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Effective Measures of Irrationality for Cubic
Extensions of Number Fields

E. BOMBIERI * - A. J. VAN DER POORTEN ** - J. D. VAALER ***

1. - Introduction

A basic problem of Diophantine approximation is to give effective measures
of irrationality for algebraic numbers. We formulate this problem as follows.
Let k be an algebraic number field, v a place of k, and ||v the associated
absolute value on the completion kv. Here we normalize I I v exactly as in [5],
[7] or [8]. Let K be a finite extension of k having degree r &#x3E; 2. We assume
that K has at least one embedding in the completion kv and then we identify
K with a fixed embedding of K in kv. If f3 belongs to k we write H (~C3) for

the absolute height of the corresponding projective point /3 = [~] in I~1 (k).
We warn the reader here that this height H ( ) differs from the Weil height

HweiO ) because we use the rather than the ~-norm, for the places
at oo. In any case, we have

so that the two heights are comparable. However, the use of the projective
height H ( ) leads to neater and sharper results and suggests itself naturally in
this context.

If a belongs to kv but not to k then Dirichlet’s theorem asserts the existence
of a positive constant C1 1 depending on a and infinitely many distinct fl in k
such that

By a measure of irrationality for a with respect to v and k we understand a
positive number f1 for which an inequality of the type
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is valid for all f3 in k with H (,C3) &#x3E; C3. Here C2 and C3 are positive constants
independent of f3. If the constants C2 and C3 can be computed from knowledge
of a and f1 then the measure of irrationality is said to be effective. In view of

(1.1) any measure of irrationality It must satisfy /,t &#x3E; 2.
If a belongs to K but not to k then the fundamental theorem of Roth

states that 2 + ~ is a measure of irrationality for every 8 &#x3E; 0. Unfortunately,
all known proofs of Roth’s theorem result in constants C2 and C3 which are
not effectively computable. Alternatively, Roth’s theorem asserts that

Our knowledge of effective measures of irrationality tor algebraic numbers
is still rather limited. To begin with there is the simple but important Liouville
bound

which is easily obtained from the product formula. This shows that r is an
effective measure of irrationality for any a in K but not in k.

There are essentially three methods for obtaining improvements in the Li-
ouville bound in which all constants can be effectively determined. Historically
the first of these is in the work of Baker [1], [2], although a forerunner of it is
implicit in the early work of Thue [17]. This method is based on the explicit
construction of Pade approximations to algebraic functions. At present it pro-
vides good effective measures of irrationality for special numbers, in particular
for certain cubic irrationalities and for r-th roots of certain rational numbers.
See Chudnovsky [10].

The second method is based on Baker’s theory of linear forms in logarithms
of algebraic numbers. The first general improvement on Liouville type bounds
was obtained by Baker [3]. This had far reaching consequences, allowing for
example the effective solution of the general Thue equation F(x, y) = m, where
F (x , y ) E Z[x, y] is a binary form with at least three distinct linear factors in
C[x, y].

In the form obtained by Feldman [ 11 ], the method yields an effective
measure of irrationality for a when r &#x3E; 3 which is slightly smaller than r.

Although the improvement on the Liouville bound is usually very small, this
method applies to all algebraic numbers a. For special numbers such as cube
roots of positive integers, very explicit bounds have been given recently by
Baker and Stewart [4].

The third method has been developed by Bombieri [5] ] and by Bombieri
and Mueller [7]. This approach combines elements of the original non-effective
methods of Thue and Siegel with an important result of Dyson for establishing
the non-vanishing of the auxiliary polynomial in two variables. This method is
not unrelated to the Pade approximation method, and it may be considered as a
two-variable Pade approximation method in which the approximants do not quite
reach the maximum order of approximation one can achieve. In some favorable
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cases, this method leads to the construction of triples (K, k, v) for which an

effective measure of irrationality much smaller than r can be established. An
important feature of the method is that the measure of irrationality which is

obtained holds for all a in K but not in k.
We define to be the greatest lower bound for effective measures of

irrationality of a, relative to the absolute value v.
In the present paper we formulate and prove a new equivariant version of

the Thue-Siegel principle which applies only to special numbers in the Galois
closure of Klk. In order to define these special numbers it is necessary for

the Galois group to have a faithful, projective representation in PGL(2, k). We
study here in detail the representation of the symmetric group S3 in PGL(2, Q)
generated by the classical substitutions z 1-+ 1 - z and z H I/z. If is
a cubic extension we obtain by our methods very good effective measures of
irrationality which approach the limiting value 2 in favorable cases. Suppose,
for example, that m is a large positive integer and K C R is the cubic extension
of Q formed by adjoining the unique real root of x 3 + mx + 1. Then we obtain
an effective measure of irrationality ttv(a)  2 +10 (log m ) -1 J3 for all generators
a of K/Q.

