) in Ul. D

LEMMA 5.2. Let (D be a real continuous function in G such that its graph
r(I» is foliated over G by one-dimensional complex submanifolds. Then each
maximal leaf S of this foliation is closed (properly imbedded) in G x II~ and it is
represented globally as the graph of some holomorphic function, S : w = f (z),
over some domain Qs C Cz.

PROOF. Let be two sequences of functions with the following
properties: ht are defined and real analytic in a neighbourhood of I5.j = 
1 - 1/jl5 hi &#x3E; 0  h+ - h~  1 / j and 0  hj - h -  1 / j in Aj .

By the Lemma 5.1, S is a (Riemann) domain over A.
By the Sard’s theorem for smooth functions the intersections of S

with almost each level set of ht in Aj xC is transversal. Thus, substituting ht,
if it is necessarily, onto h/ + tj with sufficiently small constants tj &#x3E; 0, we can
assume that the intersections of hypersurfaces {(z, u + iv) E Aj x C : u = 
with ,S are transversal at common points. Set

and choose for each j a connected component Sj of the set ,S n (Gj x R) so
that Si C Sj for i  j. Since G = U Gj, it follows that S’ = U Sj. Hence, it is

i i

enough to prove the statement of Lemma 5.2 with the domain Gj instead of G
and with the leaf ,S~ instead of S.

By the construction, is contained in a disjoint and not more then
countable union of smooth real analytic arcs ïk which are defined over a

neighbourhood of Aj. Each of these curves is contained either in bGt x R : u =
ht(z) or in bG7 x R : u = h7(z) or in x C. As S’ is transversal to all these

hypersurfaces, the projections ~y~ of the arcs ïk into Cz are smooth imbeddings.
The complex manifold S has the standard orientation, and we orient ïk

as the parts of the boundary of Sj. This induces the corresponding orientation
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on As the projection ïk --~ ~yk is one-to-one, each arc ~y~ is closed in 

Thus, some of the curves -y’ k divides Aj in two domains, and we denote by Ak
the component of which induces on -y’ k the orientation described above.

As the projection ïk 2013~ ~yk is one-to-one, the arc ïk is the graph of
a continuous complex function wk over ~k . We constract now the surface I
by glueing to Sj the domains Aj ) A k along the arcs -1k, respectively. This
surface can be realised as follows. Let iuk be a continuous extension of Wk into

and w~ is a continuous function in Aj, = 0, and

arg wkl0j B A~ = 1/ k. The surface

is a representation of E in C3. We have on E the natural projection onto and
this projection is locally one-to-one covering. As is simply connected, this
projection is globally one-to-one. As Sj can be considered as a subdomain of
L, the projection of Sj into is also one-to-one, i.e., Sj is the graph w = fj(z)
of a continuous function Ij over a domain QSj c 0~ . As Sj is a complex
manifold, the function fj is holomorphic in Since Si C Sj for i  j , it
follows that Si C QSj for i  j . Therefore, the surface S = U Sj is also the

graph w = of a holomorphic function lover the domain Qs = U QSj C 0.
j 

D

We assume further in this section that the continuous functions h- and
- h+ are subharmonic in  1 } .

LEMMA 5.3. be a continuous function in G such that is foliated
over G by one-dimensional complex submanifolds and let S be a maximal leaf
of this foliation. Then

1) S (hence simply-connected,
2) For each point (z°, w°) E S there is a number r &#x3E; 0 depending only on

the distance of (z°, u°) to bG and maxbG such that Qs contains the
disc r}.
PROOF. For the proof of 1 ), we repeat the arguments of the proof of

