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A Free Boundary Problem with a Volume Penalization

C. LEDERMAN

0. - Introduction

In this paper we study the problem of minimizing

where

(we use ISI I to denote the Lebesgue measure of a set S). The class K’ consists
of all functions v in n such that v = c on Here Q is an
unbounded domain in R", more precisely Q := R’BH where H is a bounded
domain; c, s, too are positive constants.

The present variational problem is motivated by the following optimal de-
sign problem: "Among all cylindrical elastic bars, with cross-section of a given
area and with a single given hole in it, find the one with the maximum torsional
rigidity". This application is studied in the forthcoming paper [10] where we
solve this problem for holes belonging to a certain class. Given a hole in that
class, we prove -denoting by (oo the area of the cross-section and by H the
hole- that the optimal cross-section is given by the set fu &#x3E; 0}, where u is the
solution to- the present variational problem for an appropriate pair of constants
c and s (see [10] for a complete discussion).

The aim of this paper is to prove that a solution to our minimization problem
exists and to study regularity properties of any solution u and the corresponding
free boundary &#x3E; ol: We show that any solution is Lipschitz continuous
and that the free boundary is locally analytic except -possibly- for a closed
set of (n-1)-dimensional Hausdorff measure zero. Moreover, in two dimensions
singularities cannot occur, i.e. the free boundary is locally analytic.

Partially supported by CONICET and OAS fellowships, Univ. de Buenos Aires Grant EX 117 and
CONICET Grant PID3668/92
Pervenuto alla Redazione il 20 maggio 1994 e in forma definitiva il 30 giugno 1995.
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Furthermore, we prove that any solution u satisfies

Here X,, is a positive constant and v denotes the unit outward normal to the free
boundary. The free boundary condition is satisfied globally in a weak sense
and therefore in the classical sense along the regular part of SZ n a {u &#x3E; 0}.

In addition, we show that for small values of the penalization parameter
s the volume of lu &#x3E; 0} automatically adjusts to coo (recall the application
described above). The fact that it is not necessary to pass to the limit in E to

adjust the volume of lu &#x3E; 0} to coo, allows us -for small values of E- to get
solutions satisfying this property and preserving at the same time the regularity
properties mentioned above. This will be a key point in [10].

We also study the dependence of our results on some of the data of the
problem, namely on H, c and E. This analysis is motivated by the nature of
the problem studied in [10] and by the stability theory developed in that paper
which also includes a stability discussion of our present variational problem as
both the constant c and the domain H vary (see Section 5 in [10] for further
details).

Many of the ideas we use here were inspired by the papers [ 1 ] and [2].
However, our problem presents several new aspects. On one hand, the existence
of a solution to our problem is not immediate due to the unboundedness of the
domain Q. We deal with this difficulty by solving first a family of auxiliary
minimization problems where the admissible functions have uniformly bounded
support.

Another interesting feature appears when studying the regularity of the free
boundary. Since we are dealing with weak solutions of (0.1), we cannot directly
apply the regularity theory established in [2] (where the right hand side of the
equation is zero), nor can we proceed as in the case of the obstacle problem
(where the right hand side of the equation is positive). Instead, we combine
here the ideas in [2] with a careful rescaling argument which eventually allows
us to show that near the free boundary our solutions behave like those in [2].

An outline of the paper is as follows: In Section 1 we formulate the
variational problem. In Section 2 we show that the functional has a minimum
if we impose that the admissible functions have their supports in a ball BR(0).
We prove preliminary regularity properties of these minima, in particular: u &#x3E; 0,
u is Lipschitz continuous, Au = -2 in ju &#x3E; 0}, u has linear growth away from
the free boundary Q n a {u &#x3E; 0}. We also prove the important fact that for R
large enough lu &#x3E; 0} is connected and bounded independently of R.

This allows us to prove the existence of a solution to our original problem,
and to show that any solution satisfies analogous properties to the ones just
mentioned. In particular, we show that any solution to our original problem has
a bounded and connected support (Section 3).

We then obtain preliminary properties of the free boundary in Sections 4
and 5. We show that Q n a {u &#x3E; 0} has finite (n - I)-dimensional Hausdorff
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measure and, in addition, Au + 2x ({u &#x3E; 0}) is a Radon measure given by a
function qu times the surface measure of Q n alu &#x3E; 01. Therefore, ju &#x3E; 0}
is a set of locally finite perimeter and on the reduced boundary aredfu &#x3E; 0}
the normal derivative is well defined. We prove that almost everywhere on the
free boundary, the function qu equals a positive constant Àu and thus (0.1) is
satisfied in a weak sense.

Next, we study the regularity of the free boundary (Sections 6 and 7). We
discuss the behaviour of a solution near "flat" free boundary points, and we
obtain the analyticity of the free boundary near such points. We also show that
singularities cannot occur in two dimensions.