Another interesting application of the new equivariant form of the Thue-
Siegel principle in this paper has been worked out in detail in Bombieri [6]. The
group in question now is the cyclic group of order r, acting by multiplication by
r-th roots of unity. The results obtained there are sufficiently strong to imply,
by known reductions going back to Siegel and Baker, a new proof of the
Baker-Feldman improvement of Liouville’s inequality, valid for every algebraic
number.

The method used in the present work originates in the paper of Bombieri
[5] and continues to use Dyson’s Lemma in an essential way. We also introduce
some new technical devices. Let h’ be a cubic extension of k, identify K with
an embedding of K in kv, and then fix an embedding of the Galois closure L
of Klk in kv. We determine a faithful, projective representation a - P a of
G = into PGL(2, Q) and then define a subset A(P) c P~(L) by

Our next step is to consider how well the point ° 1 in can be approx-

imated by points A in A(P). For this purpose we introduce a suitable metric

8, on which is induced by 11, on kv. In Theorem 4 we show that [~]
cannot have two excellent approximations ÀI 1 and A2 in A ( P ) for which 
and H(A2) are both large. This is our new form of the Thue-Siegel principle
for special points. It is expressed as an inequality in which all constants are

given explicitly and we refer to it now as the Thue-Siegel inequality. The proof
of Theorem 4 is given in Sections 4 through 8. During the course of the proof
we take advantage of the fact that the action of G on points in is strictly
controlled.
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It remains then to demonstrate how effective measures of irrationality can
be obtained from Theorem 4. It turns out to be very convenient to reformulate
the basic problem of lower bounds for I a - in terms of the projective
metric 3,. Thus we let a = f"1 in P~(~), j3 = in and provide
lower bounds for 3, (a, 3). Since 3v (m, ,Ci)  ~a - our lower bounds apply
automatically to 

In Theorem 5 we show that if a I in A ( P ) is an excellent approximation
to [ Oil then

1

is an effective measure of irrationality for each generator a of the cubic extension
Of course À 1 qualifies as an excellent approximation to ° 1 precisely

when  3.

In Section 9 we assume that f (x) = x3 + px + q, p # 0, is irreducible
in k[x] and that the smallest root of f in kv generates K / k . We use the
roots of f to construct a point a I in A(P). Then we estimate the measure
of irrationality in terms of p and q. This allows us to construct cubic
extensions of k which have an effective measure of irrationality close to 2 by
making a suitable choice of p and q. A precise upper bound for with

explicit constants is given in Theorem 17. Suppose, for example, that I~ is

generated by the unique real root of where p &#x3E; 0 and q are
relatively prime integers. We get a non-trivial effective measure of irrationality
for each generator of as soon as p &#x3E; for a suitable effective

C(s) and any E &#x3E; 0. The measure of irrationality is

In our proof of the Thue-Siegel inequality it is necessary to construct an

auxiliary polynomial with prescribed vanishing and small coefficients. We note
that this step has now been disconnected from any conditions involving irrational
algebraic numbers. We require that the polynomial be bihomogeneous with

integer coefficients, and that it vanish to high order at the points ([~], , [~D,
, , and (

In this respect, our auxiliary polynomials are universal for the problem
of effective approximation of cubic irrationals. Here we use a simple form of
Siegel’s lemma to construct them. We remark, however, that a direct construction
may lead to a much better understanding of these universal polynomials and
thereby drastically improve and modify the application of our method.
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2. - Inequalities for the projective metric