Lemma 3.3 in [Shl]. We argue by contradiction, assuming that ,S is not simply
connected. Then there is a constant 6 &#x3E; 0 and a subdomain Go C G of the
same form Go =  1 -  u  with smooth functions

ho such that ho and - ho are strictly subharmonic, ho  ho in  1 - 8},
bGo x R is transversal to ,S at all common points, and S n (Go x R) is not simply
connected. Then the projection of into Cz contains a multiconnected

component Q~, i. e. , the set  1 - 8} B Q~ contains a compact connected
component E with smooth boundary. Let S be the graph (over Qs) of a
holomorphic function f = u + iv (see Lemma 5.2). Then there is a smooth

closed curve , c S n (bG° x R) which projection coincides with bE. As E is a
compact subset of  1 - 8}, the curve , is placed completely either on the
hypersurface { u = or on the hypersurface {u = Assume the last
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for the definiteness (the first case is treated in the same way). Then the function
u - vanishing on , is superharmonic and positive on S. It follows, by
Hopf’s lemma, that / deu &#x3E; J deho (where de = i(a - a)), and this implies, via

7 7

the Cauchy - Riemann equation, that f dv &#x3E; J de ho. As ’1 is closed, we have
7 ~

j dv = 0. On the other hand,
7

as the function hg is strictly subharmonic in I I z !2013!)}. This contradiction
proves the property 1).

The property 2) is just Lemma 3.5 in [Shl] whose proof is based on some
of harmonic measures for the domain SZs C  1 } . We need not

repeat it here. D

The statement of the Lemma 5.2 is not true if the covering model of G
is not simply connected.

EXAMPLE 4. Let G be the domain in C x R defined by the inequalities

As the function (Izl - 2) is subharmonic for Izl &#x3E; 3/4, the rigid domain
C C2 I -GxR C C2 is pseudoconvex. log z on G and Thenp ( z ) 

57r g |z|
the hull of (0393) with respect to A(G x R) coincides with F(C). This hypersurface
is foliated over G by complex surfaces St = (G x R) n 

-1  t  1, but So is not a graph over a domain in C._5 
- 

5 
o g p

If the covering model of G is not simply connected, the maximal leaves
of the foliation of n (G x R) are even not necessary closed in G x R.

EXAMPLE 5. Let G be the domain in C x R defined by the inequalities

As the function ( I is subhannonic for 1 | &#x3E; 6’6
the rigid domain G x R c ¿2 is pseudoconvex. Let u) m 6(log I z - 11 +
-,F2 log I z + 1 ~ ) on G Then is the hull of r(~p) with

respect to A(G x R). The Levi-flat hypersurface n (G x R) is foliated by
one-dimensional complex submanifolds. But, for e &#x3E; 0 sufficiently small, the
maximal leaf of this foliation through the origin is not closed in G x R. It takes
place due to the possibility of analytic extension of (z - 1 )~ (z + 1)£0 along the
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cycles of the type k’-t’ - k-¡- where k’ are suitable positive integers and
= I Z : I z2 - 11 == 1, &#x3E; O} are semilemniscates oriented as the boundary

of the unbounded component of the complement to their union.

6. - The local foliation of the hull

In the same notations, as in Sect. 4, we prove here that the graph
r(O) n (G x R) is foliated (locally) by one-dimensional complex submanifolds.

Step 7.’ Localization.

Let Go be a ball in G c 9 x 1Ft with respect to some holomorphic coordinate
z in g and u in R. Then we can repeat the construction of Sect. 4 for the
graph of the function By the Proposition 4.1, the hull of with

respect to the algebra A(Go x R) D A(G x R) is a continuous graph over

Go. As (D I Go c we (D. On the other hand, set F = (D on G B Go
and F on Go. Then the domain (G x R) n iv  is pseudoconvex
being pseudoconvex at each boundary point. This means that F E 7,,, hence
F &#x3E; (D by the definition of 1&#x3E;. Thus, we obtain the equality (D on Go. This
is just what we mean by a localization. By this property, we may assume to
the end of this section that G is the unit ball B in C x R.

Step 2: On the modulus of continuity of (D.

The following Lipschitz continuity of a Levi-flat solution of Plateau

problem was proved firstly by Slodkowski and Tomassini [ST] using methods of
(nonlinear) partial differential equations. We present here a simple geometrical
proof suggested by Bo Bemdtsson.