Finally, in Section 8 we show that for s small enough, the volume of

ju &#x3E; 0} automatically adjusts to coo. We prove in an Appendix at the end of
the paper some results on harmonic functions and on blow-up sequences that are
used in different situations throughout the work and cannot be found elsewhere.

The results in this paper extend to the functional

for a large family of regular functions g, with g &#x3E; y (y a positive constant)
and for a function f more general than our fs. Moreover, the hypotheses on
the domain Q assumed here can be relaxed, as well as the boundary conditions
imposed on aQ, and the main results will still hold.

This work is part of the author’s Ph.D. Thesis at the University of Buenos
Aires, which was partially done while visiting the Institute for Advanced Study
in Princeton. The author is very grateful to the I.A.S. for its hospitality and to
Professors Luis Caffarelli and Enrique Lami Dozo, who directed this research,
for many helpful discussions and for their continuous encouragement.

Notation

n-dimensional Lebesgue measure of the set S
. Hk k-dimensional Hausdorff measure

9 Br (xo) open ball of radius r and center xo

9 x (S) characteristics function of the set S
~ spt u support of the function u.
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1. - Statement of the problem

In this section we give a precise statement of the problem we are going
to study.

We assume n &#x3E; 2. Suppose we are given
1) a bounded domain H in with boundary of class C2 and such that 

is connected,
2) a number too &#x3E; 0,
3) a number c &#x3E; 0 and a small number 8 &#x3E; 0.

Our purpose is to study the problem:
P£ = minimize

among all functions V E K’, where

and

We will show that a solution to P) exists and we will study regularity prop-
erties of every solution and the corresponding free boundary, i.e. the boundary
of the set where the solution vanishes.

In addition, we will study the dependence of our results on some of the
data of the problem, namely on H, c and 8. This analysis is motivated by the
problem studied in [10], where all our results are applied. There, a stability
theory is developed involving a stability analysis of our problem P~ (H) as both
the constant c and the domain H vary (see Section 5 in [10] for further details).

In order to have a clear understanding of the dependence of our results on
the constant c and on the domain H, we fix

(1.1) a number r* &#x3E; 0, such that H satisfies the uniform interior sphere con-
dition of radius r* ,

(1.2) a number Ro &#x3E; 0, such that {x E dist(x, H)  1} C 
(1.3) a function satisfying

and we define
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In this way, the relevant parameters in the paper will be n, wo, c, E, r*, Ro
and I.

Since the domain Q is unbounded, we will not directly solve problem P~ .
We will first study an auxiliary version, imposing that the admissible functions
have their supports in a ball BR(O), showing later that for large values of R
both problems coincide.

Therefore, for R &#x3E; Ro we state the problem:

among all functions V E K’, where and

We point out that, when necessary, the functions v E KR will be considered
as belonging to by assuming v = c in H and v = 0 in 
(analogously with KC).

Note that we have

and also, for

2. - Existence of a solution to problem Basic properties

In this section we show that there exists a solution to the auxiliary problem
P,c.R (Theorem 2.3) and we prove some regularity properties that hold for any
solution u.

We first show the very basic properties: u is pointwise defined and it
satisfies globally Au a -2 (Lemma 2.4). In addition u &#x3E; 0 and Au = -2
where positive (Lemmas 2.5 and 2.10). In Theorem 2.6 we get an important
bound for the measure of {x E S2R/u(x) &#x3E; 01. The fact that this bound does
not depend on R implies that if R is large enough and u is a solution to I

there exists a set of positive measure in QR where u vanishes and therefore a
free boundary QRn a { u &#x3E; 0}.

We continue our study by proving regularity and nondegeneracy results in
the style of [2]: we prove that u grows linearly as we go away from the free
boundary, i.e. there are positive constants C1 1 and C2 such that
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near the free boundary, provided u (x) &#x3E; 0 (Lemma 2.13). As a consequence,
u is Lipschitz continuous (Lemma 2.14), which is the maximum regularity of
u in the whole domain Lemmas 2.9 and 2.16 give a weak version of the
linear growth property in terms of the average of u over spheres with center in
the free boundary; the first of these lemmas estimates the average from above,
and the second one, gives an estimate from below.

We show that the free boundary stays away from a H (Theorem 2.11) and
we also show that u satisfies the positive density property for lu &#x3E; 0} and for
ju = 0} at the free boundary (Theorem 2.17).

Throughout the section we carefully study the dependence of our results on
the domain H and on the constants of the problem. For this purpose, we define
two parameters f1 and 3 which take into account all these data (see Remarks
2.7 and 2.12), and we get estimates depending on these new parameters.

We finally prove the important fact that for R large enough lu &#x3E; 0} is
connected and bounded independently of R (Theorem 2.18).