Let k be an algebraic number field, v a place of k and kv the completion
of k with respect to v. We will use two absolute values I I v from
v which are determined exactly as in our previous papers, such as [5], [7] or
[8]. In particular we have = for all x in kv, where d = [k : Q]
and dv = [kv : Qv]’ These absolute values have unique extensions to Qv, the
completion of an algebraic closure of kv. We extend to a norm on finite
dimensional vector spaces over Qv as follows. If

is a column vector in QN we set

and Ixlv = in both cases. Let ei,e2,... eN denote the standard basis
vectors in S2v . For each subset I c { 1, 2,..., N } let ei be the corresponding
standard basis vector in the exterior algebra We recall that this is a

graded algebra

in which each subspace has dimension (~) and basis vectors (ej :
I I I = n } . As usual we identify 52,~ with the subspace so that

whenever I = f i i  i 2  ... { 1, 2, ... , N } is not empty. Then I I v
extends to by applying (2.1 ) to the basis le, : I c { 1, 2,..., N } } .

We identify elements of with M x N matrices over Qv.
Then we extend I I v to such matrices A by setting

If v t oo and A = we find that
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If v oo let A* denote the complex conjugate transpose of A and let

denote the eigenvalues of the positive semi-definite matrix A * A . It follows that

We define a map

by 17v(A) = Obviously qv(A) for 0 in Qv and
therefore 17v is well defined as a map

We note that = 1 if and only if the identity = holds for
all x in In the special case N = 2 the identities (2.2) and (2.3) can be
used to verify the formula

We define a second map

by

Since Dv(ax, by) = y) for all 0 and 0 in SZv, it follows that Dv is
well defined as a map

It can be shown that 3v is a metric on and the induced metric topology
coincides with the quotient topology determined by the norm 11, on QN. This
observation, but with a different definition for 8v, is due to Neron [12]. The

fact that our definition is equivalent to N6ron’s was established by Rumely [15].
If N = 2 and v ~ oo then C and y) is the cordal distance between

points x and y on the Riemann sphere P~(C) normalized so that the diameter
of the sphere is 1. ..

In case N = 2 the maps i7v and 3v satisfy the basic inequality
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for all A in PGL(2, Qv) and x, y in To verify the inequality on the
left of (2.6) we note that

Then the inequality on the right of (2.6) follows since r~v (A-1 ) = 17v(A). This
result continues to be true if N ? 3, as shown by K.-K. Choi [9]; a proof of the
weaker inequality with in place of 1 (A) can be found in S. Tyler [ 18] .

If j3 occurs in kN we define its height by

where the product extends over all places v of k. By the product formula this
height is well defined on 

We mention here, as an illustration of what we have done so far, two
theorems which show how classical results can be formulated in our setting.

If a belongs to pN-1 (kv) for some place v of k then we may ask how
well a can be approximated by points j3 in IP’N -1 (k) with H(,C3) bounded by a
suitable parameter. In order to state a reasonably precise result let

where Ok is the discriminant of k and

Then we have the following projective form of Dirichlet’s theorem.

THEOREM 1. Let cx belong to Jl1’N-I (kv), T belong to kv and assume that 1  I r Iv.
Then there exists ,C3 in (k) such that

If cx belongs to JIDN-1 (kv) but not to P-1 (k) then (i) and (ii) can be
combined to establish the existence of infinitely many distinct 0 in 
such that
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This formulation of Dirichlet’s theorem is similar to, but slightly more precise
than, that obtained by Schmidt [16], Theorem 1. A proof has been given by
S. Tyler [18], Theorem 3.2.

Next we consider lower bounds for the projective distance 8v (a, j3) and in
doing so we restrict our attention to the projective line Suppose then
that

in homogeneous coordinates with a algebraic over k of degree r &#x3E; 2. As K =

k (a ) is embedded in kv there exists a place w of K with 16 v, [ I~w : kv] = 1,
and = It follows that

for all x and y in = Pl (k,). If j3 occurs in c then

where the product on the right of (2.11) extends over all places w of K. Since
j3 ~ a we conclude that

This is the Liouville lower bound for the projective metric. If r = 2 then (2.10)
with N = 2 shows that this bound is essentially sharp.