LEMMA 6.1. function of class C2 on the boundary of’ the
unit ball B in C x R, and (D be a continuous function in B such that

r( 1» = Then (D is Lipschitz continuous in B: there is a constant C
such that I (D(P’) -  P" for all P’, P" in B.

PROOF. Let ~b be an arbitrary C2 -extension into a neighbourhood of
B. Then there is a positive constant A such that the function
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is plurisubharmonic, and the function

is plurisuperharmonic in a neighbourhood of B x R (we consider them there as
independent in v). As the set n (B x R) is pseudoconcave (see Sect. 4),
the functions can not take their maximum on inside of B x R by
the local maximum principle (see [Cl] or [Sl]). As O = 1&#x3E;- = over bB, it

implies that
everywhere in B.

As are of class C’, there is a constant C1 such that ]4S+(P’) - 
P" I for all P’, P" E B. 

_

Fix two arbitrary points P’, P" in B with P" ~  6 and assume, for
the definiteness, that ~(P") &#x3E; ~(P’). If P" ~ &#x3E; 1 - 6, let P° be a nearest point
to P" on bB. Then

Assume now that ]P"  1 - 6. For each point P with
the nearest point to P on bB. Then

denote by P

Hence, if we define the function

it will be continuous in B, and the domain (B x R) n {v  F(z, u)} will be
pseudoconvex. Thus, F E lcp in B, hence, C  F on B by the definition of 1&#x3E;.

As I P"  1 - 6 by our assumption, it follows from the inequality (D  F and
from the definition of F that

i.e., 0  ~(P") - ~(P’)  3Cls. Thus, we have proved that O satisfies in B the
Lipschitz condition with the constant C = 3C1. D

Step 3: Local foliation of for smooth Sp.

Let p be a C2-smooth function on bB and (D is as above, with = 

Then (D is Lipschitz continuous in B by Lemma 6.1, and we want to show that
in this case the graph is locally foliated by complex submanifolds. Given
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Step 1, it is enough to prove this in a neighbourhood of the origin assuming
for simplicity that 1&#x3E;(0, 0) = 0.

Choose a sequence (Vv) of C°°-smooth functions on B uniformly
convergent to O as v - oo and uniformly satisfying the same Lipschitz condition

with a constant C &#x3E; 1. We assume also that Ov m (D(O, 1) in a neighbourhood
Uv of the point (0, 1) in B, 1&#x3E;(0, -1) in a neighbourhood Uj of the point
(0, - 1), and Ul D B f1 &#x3E; 1 - Sv } for some sequence 6v 1 0.

Choose a positive number R  1 /(8C) and construct for each v a

strictly convex domain Dv C B with smooth boundary and of the form
such that

3. Dv contains the cylinder R, lul  
Such Dv evidently exist.

Let Mv be the graph of the function Ov over bDv. It is placed on the
hypersurface The complex tangent space to at each point has the
form w = Az with C because of the uniform Lipschitz condition on
Ov. By the construction of Dv, the projections of this planes into C x R are
transversal to bDv at all points except of two extreme points (o, ~ 1 ). It follows
that the manifold Mv is totally real outside of two points (O,:!: 1 + il&#x3E;(O, :!: 1»,
and both these points are elliptic in the sense of Bishop [B].
By the Bedford - Gaveau theorem [BG], there is a Lipschitz function B!Iv

in Dv, smooth in Dv, equals to 4$v on bDv and such that its graph v = u)
over Dv is foliated by one-parameter family of complex analytic discs SI.
By Lemma 5.3, each disc Sv is of the form w = f.1 (z) over a correspondent
domain Q~ c Cz. Moreover, by the same lemma, there is a positive number
r  R independent in v, t such that each disc St which intersects the set

 r} has a subdisc 9) which is a graph over the disc Izl  r and

all these discs 9,t are contained in the set  R}. 
_

By the maximum principle and the Proposition 4.1, over Dv
coincides with the polynomial hull Mv of the set Mv C As C

uniformly on B and is polynomially convex, the functions ~v also tend to
C uniformly on the cylinder  R, lul  R } C n v Dv . In particular, analytic
discs 9) constitute a normal family, in which all partial limits belong to 
Thus,  r, Jul  r } is contained in the union of analytic discs

Sa C of the form {w = Izl  r}.
If the discs ,Sa and S, have no common points. Indeed, the

projections of S’a, S, into C x R are the graphs u = ha(z), u = of

harmonic functions in I  r } . The intersection of these harmonic surfaces
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being nonempty is at least one-dimensional. But C r(C), and the

projection of into C x R is one-to-one. It follows that S« n ,Sp is either

empty or at least one-dimensional. By the uniqueness theorem the last case can
occur only if = S,.