Let us define for v E H 1 (II~n ) n 

We will need two preliminary lemmas:

LEMMA 2.1. If I, then

where

PROOF. Since J (max(v, 0)), we may assume that v &#x3E; 0. We will
also assume without loss of generality, that { v &#x3E; 0} is bounded. Let B be a ball
such that B ~ - ~ liv &#x3E; 0} ~ [ and let v * E be the Schwarz symmetrization
of v (see [4] or [8] for definition and properties), which satisfies

By well known results, there exists a unique function v E satisfying

and explicit calculations show that v &#x3E; 0 in B and

where C (n) : := Now the desired inequality follows from
n(n + 2)

(2.1), (2.2), (2.3) and the choice of the ball B. 1:1
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LEMMA 2.2. Let D c Ilgn be an open set. There is a positive constant C such
that if v E H 0 I (D), then

Here C depends on n only.
PROOF. Without loss of generality we may assume that D is bounded and

v E C¿(D). By Poincar6’s Inequality ([6, p. 164]), there is a constant C = C(n)
such that

This, together with Holder Inequality yields

for any a &#x3E; 0. Choosing for instance a = 1 /4 and using again (2.4) we get
the desired inequality. D

THEOREM 2. 3. There exists a solution u to problem 

PROOF. Using Lemma 2.1, we get -C for all v e K#. We now
consider a minimizing sequence uk, and by Lemma 2.2 we have C

(here C and C denote positive constants). Hence for some u e I~R and a
subsequence

Moreover,

by the well known semicontinuity properties of these functionals. It follows
that u is a solution to R . * 0

LEMMA 2.4. If u is a solution to problem then 0 u &#x3E; -2 in the distribution
sense in S2 R . Hence we can assume that 

’

and u is upper semicontinuous.
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PROOF. For a nonnegative 17 E and t &#x3E; 0 we have ,
which implies 

"

that is, Du &#x3E; -2 in the distribution sense. Then, the function
11

is subharmonic. It follows that the second assertion of the lemma holds for v
and therefore for u. The proof is complete. 0

LEMMA 2.5. If u is a solution to PICRL then u &#x3E; 0.
PROOF. Since Js(u) for v : = max (u , 0), with strict inequality if

it follows that u &#x3E; 0 in

In the sequel we shall not indicate the explicit dependence of constants
upon wo or Ro.

THEOREM 2.6. There exist positive constants 80 and C such that if 8 ~ so and
u is a solution to then

Here £0 depends on n only and C = C(n, I), where I is given by (1.4). C
depends continuously on I H and 1.

PROOF. Let s (u )
nothing to prove. Otherwise, let
where C(n) and I denote respectively the constants in Lemma 2.1 and (1.4).
From Lemma 2.1 and from (1.6) we find that p (s (u ) )  0. It follows that if

we choose . and denote by s2 the largest zero of the quadratic
function p, then

hence the theorem is established. D

REMARK 2.7. In the sequel we shall assume ~  Eo, Eo given by Theo-
rem 2.6, and we shall fix a positive constant It, with the following property:

noting that such a constant exists by Theorem 2.6.
From the fact that f1 does not depend on R, and from Lemma 2.5, we

conclude that if R is large enough and u is a solution to I there exists a
set in QR where u vanishes and therefore a free boundary atu &#x3E; 0}.



257

LEMMA 2.8. There exists a positive constant C such that if u is a solution to
I D C Q R is an open set and s is the function satisfying Os = -2 in D and

s = u on a D, then

Here C depends on E only and JL is given by (2.5).
PROOF. Let us extend s by u into S2 R B D . Since u &#x3E; 0, s is positive in D.

Clearly s E K’ and therefore  Then, since

where f1 is given by (2.5), the lemma follows. El

LEMMA 2.9. There exists a positive constant C, such that if u is a solution to
r  1 and B,. (x ) C OR, the following property holds:

Here C = C(n, E, f1), and f1 is given by (2.5).
PROOF. The idea of the proof is that if the average of u on a Br (x) is large,

then replacing u in Br (x) by the function s satisfying

will decrease the functional unless s = u.
Since r  1, we have by Lemma 2.8

We wish to estimate the measure of Br (x) n f u = 0} from above by the left
hand side of (2.6). Proceeding as in [2, Lemma 3.2] and using that s can be
estimated from below by the harmonic function in Br (x) with boundary values
u, we obtain

It follows from (2.6) and (2.7) that if

and C is sufficiently large depending only on n, s and f1, then u &#x3E; 0 almost

everywhere in From (2.6) we deduce that u = s almost everywhere in
Br (x ) and by Lemma 2.4 u = s &#x3E; 0 everywhere in Br (x ) . D
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LEMMA 2.10. If u is a solution to P% R’ then Du = -2 in the open set {x E
&#x3E; OJ. 

’

PROOF. Let x E QR such that u(x) &#x3E; 0 and fix a such that u(x) &#x3E; a &#x3E; 0.

