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Imbedding Vector Fields
in Scalar Parabolic Dirichlet BYPs

PETER POLÁ010DIK - KRZYSZTOF RYBAKOWSKI *

1. Introduction

Let 03A9 be a bounded domain in with smooth boundary. In this paper we
study dynamical systems that are generated by semilinear parabolic problems
of the form

where f : 03A9x RxRn--&#x3E; is a C1-function. Note that the operator -A on 03A9 with
Dirichlet boundary condition on 9Q generates a sectorial operator on 
p &#x3E; 1. If p &#x3E; N then a fractional power space Xcl can be chosen such that
it is continuously imbedded in C1(Q), and then indeed defines a (local)
dynamical system on X" (see e.g. [He]). ,

It is known nowadays that the complexity of this class of dynamical
systems depends very much on whether the space dimension N is one or higher.
For N = 1, equation has rather simple dynamics, no matter what function
f we choose. For example, each bounded solution of such a one-dimensional
problem is known to converge to an equilibrium (see [Ze, Ma, Ha-R]; see

[Ha3] for a discussion of other results in one space dimension). The situation is
quite different when N &#x3E; 1. The solutions of (Pf ) can exhibit very complicated
behavior in this case.

Recently, an effort has been made by both authors to prove that the

dynamics of higher-dimensional problems (Pf) can, in a sense, be arbitrary. A
way to show this is by realization of ODEs in (Pf): to a given ODE, one tries
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to find a function f such that on some invariant manifold, (Pf) has the "same"
dynamics as the given ODE. The present paper is a contribution to this effort.

To be more specific, consider an ODE

where B is an open set in R7 for some n &#x3E; 1. We say that (Oh) can be realized
in if one can find a function f such that the corresponding problem

has the following property: there is a C 1 imbedding Aj: B - XI such
that if t H ~(t) is a solution of (Oh) with ~ = ~o then t H u(t; ): = A/(Ç(t»
is a solution of (Pf) with u(0, ~) = In other words, the submanifold

M f = {A/(Ç) : ç E B} is locally invariant for (P f ) and the flow of (P f ) on .M f
is conjugate to the flow of (Oh), A f being the conjugacy. If this is the case,
we also say that (Pf) realizes the vector field h on the invariant manifold MI.

In [Po3], the first author has proved that if N &#x3E; 1 is a given integer, Q
is an appropriate domain in RN, and n is an arbitrary positive integer, then
the following realization results hold. If B C Rn is open and bounded, and
h E then arbitrarily close to h in the C 1 norm there is a function
h such that (Oh), with appropriatly rescaled time, can be realized in (Pf). In
addition, any linear equation (Oh) can be realized in (Pf).

An interesting feature in these results is that n, the dimension of the state
space of (Oh), can be arbitrary and yet it is sufficient to consider the domain
Q in just two dimensions. As a consequence of these results, one can show
that any persistent dynamical phenomena, such as transverse homoclinic orbits
to hyperbolic periodic orbits, occur in (Pf), and that (Pf) can have trajectories
dense in a high-dimensional invariant torus (for the latter, one uses the linear
realization result). Of course, occurrence of very degenerate phenomena in (Pf)
is not guaranteed by the density realization result, as it would be if all ODEs
were realized.

At the present time, results on realization of arbitrary ODEs in Rn are
available only under restrictions on n. In [Po2], realizability of any ODE on
R7 with n  N = dimQ has been shown for the PDE in with Neumann

boundary condition. The method of that paper, a rather elementary one, does
not apply to Dirichlet boundary condition.

The Dirichlet problem (Pf) with A replaced by a general self-adjoint
second-order differential operator L has been considered by the second author
in [Ry1]. The main result of [Ryl] says that whenever the kernel ker L of the
operator L on Q (with Dirichlet boundary condition on aS2) satisfies a certain
nondegeneracy condition, previously introduced in [Pol], then every sufficiently
smooth (and sufficiently small) vector field h on dim ker L, can be

, realized on a center manifold of (Pf), with an appropriate nonlinearity f.
The nondegeneracy condition can hold only if dim ker L  N + 1; in [Pol]

it was verified for a certain elliptic operator with dim ker L = N + 1, and for a
simpler operator, A + const, under the weaker requirement dim ker L = N.

In this paper we first show that there is an analytic function a: R
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such that the differential operator L := A + a satisfies the above mentioned

nondegeneracy condition on a ball in RI with dim ker L = N + 1. (See Lemma
3). An application of Lemma 3 together with the main theorem of [Ryl] yields
a center-manifold realization result for all sufficiently smooth vector fields h on

N + 1. (See Theorem 1.) Here the vector field h has to be very smooth
(of class C32 at least) and there is a loss of derivatives involved: if h is of
class C’ then one obtains f of class All this is the consequence of the
Nash-Moser inverse mapping theorem, used in the proof of the result in [Ry1].