Thus, we have proved that r(0) is locally foliated by one-dimensional
complex submanifolds, if it is a Lipschitz graph, in particular, if p is C2-smooth.

Step 4: Local foliation of for continuous ~p.

Let (pv) be a sequence of smooth functions on bB uniformly convergent to
~p as v - oo. Let Vv be the correspondent functions over B, with = fi(pv).
As we have proved above, are locally foliated by one-dimensional
complex submanifolds. By the Lemma 5.3, for each point there
is r &#x3E; 0 independent in v and a neighbourhood U :3 (zo, uO) such that the
maximal leaves of the foliations of r(4$v) n I  r} intersecting U x R
are graphs of holomorphic functions over the disc {If - I  r }. All these
functions are uniformly bounded, hence, their partial limits constitute a family
of holomorphic graphs over zol I  r} which are contained in and
which union contains n (U x R). By the uniqueness theorem, as above, it
follows that some neighbourhood of the point n ((zo, uo) x R) in is
foliated by analytic discs. Since (zo, uo) is an arbitrary point of B, the whole

is locally foliated by analytic discs.
By the localization property (Step 1), the graph over general

domain G (as in Sect. 4) is also locally foliated by one-dimensional complex
submanifolds. D

7. - Foliation of hulls of graphs over 2-spheres

We prove in this section the properties 3)-8) from Theorem 2 for the
foliation of 

Properties 3)-4). If G is homeomorphic to a 3-ball, the covering model ~C
is simply connected, hence, conformally equivalent to the unit disc. Thus, G x R
is biholomorphic to a domain of the form   u  h’(z)l
which we studied in Sect. 5. The properties 3)-4) are proved for such domains
in Lemmas 5.2, 5.3. We can assume further that 9 = A = C : Izl  1 ~ . D

Property 5). Each maximal disc Sa of the foliation of is a holomorphic
graph w = fa(z) over properly imbedded into G x R by Lemma 5.2. Let
E be a connected component of n A. Then, from part 2 of Lemma 5.3 it
follows (by the same argument as in the proof of Part iii) in [Sh1]) that the
cluster set of the vector function (z, Re f (z)) on E is also connected. As it is

contained in bG n (A x R), and this set is the disjoint union of hypersurfaces
lu = h~ (z), ~ lzl  1 ~, this cluster set is placed on one of these hypersurfaces.



731

But the projection of each of them into A is one-to-one, which implies that the
function Re fa extends continuously onto E and thus, onto the whole bS2a n A.
As the graph of fa is contained in r( 1», this implies that Im fa also extends
continuously onto bQa n A as (D(z, Re fa(z)).

If h-(z) = h+(z) for lzl = 1, the real part of far extends continuously on
the whole (with values h-(z) for Izl = 1), and then the imaginary part also
extends continuously as D

Property 5) is not satisfied in general, if h+ ~ h- on the boundary of the
covering model.

EXAMPLE 6. Let G be the convex domain in C x R defined by the

inequalities 
____

All the conditions of Theorem 2 are then satisfied except the last one because
h+(z) - h-(z) -= 4 for Izl = 1. Let D c  2} be a simply connected
domain whose boundary is the union of the segment [-i, i] and a smooth
arc in C B [-i, i] coinsiding with the graph y = sin( 1 /x) in a neighbourhood
of [-i, i]. Let g be a conformal mapping of the upper halfplane {Im z &#x3E; 0}
onto the domain D. Then there is a point a E R U { oo } such that the set

of limiting values of g at a coincides with [-i, i]. We can choose g such

that a = 0 and Re (i) - 0. Then the Re i 1 z extends(z) g 
continuously into the disc lzl  1, and we set p = considering this
extension as the function in G independent in u. Then is the polynomial
hull of r(p), and contains the graph ,So : w = i i 1 z over the wholeg p g 