Then, by Lemma 2.4 
-

for small r. This fact allows us to apply Lemma 2.9 in a small ball Bp (x ) .
Hence the set {x E SZR /u (x) &#x3E; 01 is open, and the result now follows from
Lemma 2.8. D

For 0  8  1 let us define

Since R &#x3E; Ro, we have by (1.2)

We will now show that the free boundary Q Rn a(u &#x3E; 0} stays away
from a H .

THEOREM 2.11. There exists a constant 0  80  1, such that if u is a solution
to PCRL then 

- - - , , , - ,

Here 80 = 80(n, 8, c, r*, f1), where r* and f1 are given by (1.1) and (2.5) respectively.
So depends continuously on c.

PROOF. The idea of the proof is similar to that of Lemma 2.9.
Let xo E a H, 0  8  min ( 1, r * ), r* given by (1.1) and consider Bs, the

interior tangent ball to H in xo, of radius 8. For convenience let us assume

that Bs = Bs (0). Let s be the function satisfying

(here we denote B2s = ~(0)). Assume, in addition, that s = u = c in 
We will first estimate s from below by the harmonic function w in 

such that w = c on a Bs and w = 0 on using the Maximum Principle.
Therefore we get

On the other hand we have by Lemma 2.8
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We wish now to estimate the measure of B2s f1 ju = 0} from above by the left
hand side of (2.10). For any ~ E we define

if the set is nonempty and r~ = 23 otherwise.
Proceeding as in [2, Lemma 3.2], but using (2.9) instead, we get

for almost all ~ E aBi (0), from which we deduce

Hence (2.10) implies that if 8 is sufficiently small, depending only on n, E, f1
and c, then u &#x3E; 0 everywhere in Q Rn B2s . Thus the desired conclusion is
established. D

REMARK 2.12. In the sequel we shall fix a constant 8, 0  8  1 with the

following property:

noting that such a constant exists by Theorem 2.11.
Given a solution u to PIC, R, we will let

for any x E 0 R such that u(x) &#x3E; 0. In particular we will have d(x) &#x3E; 0 and

Bd(x) C {u &#x3E; 0}.
We will now show that u grows linearly away from the free boundary.

LEMMA 2.13. There exist positive constants CI and C2 such that ifu is a solution
then



260

PROOF. Let r := d(xo) and let Bp := Bp(xo) for p &#x3E; 0. To establish the
first inequality, we will assume that

and derive a lower bound on a. Defining

we have v &#x3E; u &#x3E; 0 and 0 v = 0 in Br. Then by Harnack’s Inequality and
(2.12) we get

. .I-

Let us consider 1/1 E satisfying 1/1 n 0 in Ix I  1, 1/1 n 1 in

and 1/1 &#x3E; 0 otherwise. Now define for x E Br/2

Extending w by u outside and recalling (2.13), we see that w is an
admissible function, and noting that w = 0 in and w &#x3E; 0 in we

get

with C = &#x3E; 0. Since we deduce that a &#x3E; Ci, for a
constant CI = s) &#x3E; 0 and the first inequality follows.

To show the second inequality, we observe that aBr touches 9{M &#x3E; 0}, and
by Lemma 2.9 we have

I /*

for small p &#x3E; 0, hence

Considering again the function v defined above, we then obtain

where This completes the proof.
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LEMMA 2.14. There exists a positive constant L such that if u is a solution to
X 0 E Q Rn a {u &#x3E; OJ, 0  r  1 and 82,. (x°) C QR, then u is Lipschitz

continuous in Br (xo) with constant L. Here L = L (n, s, f1) and f1 is given by (2.5).
It follows that u E 

PROOF. If x E B,. (x° ) with u(x) &#x3E; 0, we have by Lemma 2.13 that

where we have used that d : = d (x )  1. Proceeding as in the proof of the
same lemma we get

From the fact that u &#x3E; 0 and then l1u = - 2 in Bd (x), we see that 
a u 

is
axi

harmonic in Bd(x) for 1  i  n, implying that

Therefore, recalling (2.14) and (2.15), and using that I Vu = 0 a.e. in {u = 0)
we get the conclusion. 0

LEMMA 2.15. There exist constants C &#x3E; 0 and 0  ro  1 such that if u is a
solution to Xo E S2R rl a{u &#x3E; OJ, 0  r  ro and 82,.(xo) C S2R, then

Here C = C (n, s, f1), ro = ro (n, E, f1) and it is given by (2.5).

PROOF. Since

by Lemma 2.13, we will construct a polygonal starting close to xo, along which
u grows linearly.

Step 1. (Essential part of the proof). Let us choose a point xl satisfying

Let us call d = let YI be a contact point of Bd (xl ) with the free boundary,

and consider the function v(x) = u (x ) -~- ~x - x1 ~2 which is harmonic in 
n
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Using (2.16) and Lemma 2.14, and choosing ro in the statement small

enough (depending only on n, E, f1), we find a constant a = a(n, E, f1), 0 
a  1 such that

This, together with the fact that

allows us to obtain a point x2 E and a constant 80 = ~o (n, ~, f1) &#x3E; 0
such that v (x2 ) &#x3E; (l+2~o)~(~i). Now using (2.16) (if again ro is chosen small
enough) we conclude that the point x2 satisfies

Step 2. (Induction argument). Let us assume that a priori xl is chosen with
Ix, - xo I  r/8 and thus IX2 - xi I  r/8.