3. - The Thue-Siegel inequality

We assume throughout this section that a in kv is algebraic over k of
degree 3, that K = k(a) C kv, and that a’ and a" are conjugates of a in kv.
Let L = k(a, a’, a") c kv denote the Galois closure of the extension 
We write 

, ,,

for the corresponding points in P~(L). For each a in G = Gal(L/ k) there
exists a unique element QQ in PGL(2, L) such that
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Clearly a - Q, is a faithful, projective representation of G in PGL(2, L).
Also, there exists a unique element tP in PGL(2, L) such that

It follows that the conjugate representation Q’ - Pa acts to permute
the elements of the set { [ ~ ] , [ 1 ] ’ [ o ] } ~ If G is noncyclic then { Pa : Q E

G) =!9, where

is exactly the subgroup of PGL(2, Q) which permutes the elements of the set

If G is cyclic then

In particular, a - P (J is a faithful, projective representation of G in PGL(2, Q).

LEMMA 2. Let A belong to Pl (L). Then the identity

holds for all a in G if and only if 1 A occurs in Pl (k).

PROOF. If cr is in G then

But occurs in ° , 1 and it follows that = Pa4.’a.

In a similar manner we find that and 

This shows that = in PGL(2, L) for each cr in G.
If cr -1 (~) = for all a in G’ then

Hence belongs to On the other hand, if occurs in 
then B = with j3 in IPl (k). Thus we have

for all a in G. This proves the lemma.
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We define the subset

where the second equality follows from the previous lemma. Thus 11 (P) is

exactly the set of all cross ratios [a, a’, a"; 3] with j3 in We note that

A(P) does not depend on our choice of generator a for the extension K / k .
For suppose that K = with I and a 1 the corresponding points in
P~(L). Then there exists a unique element T in PGL(2, k) such that a = Wale
Therefore

and the corresponding set of cross ratios is

Also, the only points in I~1 (k,) which are fixed by each element of (Pa : cr E G}
are [6 where 03B66 is a primitive sixth root of 1, and these are fixedI I

points only when G is cyclic. It follows that A(P) does not intersect Pl
We now consider the problem of giving good effective lower bounds for

the projective distance w ° , 1 a for all À in A(P). Toward this end it will
be convenient to define the exponent of approximation for all A in A (P),
to be

so that

We also set

at each place w of L and

A simple calculation using (2.2) and (2.3) shows that 1J(P) = 4(3 + 5 1/2). If

[L : k] = 6 and a’ and a" occur in kv then the Liouville bound (2.12) implies
that ev(A)  6 for all A in A(P). In fact this estimate can be substantially
improved simply by using the defining property of A(P).

THEOREM 3. For each point A in A (P) we have 0  e" (a)  3.
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PROOF. Our initial embedding of L into kv determines a place w of L such
that v and

If [L : = 3 the result follows as in our derivation of the Liouville
bound (2.12). Only the special case [L : = 6 requires a separate
argument. The group G acts on places w of L such that w v, where v is a
fixed place of k. If cr is in G then is the place of L determined by

With respect to the projective metrics 8w and points A in A(P) this action
results in the identity

for all cr in G. We have

log
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The desired inequality plainly follows from this.
For each pair of points a 1 and A2 in A(P) we define

and

The main technical result of this paper is a formulation of the Thue-Siegel
principle as an inequality which is explicit in all constants. The inequality
bounds the product whenever a 1 and A2 occur in A(P). By
Theorem 3 we have  9, but if r(Ai, a2) and A2) are. small
then our inequality shows that is not much larger than 6. The

precise result is as follows.

THEOREM 4. and ~2 are points in A(P) then

After several preliminary inequalities, our proof of Theorem 4 will be given
in Section 8.

If 8 &#x3E; 0 then by a familiar argument (3.6) implies that

is a finite set. Of course the argument which leads to this conclusion does not
provide an upper bound for H (A) when A belongs to the set (3.7). In order
to obtain an effective result we must be able to determine a point a 1 in A(P)
for which

is less than 3. Then will be an effective measure of irrationality for
each generator a of the cubic extension K = kv.