1+z

disc 03A90 : z  1 because Re i  2 for z  1. But the defining(ig(i I + z II g

function z = i does not extend continuously at the point 1 E .fo( ) g I + z y p °

Property 6f. We argue by contradiction and _suppose that for some maximal
analytic disc Sa c the corresponding set has a connected component
E relatively compact in A. Then the set E is also relatively compact in
some smaller disc Or -  r }, r  1. Let hi 1 h- h+ be two

sequences of smooth sub- and super-harmonic functions in A, respectively,
satisfying the conditions in the proof of Lemma 5.2. (We can take as ht the
standard regularizations of hi;, i.e., the convolutions of h+ with suitable smooth
cutting functions, then dilations z H z / r j, plus-minus suitable small positive
constants.) In particular, the smooth hypersurfaces {(z, w) : u = I  1}
are transversal to Sa at all common points. As the functions h~ satisfy a

Holder condition on the covering models of the domain G, their preimages
on the unit disc (by a conformal mapping of A onto ~C ) also satisfy a Holder
condition on each compact subset of A. Then we can choose the functions ht
such that they satisfy a Holder condition on the disc Ar uniformly on j, i.e.,
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with constants C &#x3E; 1 and

/3 &#x3E; 0 independent in j.
We can assume, for simplicity, that ,Sa contains the origin in C~2.
Then we have the connected components S( of S’a n { h~ (z)  u  

Izl  r } containing the origin, and the projections Q~ of these components into Cz
which constitute an increasing sequence of domains with the limit (= union) K2r.-

Fix a point a E E. As K2r is simply connected by Lemma 5.3, there is
a continuous branch arg(z - a) of the argument of z - a in nr. As the set E

03A9a p
is also one of the connected components of and 03A9ar, we have
then two sequences of points a~ , a~ E and a point b E E such that aj - b,
- b as j -; oo, but arg(a’ - a) - arg(a~~ - a) - 27r. By the same reason, there

is a sequence of arcs -I’j C connecting a~ with a~ such that all limiting
points of (i. e., the points of the form lim bj with bj E ~y~ ) are contained
in E. Let h be the interval (aJ., a!). Then there are points bj, bJ! in ïi n h
such that the subarc ïj C ïi with the ends bj, M does not intersect the interval
Ij = and their union -yj U h constitute the boundary of a domain Ej
containing a, if j is sufficiently large. We orient and h as the parts of bEj.

As bE is connected, the boundary values of the vector function (z, fa(z))
on bE are contained in one of hypersurfaces {u = lzl  1 } (see property
4)). We can assume, for definiteness, that these values satisfy the condition
u = h-(z) (the case u = h+(z) is treated in the same way). Then the arcs

{(z, w) E Sa : z E are contained in the correspondent hypersurfaces
u = h~ (z), if j is sufficiently large. As - 0 with j ~ oo,
we have f d(Im f a )| I = Im I ---&#x3E; 0 as j ---&#x3E; oo. On the other

’7j

hand, f d(Im fa) = f de(Re fa) by the Cauchy - Riemann equation. As the
03B3j u&#x3E;

function Re f a is subharmonic and negative in K2],,, and it vanishes on

-1j, we have by Hopf’s lemma the inequality f de(Re fa) &#x3E; f de(hj). The last
03B3j u&#x3E;

integral is represented by the Stokes theorem in the form

and all Ej with j large enough contain a disc U c E with the
center a, there is a positive constant c such that f ddehi &#x3E; c (recall
that h:f: are nowhere harmonic). Ej u