Now suppose we get points x 1, ... , xk+1 I satisfying

for 1 k, as a result of the iteration of the first step. It is not hard to see
that having I  r/8 will allow us to apply the first step to the
point 

However, (2.16) and (2.17) imply that we will be able to perform the
iteration only a finite number of times, which means that for some ko &#x3E; 1 the

points xi, X2, ... Xko+l will satisfy

This, in conjunction with (2.17) yields

for : and The proof is complete.
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LEMMA 2.16. For 0  K  1 there exist positive constants CK and rK, such that
C S2R, with dist(xo, 8/2

and 0  r  rK, the following property holds:

Here 0 and, f1 and 8 are given by (2.5)
and (2.11) respectively.

PROOF.

Step 1. We will first show that under our hypotheses
implies

for a constant C = C(n, 8, f1, 8, K), provided we choose rK in the statement
small enough.

Let us first assume that C f u &#x3E; OJ. If d(xo)  8/2 we get by
Lemma 2.13 that

If d(xo) &#x3E; ~/2, we consider the function Clearly
is harmonic in the ball B8/2(xo), nonnegative on its boundary and therefore
u &#x3E; v in this ball. Thus- 

9-

provided we choose rK  8.

Finally, we will show (2.18) assuming there is a point &#x3E; o}.
In this case, we can apply Lemma 2.15 to BF(xi) for r = (,fK- - K)rl2, if again
rK is small enough. Then, we obtain

thus completing the first step.

Step 2. To establish the lemma, let us consider

and let h denote the harmonic function in Br (xo) with boundary values By
the Mean Value Theorem we have
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On the other hand, since h - w is superharmonic in Br(xo), with zero boundary
values, it follows that h &#x3E; w &#x3E; u in Br (xo). Thus, an application of Harnack’s
Inequality yields

Now suppose that

for some constant CK . This, together with (2.19) and (2.20) will imply

with C as in (2.18), provided C~ and rK are small enough. Thus, the first step
of the proof establishes our result. D

THEOREM 2.17. There exist constants 0  ~,1 I  ~,2  1, 0  ro  1, such that
if u is a solution to and

, then

Here 1 and, f1 and 8 are given by
(2.5) and (2.11) respectively.

PROOF. If ro in the statement is small enough (depending only 
and f1), we can proceed as in Lemma 2.15 and find a point x satisfying

where By Lemma 2.13 we have then

(2.21) yields

from which the first inequality follows. 
°

To establish the second inequality let s denote the function satisfying

and consider the function which is harmonic in 

By Lemma 2.8 and Poincare’s Inequality we get
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where C = C (n, 8, f1). We will now find a lower bound for (s - u) in Ba,. (xo),
for a small. Given y E the application of the Poisson Integral for v
yields

and, on the other hand, from Lemma 2.13 we see that

We can now apply Lemma 2.16 in Br (xo), provided we choose ro small enough.
Then, from (2.23) and (2.24) it follows that

for a small enough, which by (2.22) yields the second inequality. El

In the next theorem we will use some results that can be found in the

Appendix (Section B) at the end of the paper.
THEOREM 2.18. There exist positive constants M and R 1 such that if R &#x3E; R 1

and u is a solution to PIC, R, then {x E S2R/u(x) &#x3E; 0 1 is connected and contained in
Ro and, it and 3 are given

by (2.5) and (2.11) respectively.
PROOF. By Theorem 2.11, the set has a connected

nonempty component D such that

Step 1. We will start by showing that there exists a positive constant
M = M (n , e, 8) such that D C BM (0).

By (1.2) we have that

and by (2.5)

Thus, if we define, we find
such that

Let kl be the smallest integer such that D C Bkl (0) and suppose ko + 2
(if not, there is .nothing to prove). Since D is connected, we have by (2.25)
that
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and therefore, by (2.27) we can choose points xk E a {u &#x3E; 0}, with

k|xk|
Now set ri = min { 1 / 8 , ro / 2 } , for ro given by Theorem 2.17. Then, applying

that theorem we get

Therefore, noting that the balls Brl (Xk) are disjoint and that ~,1 I and rl depend
only on n, £, /1 and 8, we get from (2.26) and (2.28) that M(n, E, /1, 8),
thus completing the first step.

Step 2. We will now suppose that there exists an open set D’ ~ 0, such
that D n D’ = 0 and

and we will find a contradiction, provided R &#x3E; R 1 with R 1 a constant depending
only on n , ~, /1, and S .