THEOREM 5. Assume that a in A ( P ) satisfies  3. Then we have

for all ,Ci in I~1 (k). The implied constant in (3.9) depends in A, and o.
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PROOF. From the mean value theorem we have the elementary inequality

whenever x and y are positive real numbers. If A2 belongs to A(P) then

and, using (3.6), we find that

Let 4D be the unique element of PGL(2, L) which satisfies (3.1) and write

where the equality on the right follows from (2.4). If j3 occurs in (k) then

And from (2.6) we conclude that

As occurs in A(P) the inequalities (3.10) and (3.12) can be combined. In
this way we obtain the bound

The result plainly follows by appealing to (3.11).
We now turn our attention to the proof of Theorem 4.
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4. - Local estimates

Throughout this section M and N are nonnegative integers, w is a place of
the number field L and Qw is the completion of an algebraic closure Lw. We
identify the vector space Ew = with bihomogeneous polynomials

in S2w [x, y] having bidegree (M, N). We define two norms on Ew. The first
of these we denote by ||w and define by setting

As (x, y) -~ is a well defined map from 
into [0, oc), it follows that

is an alternative definition for this norm. The group GL(2, x GL(2, Qw)
acts on Ew as follows, if (A, B) E GL(2, S2w) x GL(2, S2w) we define P(A,B) :

Ew by 
1 1I I

Then = p(AC, BD) and therefore (A, B) -+ is a representation
of GL(2, S2w) x GL(2, S2w) in GL(Ew).

LEMMA 6. Let F E Ew and (A, B) E GL(2, S2w) x GL(2, S2w). Then we have

PROOF. For each x in the inequality

holds, and similarly with A, x and M replaced by B, y and N. The lemma
follows easily by using (4.3).

Next we introduce a second norm on Ew. In doing so it will be convenient
to set 

- ~ . ~ ,

Let F(x, y) be given by (4.1). If oo we define
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and if w ~ oo we set

LEMMA 7. Let F(x, y) occur in Ew. If w ~’ oo then

and if w oo then

PROOF. If w t oo the identity (4.5) can be established as in [13], Lemma
2. Assume then that w oo. Let

and write a for the unique rotational invariant measure on the Borel subsets of
S such = 1. It follows using [14], Proposition 1.4.8 and 1.4.9, that

We conclude that

To verify the remaining inequality in (4.6), let x E S and y E S . Then by
Cauchy’s inequality
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This shows that

whenever x E S and y E S. The inequality of the right of (4.6) follows

immediately.
Suppose now that N = 0 and so F in Ew is simply a homogeneous

polynomial in which can be written as

If M is positive and F is not identically zero then there exist nonzero vectors
~ 1, ~2 , ... , ~M in such that

LEMMA 8. Let F (x) in Ew be given by (4.7) and (4.8). If w { oo then

and if w I 00 then

PROOF. If oo then (4.9) is Gauss’ lemma for homogeneous polynomials.
This can also be established as in [13], Lemma 2. We assume then that w ~ 100.
Let J denote a subset of { 1, 2, ... , M} having cardinality I J I and write (4.8)
as

Then we have
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where It follows that

and

This shows that

Next we define

with S and cr as in our proof of Lemma 7. As or is rotationally invariant and
the unitary group U(2, S2w) acts transitively on S, we find that I restricted to
S is constant. The value of this constant is

For 0 in and £ # 0 in we have

Combining (4.12) and (4.13) leads to the identity

Finally, we use (4.8), (4.14), and Jensen’s inequality to conclude that
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This verifies the bound

The remaining inequalities in (4.10) follow from (4.6).
We return to consideration of bihomogeneous polynomials and assume now

that M and N are positive integers. We require two positive real parameters 9
and r. Then we define

We also define

to be the subspace of all polynomials F(x, y) in Ew such that

Thus F(x, y) belongs to yw precisely when its vector of coefficients (m, n) -
fm,n is supported on r. -In our next lemma we make use of the following
elementary inequality: if 0  s  1 and 0  t  1 then

LEMMA 9. Let F be a polynomial in : and - , Then
we have

PROOF. Suppose that w t oo. Then
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follows using (4.16).
If w oo we apply Cauchy’s inequality to deduce that

We raise both sides of (4.18) to the power sw /2 and apply (4.16). The desired
inequality (4.17) follows immediately.