For the estimate of the integral over Ij, let Lj be the line in C containing
Ij, and Dj be a connected component of  r} B Lj which is situated near
the interval h on the other side of h than the domain Ej. Without any loss of
generality, we can assume also (possibly after choosing a suitable subsequence)
that the lines Lj converge to some- limit line L containing b. Denote by hj the
harmonic extension of hilbDj into Dj. Then hj is Holder continuous in Dj and
smooth on Ij. As hj &#x3E; hi in Dj by the maximum principle, we have, by Hopf’s
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lemma, the inequality f dc hi &#x3E; f dc h Let gj be the function harmonically
ii ii

conjugate to hj in Di. As the Hilbert transform is a bounded operator in
Holder classes, the function gj is smooth on Ij and Holder continuous on Dj,
i. e., I gj (z’) - gj (z") 1 :5 01 z’ - zll 1,8 for all z’, z" c Dj. (The constants C and
/3 here can be different from the corresponding constants for the function lj,
because before the Hilbert transform we have to use a conformal mapping of
the unit disc A onto the domain Di, and after the Hilbert transform we use
the inverse mapping from Dj onto A.) Since the lines Lj converge to a limit
line L, the corresponding conformal mappings from A onto Dj and back are
uniformly Holder continuous. Therefore, by uniform Holder continuity of the
functions ht, the constants 0 and /3 can be choosen independent in j. Then,
by the Cauchy - Riemann equation, we have dch I. = dgj in Dj, which implies
that If dehjl = ! If = as j - oo.

ii ii
Thus, we have eventually that

as j - oo. This contradiction shows that E can not be relatively compact. D

Property 7). We repeat the arguments used in the proof of Property 6).
Suppose on the contrary that for some maximal analytic disc Sa. C r(0)

the corresponding set C B SZa has a relatively compact connected component E.
Then, by Property 6), the set bE n b0 is not empty. Fix a point b E bE n bA.

Let hi 1 h- and hj  h+ be, as above, two sequences of smooth sub- and
super-harmonic functions in A, respectively, satisfying a Holder condition in A
uniformly in j (the last property is obtained due to the corresponding property
of h~ ). Then we have an increasing sequence of connected components Si
of S’a n  u  I  1 } and their projections Sza C A such that
UQ~ = 0,,,. Choose a sequence ej 10 and points bj, M in bl = ~~ }
such that for a fixed point a E E, the variation of arg(z - a) over the subcurve
ïj of with the ends at bj and M tends to 27r as j - oo. We can also
assume that the open subarc h in { ~ z - b ~ = ê j, I z  1 } with the ends at b~ and
M does not intersect Denote by Ej the domain bounded by -fj U h and
orient -Ij and h as parts of bEj.

We can assume, as above, that the function Re fa is equal to hi on
ïj. Then, again as above, J de hi - 0 as j - oo, and

_ _ 
1j 1j

f  f dehj where hj is a solution of Dirichlet problem in the domain
Ij 

j 
Ij

Dj - A n bl  with boundary As h, IbDj satisfy a

Holder condition uniformly in j, it follows that the harmonically conjugate
functions gj for hj in Dj also satisfy a Holder condition (with the twice
less exponent and with a constant which tends to zero as j - oo), hence,
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J a . J

as above, and we again obtain a contradiction, which shows that there is no

relatively compact component D

Property 8). We repeat here the arguments of the proof of a corresponding
property in [Sh3]. 

_

Suppose on the contrary that the set E = is not empty and
contains at most a countable family of components E1, E2,.... By Property 5),
the boundary values of Re fa on each Ei coincide identically with h+ or with
hr . Hence, E = E+ U E- where E~ = n {Re fa = are some unions
of components Ei. We can assume that E- is not empty.

As h- is subharmonic in A, the function Re f ~ is subharmonic in the
domain U. = E+. As h- is nowhere harmonic, the function Re f~ is
not harmonic in Q~ by the maximum principle for h- - Re f,*,. But then the
Riesz measure 0394(Re fa) in S2a is positive on (some part of) E-. As E- is a
union of components Ei, it follows that 0394(Re &#x3E; 0 for some i. Then we
can repeat the arguments used in the proofs of Properties 6) and 7) which lead
to the same contradiction with the Stokes formula. D
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