On the other hand, if we do not place any restriction on the nature

of the invariant manifold .M f, in particular, if we do not insist that it be a
center manifold, then Theorem 1 can drastically be improved. We thus arrive
at Theorem 2, the main result of this paper, in which we prove realizability of
arbitrary C1-vector fields on N + 1. There is no loss of derivatives in
the latter theorem: if m &#x3E; 1 and h is of class Cm then f can be chosen of class
Cm. Moreover, the proof of Theorem 2 is much simpler than that of Theorem
1: it uses neither the Nash-Moser theorem nor the center manifold theory. The
proof is based on Lemma 3 and some simple properties of semigroups generated
by sectorial operators. It should be remarked that both Theorem 1 and Theorem
2 are also valid for other types of boundary conditions, like the Neumann or
Robin problems.

The precise statements of the results and the proofs are given in the next
section. For realization results in other classes of equations, we refer the reader
to [Hal, Ha2, Ry2, Fa-M] for the case of delay equations, to [Fi-P] for a
nonlocal one-dimensional parabolic problem, and to [Da, Sa-F] for periodically
forced parabolic problems.

2. - Statements of the results and their proofs

From now on we assume that N &#x3E; 2 and SZ is the unit ball in e. Fix
p &#x3E; N and a with (p + N)/2p  a  1. It is well-known that the differential

operator -A on Q with Dirichlet boundary condition on 8Q defines a sectorial
operator A on X LP (12) with domain n Wo ~~(S2). The corresponding
fractional power space Xa satisfies

with continuous inclusion (see [He]).
For m = 1, 2, ... let Ym be the set of all functions

such that for  m the Frechet derivative exists and is continuous
and bounded on s2 x R x R:N. By I~N+1 ), m = o,1, ..., we denote the
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space of Cm functions from into itself that are continuous and bounded

together with all derivatives up to the order m. Let I - Cb be the standard C-
supremum norm on . 

6

Our first theorem is a center-manifold realization result:

THEOREM 1. There is an analytic function 11~ with the following
property: for every m &#x3E; 17 there is an Em &#x3E; 0 such that for every vector
field h E with IhBcm+15  Em there is a nonlinearity f E Ym
with the property that equation (Pf) realizes the vector field h on the global
center manifold .Me of (Pf), relative to the operator L = A + a on Q, with
Dirichlet boundary condition on aSZ. The manifold .M~ is given by an imbedding

We recall that if P denotes the L2(03A9)-orthogonal projection of X" onto
ker L then Nc is defined as the set of all uo E X" for which there is a solution
u:11~ -~ X’ with u(O) = uo and t H (I - P)u(t) bounded in X".

The following result is the main contribution of this paper:

THEOREM 2. There is a 81 &#x3E; 0 such that for every h E Cl(RN+1, 
with Ihlcl b  61 there is a nonlinearity f E Y1 and an invariant manifold of
(Pf) with the property that equation (Pf) realizes the vector field h on .M f. If
in addition h E Cr(RN+1,RN+l) then f can be chosen such that f E Ym and the
manifold .M f is given by an imbedding A f : II~N+1 --~ X" of class em.

Note that rescaling time in (Oh) has the effect of multiplying h by a
constant. Thus the assumption that h be small in the Cb norm is hardly a
significant restriction.

We prepare the proofs of Theorem 1 and Theorem 2 by a few lemmas. The
first one establishes the nondegeneracy property mentioned in the Introduction.

LEMMA 3. There exists a real analytic function a: Il~ such that the
kernel of the operator A + a on Q, under Dirichlet boundary condition on an,
is spanned by N + 1 linearly independent eigenfunctions ~1, ... , 4JN+1 with the
following property: If

then for some x E S2.

PROOF. Let a(x) be a real analytic function on R~ that is radially symme-
tric : a = a(r) = Following [Pol, Po4], we consider the eigenvalue problems
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and

w regular at

Let p2 denote the second eigenvalue of (1) and vl the first eigenvalue of (2).
It is well-known that both JJ2 and vl are eigenvalues of the operator A+a(r) on
Q under Dirichlet bondary condition; the eigenfunction 01 1 of (1) corresponding
to p2 is at the same time a radially symmetric eigenfunction of A + a(r), while
to vl there correspond N nonsymmetric eigenfunctions of A + a(r) given by

where w is the eigenfunction of (2) corresponding to v, (cf. [Pol, Sect. 3]).
(We remark that Øi+1 is the unique, up to scalar multiples, eigenfunction of
A + a(r) that is odd in Xi and positive in &#x3E; 0}.) If vi = p2 then
ø 1, ... , 1 are linearly independent eigenfunctions of A+a(r) that span the
kernel of A+a(r) - vi. Therefore the lemma will be proved if we show that
VI = p2 implies R(x) 0- 0 and that vl = p2 actually holds for some real analytic
radially symmetric function. For functions Ø1 = 0(r) and Ø2,..., ØN+1 of the
form (3), the determinant R(x) has been calculated in [Pol, Sect. 3]. It is
shown there that R(x) 0 0 provided the following relations are satisfied