Let F in Ew be given by (4.1 ) and let (A, B ) occur in GL(2, x

GL(2, S2w). Then acts on F and so also on the vector of coefficients

(m, n) - fm,n. We write

so that (m, n) -~ (P(A, B) f )m,n is the vector of coefficients of P(A, B) F. Then
we define

(If F is identically zero we set its Index equal to oo.) For K &#x3E; 0 we have

and so it suffices to consider the Index only when 9MrN = 1. It will be

notationally convenient, however, to use all four parameters in later applications.
As p is a representation we have the simple identity
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Also, 0 and b ; 0 belong to then

The map

is therefore well defined for (A, B ) in PGL(2, x PGL(2, Clearly the
polynomial F occurs in yw if and only if

where

THEOREM 10. Let F be a polynomial in Ew, x E and 1
Assume that

for some pair (A, B) in PGL Then we have

PROOF. Using (4.20) we find that

Therefore we may apply Lemma 9 and obtain the inequality

Then Lemma 6 and Lemma 7 imply that

The result follows by combining (4.22) and (4.23).
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5. - Global estimates

Let L / k be a Galois extension of algebraic number fields with G =

Gal(L/k). We assume that a - 1fro- is a faithful, projective representation
of G in PGL(2, k). At each place v of k we define

Because of the way we have normalized absolute values we have

where the product extends over all places w of L such that
for almost all places v of k we define

Next we define

The group G acts on places w of L such that w I v where v is a fixed place
of k. If cr is in G then a w is the place of L determined by

With respect to the projective metrics 8w and points À in this action
results in the identity

for all c~ in G.

Let E = denote the L-vector space of bihomogeneous poly-
nomials

in L[x, y] having bidegree (M, N).
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LEMMA 11. Let F(x, y) be a polynomial in E and let ~1 and À2 be points in
A(1f¡). Assume that A2) =,4 0 and that

for all a in G. Then for any place v of k and any embedding of L into kv we have

PROOF. We apply (4.21) at each place w of L. In this way we obtain the
estimate

, - ,

Taking the product over all places w leads to the bound

An embedding of L into kv determines a place iu of L such that in I v and

at all points x and y in As L / k is a Galois extension,
is constant on places w with w I v and therefore

Finally, we use (5.5) and the fact that G acts transitively to conclude that

This proves the lemma.
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6. - Dyson’s lemma

In this section we assume that Q is an algebraically closed field of char-
acteristic zero and F(x, y) is a bihomogeneous polynomial of bidegree (M, N)
having coefficients in Q. Let

denote the stabilizer of Then

whenever U and V belong to stab That is, the map

is constant on all right cosets of x stab~ (°) ) in PGL(2, Q) x

xPGL(2, Q). Now let (a,,3) belong to x Pl (0) and select (A, B) so
that and i . We set

By our previous remarks index is well defined. We note that the analogue of
(4.12) is the identity

We now describe the projective form of Dyson’s lemma. We require the
following objects:

DYSON’S LEMMA. Let F be a bihomogeneous polynomial of bidegree (M, N)
in S2 [x, y] which is not identically zero. If ,

for each j = 1, 2, ... , J then

This can be obtained from the affine formulation given in [5] with minor
modifications. It can also be obtained, again with minor modifications, from
the more general result of Vojta [19]. For our purposes it will be useful to
have a second version which specifically bounds the index.
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COROLLARY 12. Let F be a bihomogeneous polynomial of bidegree (M, N) in
Q [x, y] which is not identically zero. Then we have

PROOF. Select Kj, j = 1, 2,..., J, so that

It follows that and

By Dyson’s lemma we conclude that

The corollary follows by taking the supremum on the left hand side of (6.3)
over all values of the parameters Kj, j = 1, 2,..., J.

In applications of Dyson’s lemma it is necessary to estimate how the index
changes when a differential operator is applied to F. Let

be a second bihomogeneous polynomial of bidegree (R, S) in Q[x, y] and let

be the corresponding linear partial differential operator. If (a, j3) belongs to
we find that

where 12 is the involution
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In the special case the inequality (6.4) follows from the

expansion

The general case can then be established by selecting A and B so that

~ and using the identity

where A’ and B’ are the transpose of A and B respectively. (Note also that
A’I2A = 12 and B’I2B = 12 in PGL(2, Q).)

Again let A and B satisfy A-’ [0] = a and B-1 [0] = 0. We say thatI I

the pair of nonnegative integers (R, S) is critical with respect to the index at

(a, if

and

If (R, S) is critical at (a, j3) then (6.4) and (6.5) can be used to show that

if and only if

Alternatively, if (R, S) is critical at (ct, 3) then

if and only if
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7. - The auxiliary polynomial

Here we assume that 0  9  l, 0  i  1 and also that 9t  2/3. Then
we define

and

Let 0  ci 1  c2  oo . Then

where M -~ oo, N - oo, in such a way that

Therefore

is positive. In particular, I &#x3E; 0 if M and N satisfy (7.1 ) and are
sufficiently large.