Let u 2 E n be the function given by

and let xo be a point satisfying

(xo exists because D is bounded). Let B* be a ball such that

and let u * E be a function satifying

(we can find such a function proceeding as in Lemma 2.1). Then for 0 = 
and 

_ _ _ I- -

we have that U E u = c on aH = aQ, and Je(u).
By the first step, and by (2.29), there exists a constant Rl - E, f1, 8) &#x3E;

Ro, such that u has its support in BRl (0). Therefore, u is a solution to I
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provided R &#x3E; If in addition R &#x3E; we have that xo E QRn a { u &#x3E; 0 }
and an application of Theorem 2.17 for small r &#x3E; 0 yields

On the other hand, we could have proceeded as above in the construction
of u, but allowing in (2.29) that dist(xo, B*) = 0. Thus, we find a solution
u to for R &#x3E; 2R1 satisfying in a neighborhood of xo the hypotheses of
Lemma B.4 (see the Appendix at the end of the paper). Therefore we obtain

which contradicts (2.30) and gives the desired result. D

3. - Existence of a solution to problem P~. Basic properties

In this section we show that there is a solution to our original problem
P,’, and we derive regularity properties that hold for any solution.

The existence of a solution u to P) with bounded support is not hard to
establish at this stage (Theorem 3.1). It follows from the fact that any solution
to a problem is supported in a ball centered in the origin with a radius
independent of R (recall Theorem 2.18).

As a consequence, this solution u -and any other solution to PE with
bounded support that might exist- will be a solution to for R large
enough and therefore, the results established in the previous section can be

applied. The natural question here is: given a solution to P, , does it have

bounded support and thus the behaviour just described? We will be able to
give a positive answer, but not until the end of the section.

We proceed here as follows: We first show that every local result proved in
Section 2 for problem P£, R has an analogous version for problem P~ . Namely,
a solution u to P~ is nonnegative and Lipschitz continuous, satisfying Au a -2
globally and Au = -2 where positive (Theorem 3.3). Also we get a bound
for E &#x3E; 0} ( (Theorem 3.4) and we show that the free boundary

&#x3E; 0} stays away from a H (Theorem 3.6). In addition, we see that u has
linear growth near the free boundary (Lemmas 3,8, 3.9 and 3.10) and that the
positive density property is satisfied for lu &#x3E; 0} and lu = 0} (Theorem 3.11).

Next we show that all of these properties imply that any solution u to P~
has bounded and connected support (Theorem 3.13). We eventually get to the
desired conclusion which is that problems PICR and Pc are equivalent for R
large (Corollary 3.14). 

’

As in the previous section, we are concerned with the dependence of ’our
results on the domain H and on the constants of the problem. For this purpose
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we define two new parameters It and 3 (see Remarks 3.5 and 3.7) which
take into account all these data. Let us finally remark that the results in this
section that are stated without proof can be obtained by proceeding -with
minor modifications- as in Section 2.

THEOREM 3.1. There exists a solution u to P~ .
PROOF. Let

and let uk be a minimizing sequence. Without loss of generality we may assume
that for large k, spt uk C Bk (0) and moreover, uk is a solution to P). Then,
by Theorem 2.18, we get for large k 

’

where M is a constant not depending on k. If we choose R &#x3E; M and a solution
u to we have 

- - -

Now, taking k - oo, we see that y &#x3E; -oo and u is a solution to P£ , thus
completing the proof. 0

REMARK 3.2. The previous theorem guarantees the existence of a solution
of problem P,, and moreover, from its proof we deduce that any solution to
P£, R is also a solution to P~ , if R is large enough.

THEOREM 3.3. Let u be a solution to P,. Then u
, in the distribution sense in Q and z

THEOREM 3.4. There exists a positive constant C such that if u is a solution to
then

Here C = C(n, I), where I is given by ( 1.4) and C depends continuously on
IHI and l.

REMARK 3.5. In the sequel we shall fix a positive constant /1, with the

following property:

noting that such a constant exists by Theorem 3.4.
The last theorem also implies that if u is a solution to P:, there exists a

set where u - 0 and therefore a free boundary Q n 8(u &#x3E; 0} .
For 0  8  1, we define D3 = Ds ( H ) as in (2.8) and we have:

THEOREM 3.6. There exists a constant 0  80  1, such that if u is a solution
to Pc, then

Here 80 = s, c, r *, ~,c,), where r * respectively.
80 depends continuously on c.
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REMARK 3.7. In the sequel we shall fix a constant 8, 0  8  1 with the

following property:

noting that such a constant exists by Theorem 3.6.

LEMMA 3.8. There exists a positive constant C, such that if u is a solution to
r  1 and B,. (x ) C Q, the following property holds:

Here C = C (n, 8, ~,c), and f1 is given by (3.1 ).