To see that these relations hold, first note that, as the eigenfunctions of A+ a(r)
are real analytic in SZ, 01(r) and w(r) are real analytic near r = 0 (more precisely,
they are restrictions of real analytic functions). By (1), we have §ir(0) = 0. If

= 0, then these two equalities together with (1) imply that all derivatives
of 4&#x3E;1 at 0 vanish, hence 4&#x3E;1 == 0. But this is impossible for an eigenfunction.
Thus ~i(0)~0. Next, multiplying the equation in (2) by r2 and letting r - 0,
we obtain w(O) = 0. Again, = 0 leads to the contradiction w =- 0. We have
thus proved all the relations in (4).

In order to find a function a = a(r) such that vi = and = u2 (a)
coincide, we argue as in [Po4]. If a 1 and a2 are such that &#x3E; J.L2 (a 1) and

 J.L2(a2) then v1(a) = for some a of the form a = sa 1 + ( 1 - s)a2.
Smooth functions a 1, a2 that satisfy the above relations and in addition are
constant near r = 0 were found in [Po4] (see the proof of Proposition 3.2
and Remark A.2 in [Po4]). We can clearly approximate a 1, a2 by real analytic
radially symmetric functions such that the inequalities remain unchanged. The
resulting function a is then real analytic as desired. The lemma is proved. D
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PROOF OF THEOREM 1. Lemma 3 implies that the operator L = A+ a on SZ,
with Dirichlet boundary condition on aSZ, satisfies the nondegeneracy condition
from [Pol] formulated in Definition 2.1 of [Ry 1 ] (with dim ker L = N + 1). Now
use Theorem 2.3 of [Ryl]. For m &#x3E; 17 let Em := E where E is as in that theorem
and for I hIC.,15  Em let the nonlinearity 03C30 and the invariant manifold be
as in that theorem. Set

Then the theorem implies that f E Ym and the manifold is given by an
imbedding ~l:II~N+1 -; X" of class Cm. (Note that the space Ym defined above is
different from the space Ym defined in [Ryl].) The fact that .MUQ = Nc follows
from the center manifold theorem (cf. Proposition 2.2 in [Ry1] and its proof
contained, in part, e.g. in [Ry3]). Theorem 1 is proved. 0

We shall need a few more preliminary results before we can prove Theo-
rem 2.

LEMMA 4. Let G be the set of all x E S2 such that R(x) =I 0. Then G is
open and f2 B G has N-dimensional Lebesgue measure zero.

PROOF. Since the eigenfunctions 4&#x3E;ù and hence also R are real analytic on
Q (e.g., by pp. 207-210 in [BJS]), the result follows from Lemma 3 and the
well-known general result (easily proved by induction on N, using Fubini-Tonelli
theorem) that the zero set of a nontrivial real analytic function defined on an
open subset of has measure zero. 0

LEMMA 5. Let G be as in Lemma 4. For every k E N there is a function
b E with supp b G such that

for every eigenvalue A of the operator A + a + b on S2 with Dirichlet boundary
condition on ail.

PROOF. Let

For c &#x3E; 0 let G, be the set of all x with dist(x, S2 B G) &#x3E; E. Choose a function
C°°(Q) with supple C G and such that
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We shall show that the lemma holds with b replaced by bE for E &#x3E; 0 sufficiently
small. The reason for this is quite obvious: for b = -c - k - 1 the eigenvalues
are less than - k and, since S2 B G has measure 0, bE is close to b. We give the
details. Suppose the claim is not true. Then there are sequences (An), (un), (En)
and (bn ) such that En ~ 0, bun := bfn’

for all n e N. We may assume that

where (’~-) denotes the scalar products on both and It

follows that

Since a + bn  c on S2, this implies that

so by (6)

for all n E N. Thus the right hand side of (5) is bounded in so (un) is
bounded in Passing to a subsequence if necessary, we may therefore
assume that there is a u E H1(Q) such that

In particular,

Moreover, by Sobolev imbedding theorems, there is a q &#x3E; 2 such that

Now set
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For every x E G, bn(x) - b(x). Thus, by Lemma 4, bn - b a.e. on S2. Since