THEOREM 13. Let M and N be positive integers such that (7.1 ) holds and
- ~ I &#x3E; 0. Then there exists a bihomogeneous polynomial

of bidegree (M, N) in y] such that

(i) F is not identically zero,
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(v) the coefficients fm,n satisfy

(vi) either

PROOF. We will construct F so that its coefficients fm,n are supported on r’.
This insures that (ii) and (iv) hold. We also require that

for all pairs (i, j) in r" and this implies that (iii) is satisfied. Thus we need
a nontrivial solution in integers to r" I homogeneous linear equations in I r’ I
variables. By the simplest form of Siegel’s lemma there exists such a solution
with

It remains then to estimate the right hand side of (7.4) as
in such a way that (7.1 ) holds.

Let

for 0  x  1, 1/1(0) == 1/1(1) = 0, and define

Then we have
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and

By combining (7.5), (7.6) and (7.7) we find that

Next we observe that

and in a similar manner

It follows that

Finally, it can be shown that
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in the region 0  0  1, 0  -c  1, and 8 i  2/3. The bound (v) plainly
follows from (7.4), (7.8), (7.9) and (7.10).

In the polynomial F fails to satisfy (vi) then we may replace F with

It is easy to verify that (7.11) continues to satisfy (i)-(v).

8. - Proof of the Thue-Siegel inequality

We now prove Theorem 4 in the slightly stronger form

where and (
In doing so we may assume that Ai 1 and ~2

belong to A ( P ) and satisfy

and

For if any of these conditions fail to hold then the basic inequality (8.1 ) follows
from Theorem 3. Let 9 C PGL(2, Q) denote the subgroup on the right hand
side of (3.2) which is isomorphic to S3. Then 9 acts on I~1 (kv) and every orbit
has six elements with exactly three exceptions. The exceptional orbits are

where §6 is a primitive sixth root of 1. If A in A(P) belongs to any of these
exceptional orbits then 2 follows easily. Hence we may also assume
that ÀI and A2 each have orbits containing six points under the action of Q.

Let 0  0  1, 0  i  1, with!  8 i  ~. Then let M and N be

positive integers such that

We note tha by (8.2) and therefore
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We assume now that M and N are so large that the hypotheses of Theorem 13
are satisfied. Then let F be a bihomogeneous polynomial in Z[x, y] having
bidegree (M, N) for which the conclusions (i)-(vi) of that result hold. It is

easy to verify that

is constant for A in 9. This is obvious if G = Gal(L/ k) is noncyclic since
9 = {P~ : cr E G} and for i - 1, 2 in that case. If G is cyclic
it follows also because

and using (6.1 ) and (vi) of Theorem 13 we have

To simplify notation we write

If 1 then we may apply Dyson’s lemma at the nine points

in IT . We conclude that

which is impossible by (8.3). Hence we must have 0  K  1. Then a second

application of Dyson’s lemma in the form (6.2) implies that

Next we suppose that the pair of nonnegative integers (R, S) is critical with
respect to the index at (~ 1, ~2 ) . Then we select a bihomogeneous polynomial
T(x, y) in Z[x, y] of bidegree (R, S) such that T ( I2 a 1, 12 ~2 ) # 0. An advan-
tageous choice for T is not apparent so we simply take T to be a monomial.
Thus we let T(x, y) = , where 0  r  R and S. It
follows from our remarks at the end of Section 7 that
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From (6.4) we conclude that

and similarly at ( [~] , [ I 1 ] ) and C [ ~ ] , [ o ] ) . Thus we may apply the global
estimate (5.4) to {T (D)F}(x, y) with (M, N) replaced by (M - R, N - S), with
B replaced by (I - K) (M - R) - 10 M and with t replaced by 
In this way we obtain the inequality

We may assume without loss of generality that T (D) F has relatively prime
integer coefficients. From the estimate in (v) in Theorem 13 and the expansion
(6.5), we find that a generic coefficient satisfies the bound