LEMMA 3.9. For 0  K  1 there exist positive constants CK and rK, such that
for each solution u to Pc and for each ball B,. (xo) C Q, with dist(xo, aQ) ~~ 8/2
and 0  r  rK, the following property holds:

Here CK = C (n, E, /1, 8, K ), rK - r (n, 8, it, 8, K ) and, /1 and 8 are given by (3.1 )
and (3.2) respectively.

Given a solution u to Pc, we will let

for any x E Q such that u(x) &#x3E; 0.

LEMMA 3.10. There exist positive constants C1 1 and C2 such that if u is a

solution to P~ , Xo E f u &#x3E; OJ, d (xo)  1 and Bd(xO) (xo) c-- Q, then

Here CI = CI (n, e), C2 = C2 (n, E, f1) and f1 is given by (3.1 ).

THEOREM 3.11. There exist constants 0  ÀI I  ~,2  1, 0  ro  1, such that
if u is a solution to Xo e Q f1 a f u &#x3E; 01 and 0  r  ro, then

Here Ài = Xi (n, s, /1, 8), i = 1, 2, ro = ro(n, s, /1, 8) and /1 and 8 are given by (3.1)
and (3.2) respectively.

REMARK 3.12. Theorem 3.11 implies that Q n atu &#x3E; 01 has Lebesgue
measure zero, for any solution u to Pfi.
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THEOREM 3.13. There exists a positive constant M such that if u is a solution
to Pc, then 

- - - - - -

is connected and contained in Bm (0). Here M = M(n, B, it, 8) and it and 8 are
given by (3.1 ) and (3.2) respectively.

We now have, as a direct consequence of the last theorem:

COROLLARY 3.14. There exists a constant R such that

Here R I = R1 (n, s, it, 8) ~ Ro, and it and 8 are given by (3.1) and (3.2) respectively.

The next lemma provides bounds that will be useful later.
LEMMA 3.15. Let u be a solution to Pc.

1) If xo satisfies ,

then

Here L = L (n, s, f1) &#x3E; 0, and f1 is given by (3.1 ).
2) Let D be a domain satisfying

Then

Here C = C (n, E, p, s, D) &#x3E; 0, s is any number such that 0  s  dist(D, a 0)
and it is given by (3.1 ).

PROOF. To prove part 1) we can proceed as in Lemma 2.14. To see 2), let
us define D’ - {x E dist(x, D)  s/2}.

Step 1. Let ro :- min{s/4, 1 } and choose a point z E D n a {u &#x3E; 0}. Since
D’ is connected, for x E D’ there exist points xo,..., xk in D’ (k depending
only on D and s), such that

and there exists 0  j  k such that Bro (xi ) C ju &#x3E; 01 for 0  i  j - 1 and

For 0  i  j - 1 we consider in Bra (xi ) the harmonic function
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which satisfies

by Harnack’s Inequality. Since from Lemma 3.10 we get 
C (n, E, f1), we obtain, applying inductively (3.3), that u (x) -
That is,

Step 2. Let ri := min{s / 10, 1 /4} and let x E D f1 {u &#x3E; 0} . If
then

On the other hand, if d (x )  r 1, we choose such that

, and part 1) implies

which together with (3.4) and (3.5) establishes the result. D

4. - The measure X,, and the function qu

In this section we prove preliminary regularity properties of the free bound-
ary.

We first prove that Àu : = Au + 2 X ( { u &#x3E; 0}) is a positive Radon measure
supported in the free boundary (Lemma 4.1 ). Next, the linear growth condition
proved in the previous section implies a density property on the free boundary
(Theorem 4.2).

As a consequence we get a representation theorem, which says that S2 n
a {u &#x3E; 0} has finite measure and that the measure Xu is given by a function
qu times the surface measure of &#x3E; 0} (Theorem 4.3). Therefore tu &#x3E; 0}
is a set of locally finite perimeter.

Our next step is the study of the behaviour of u near the reduced boundary
&#x3E; 0}, that is, near the points in Q n a {u &#x3E; 0} where the unit outward

normal with respect to ju &#x3E; 0} exists. We prove that the normal derivative
of u is well defined for certain points xo on the reduced boundary: there, u
behaves like the positive part of a linear function with slope qu (xo) (Theorem
4.7). We finally show that this behaviour holds almost everywhere on the
free boundary (Remark 4.8).

In this section we use the notions of blow-up sequences and limits. To
this effect we refer to definitions and results given separately in the Appendix
at the end of the paper. 