(bn) is bounded in it follows from the dominated convergence theorem
that 

-

for every r with 1  r  oo. Define r such that

It follows from Holder’s inequality that

Thus, from (7) and (8)

contradicting (6). The lemma is proved. D

For every globally Lipschitzian map JRN+1 let x 

JRN+1 be the global flow generated by h. In other words, ~0) := ~(t) where
t H ~(t), t E R, is the unique solution of the initial value problem

By differentiating this equation and using standard arguments we easily derive
the following essentially well-known fact:

LEMMA 6. For every there is a constant cm such that for every
vector field h E the flow 7rh is of class C’~ and for every
(t, ço) E R X RN+1

where

Applying the higher-order chain rule to the composite map h o 7rh and
using Lemma 6 we obtain:

LEMMA 7. For every there is a constant cm such that for every
vector field h E and for every (t, ~0) E R X RN+1

where
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PROOF OF THEOREM 2. We begin with some preliminary remarks. Given
an ODE (Oh), with |h|c1b b sufficiently small, we have to find a nonlinearity f
and an imbedding X« such that for each solution ~(t) of (Oh) the
function u(t, x) = A(~(t))(x) is a solution of (Pf). The latter means (dropping
the argument t)

We look for f and A in the form

where a(x) is as in Lemma 3, 0(:r) = (4J1(X),..., with 4J1(X),..., 
as in Lemma 3, and g E Y1 and r:I~N+1 ~ XI are functions to be found.
The construction of g and r is based on the following idea. If r( ç) is

"sufficiently small" then for each x E G, with G as in Lemma 4, the mapping
~ - (A(~)(x), is a diffeomorphism of Thus for x e G we can

choose g such that g(x, A(~)(x), equals any given function of ~; we
shall require this function to equal to b(z)r(g)(z), where b(x) is as in Lemma
5 and r is still to be found. (For z g G, we set g(x, s, w) = 0.) Substituting this
expression for g and (10) into (9), we obtain that r(g)(z) must satisfy

(we have used the fact that the Oi are in the kernel of A + a(x)). Equivalently,
we need to find r(~) such that for each solution ~(t) of (Oh) the function
v(t, x) = r(ç(t»(x) satisfies

As we also require that v be defined for each t and bounded, the variation of
constants easily leads to a formula for v, hence for r. This formula is a starting
point in the detailed construction that follows next. We verify that it yields r
and f of class Cm if h E 

Let a(x) and G be as in Lemmas 3 and 4. Let m &#x3E; 1 and let
h E be such that  61, where 61 is a constant specified
below. Denote Lj = Ihlcj, j = 0,..., m. Choose a such that k - mLm &#x3E; 0

and k &#x3E; L1 + 1, and let b be the corresponding function from Lemma 5. Let
T(t), t &#x3E; 0, be the analytic semigroup on X generated the operator -(A+0+6)
on 03A9 with Dirichlet boundary condition on 03A9. It is well-known that the

corresponding fractional power spaces of this operator are identical as sets and
isomorphic as normed spaces to the fractional power spaces of the operator A
defined above. In particular, by our choice of b, we have the estimate
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for some constant is the norm in XI. Let

define

where 7r := 7rh. The integrand in (12) is continuous into X’ and its XO-norm is
bounded by the function

This latter function is integrable, so the integral in (12) converges in X" . Thus

is defined and bounded globally. Moreover, in view of Lemma 7, for every j
with 1  j  m and every ~ E the j-th order Frechet derivative at ~ of
the integrand in (12) is bounded in the by the function

Since this function is integrable, it follows that r E xa). Moreover,

Define the map

by

Now let U be an open set with supp b C U C II C G. For every x E G the map
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is a linear isomorphism, by Lemma 3. Since !7 is compact

Using (13) with j = 1 and the relation k &#x3E; L 1 + 1, we see that there is a constant
61 &#x3E; 0 (independent of h and k) such that whenever  61

(Here we have also used the fact that X" is continuously imbedded in 
For such an h, the contraction mapping principle and the implicit function
theorem implies that for x E II the map

is a diffeomorphism of class Cm and for all j with 0  j  m the map

is continuous and bounded. In particular we obtain that ~ E--&#x3E; A(~) is an imbedding
of into X". Define for z = (s, w) E RN+1 and x E S2

Since supp b C U, the definition of f is unambiguous and the smoothness
properties proved so far imply that f c Ym. We shall show that f satisfies the
assertions of Theorem 2. To this end, first note that
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for all ~. Hence for all to, t E R with to  t

Since the function s ~--&#x3E; C - ~)) is locally Holderian into X it follows that
the function

is differentiable and

Therefore the definition of f and Lemma 3 obviously imply that the function

solves the equation

The theorem is proved.
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