Using (8.5) we conclude that

After minor simplifications (8.4) and (8.6) imply that
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We select

where 0  t  ~. Then 0  9  1, 0  í  1, and
And we let M - oo, N - oo in such a way that

By compactness we can restrict (M, N) to a suitable subsequence along which
K ~ K* with

With these choices for 8, t, M and N the inequality (8.7) implies that

By combining (8.8) and (8.9) we obtain the bound

Finally, we select and use the simple inequality

which holds on the square

From (8.2) we find that (8.11) can be applied with b = 3 - 2~. After a brief
calculation we conclude that
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9. - Some effective measures of irrationality

We now show how to construct special cubic extensions to which Theorem 5
can be applied. Let

be an irreducible polynomial in k[x]. Let L be the splitting field of f, write

in L [x ], and set

Then the discriminant of f is in Section 3, let

be points in P1 (L). Then the unique element 03A6 in PGL(2, L) which satisfies
(3.1 ) is given explicitly by

We find that and therefore

belongs to A(P).
Next we introduce the polynomials

and their homogenizations
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LEMMA 14. Let w be a place of L. If w ~’ 00 then

if w oo then

Moreover, the polynomials rl (x) and r2(x) are irreducible in k (A) [x ].
PROOF. Assume that w t oo. Then [Rl]w = [R2]w is obvious and by Gauss’

lemma we have "

Using the identity

we find that

The identity (9.4) follows from (9.6) and (9.7). If w oo then

and an identical calculation applies to R2.
The subgroup c is cyclic of order 3 and acts

transitively on the roots of f. It follows that acts transitively on
the roots of rl. If rl has a root in then fixes this root and
we conclude that r, has one root of multiplicity 3. But the discriminant of

r, is p6 q -4 i= 0 and the contradiction shows that r, (and similarly for r2) is

irreducible in 
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LEMMA 15. Let Ai 1 in A ( P ) be defined by (9.3). Then we have

where each sum is over places u of k.
PROOF. It follows from Lemma 14 that rl (x) is the minimal polynomial of

over the field k ( 0 ) . By using the transitive action of on

places of L which lie over a fixed place of we find that the three points

[~ 1~ , and ~" 1~ in have the same height. Then we apply (4.9)
and (4.10) to 7?i(x) and sum over all places w of L. In this way we obtain
the inequality

If u is a place of k, u t oo, then Lemma 14 implies that

If u oo then

The lemma follows by combining (9.9), (9.10) and (9.11).
Let v be a place of k. We assume now that f has a root in kv and we

identify L with an embedding of L in kv such that

LEMMA 16. Let Ai in A(P) be defined by (9.3). oo then
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PROOF. Our embedding of L into kv determines a place w of L such that
and I w = I I v on kv. If v { oo then (4.9) and (9.4) imply that

We renormalize (9.15) with respect to v and use (9.12). It follows that

If v oo then (4.10) and (9.5) show that

Again we renormalize with respect to v and use (9.12). The desired result

(9.14) follows as before because

Plainly Lemma 15 and Lemma 16 provide a rather precise upper bound
for the measure of irrationality

which occurs in ’Theorem 5. In order to apply Theorem 5 we assume that among
the roots of f, which are arranged so as to satisfy (9.12), a is a root in 
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Of course there are various ways to insure that this will happen. For example,
if oo,  and 1  I p I v, then it follows using Hensel’s lemma that
f has a unique root in f x E kv : As a + o/ + c~ = 0 we find
that the remaining roots satisfy  cx’ I v = I a" I v . If v ~ oo and exactly one
root belongs to kv then R and 02  0. In this case the condition 0  p
implies that the unique real root a satisfies lalv  = 

To simplify our notation we define

at all places u of k. Then

denotes the logarithmic Weil height of p3 
THEOREM 17. Let f (x) = x 3 -+- px + q, 0, be irreducible in k[x] and let

K = k (a) c kv be a cubic extension of k generated by the root a of f. Assume that
the conjugate roots a’ and a" of f in k, satisfy I a ~"   ~ v. And assume
that

Then the effective measure of irrationality (À 1) satisfies

PROOF. From Lemma 15 we have

and Lemma 16 leads to the estimate

The theorem follows now by a straightforward calculation using (9.16) and (9.17).
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