’
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LEMMA 4. l. If u is a solution t is a positive
Radon measure with support in S

PROOF. Let f (s) = max(min(2 - s, 1), 0). Since Au = -2 in f u &#x3E; 0}, we
have for nonnegative functions q E and k E N

Letting k - oo we conclude that Au -I- 2x((u &#x3E; 0)) &#x3E; 0 in the sense of
distributions. Consequently, a measure Àu with the desired properties exists. 1:1

THEOREM 4.2. Let u be a solution to P~ . For any D C Q, there exist constants
0  c  C and ro &#x3E; 0 such that for any ball Br C D with center in S2 fl a {u &#x3E; ol
and r  ro

PROOF. Let

let A := Au, and choose . For I we have

Approximating x (Br(xo)) from below by suitable test functions 17 and using
(4.1 ) we get for almost all r  1 with B,. (xo) C D

which proves the second inequality. To prove the first one, let us fix 0  K  1

and let CK and rK be the constants in Lemma 3.9. Now choose r  rK such that

C D. By Lemma 3.9, given 0  a  1 there is a point y E 8Bar(xo)
with u ( y ) &#x3E; CK a r &#x3E; 0. Thus (4.1) implies

where c (a ) : := acK. Let Gy be the positive Green function for the Laplacian
acl 

y p p

in with pole y. Let s be the function satisfying As = -2 in Br(xo) and
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s = u on Now set A : := It follows from (4.2) that d A = 0
in Bc(a)r(Y), thus we can write

which implies

Then, using (4.2) and Lemma 3.9 we have

for a small enough. On the other hand, by Lemma 4.1 and (4.2)

and this establishes the desired inequality. 0

We shall denote by &#x3E; 0) the measure restricted to the set

THEOREM 4.3. Let u be a solution to P~ . Then,
1 ) 1-ln-1 (Q n atu &#x3E; ol)  oo.

2) There is a Borel function qu such that

that is, for every i we have

3) For any D C S2 there exist constants 0  c*  C* and ro &#x3E; 0 such that for
every ball B,. (x) C D with r  ro and x e Q n alu &#x3E; ol,

PROOF. It follows from Theorem 4.2 precisely as in [2, Theorem 4.5], if
we us that, by Theorems 3.6 and 3.13, there exists a set E C S2 such that
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REMARK 4.4. It is not hard to see that given D c Q, the constants c* and
C* in Theorem 4.3 depend only on n and on the constants c and C that we
get for D in Theorem 4.2.

Let u be a solution to P~ . Fix x and R satisfying

and now set D = in Theorem 4.2. It follows from its proof (and from
Lemmas 3.9 and 3.15) that in this case the constants c and C (and therefore
the constants c* and C* in Theorem 4.3) will depend only on n, E, tt and 3 (tt
and 8 the constants in (3.1) and (3.2) respectively).

REMARK 4.5. Let u be a solution to Pc. From Theorem 4.3, 1) it follows

([5, Theorem 4.5.11]) that the set A = f u &#x3E; 0} has finite perimeter locally in SZ,
that is -VX(A) is a Borel measure. We denote by areda the reduced boundary
of A, that is,

where vu (x ) is the unique unit vector such that

for r -~ 0, if such a vector exists, and vu (x) = 0 otherwise; see [5], [7].

REMARK 4.6. Given a solution u to P) and a sequence of points xk E Q
such that xk -~ xp E Q and u (xk) = 0, there exists a neighborhood D c Q of
xo, where u satisfies the hypotheses B,I in the Appendix (see Lemma 3.9 and
Theorem 3.11). Therefore, we can define blow-up sequences and limits as in
B.2, and make use of the results in the Appendix (Section B).

In the next statement we use the following notation (see [5, 2.10.19,
3.1.21]): For any set E and xo E E we denote by Tan ( E , xo ) the tangent
cone of E at xo, i.e.,

Given a measure it on R’ and xo E M" we denote by 0 *’- (p, xo) the (n - 1)-
upper density of /1 at xo, i.e.

where denotes the Lebesgue measure of the unit ball in 
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THEOREM 4.7. Let u be a solution to P£ and let : J . Then

If, in addition

and

then for

PROOF. Take for simplicity vu (xo) = en. Let uk be a blow-up sequence with
respect to balls Bpk (xo), with blow-up limit uo. Then X ({uk &#x3E; OJ) converges in

to X ({uo &#x3E; 0}) by (B.6) and to  0}) by (4.3). It follows that

uo = 0 in {xn &#x3E; 0} and uo &#x3E; 0 a.e. in {xn  01. From (B.10) we deduce that
uo &#x3E; 0 in {xn  0} and therefore, {xn - 0} is the (topological) tangent space
of a {u &#x3E; 0} at xo.

Now define

for [  1 and zero otherwise, where n e is an (n -1 )-dimensional
ball with radius r). By Theorem 4.3, we have for large k

Then, using (B.2), (B.3), (B.5) and (B.7), and proceeding as in [2, p. 121] we
get

Recalling that Duo = 0 in {xn  0} and uo = 0 in {xn &#x3E; 0}, we obtain

Finally, since the blow-up sequence was arbitrary whereas the limit is unique,
the last statement of the theorem follows. D

REMARK 4.8. If u is a solution to P~, then by [5, Theorem 4.5.6(2)] and
[5, Theorem 2.9.9] the conclusion of Theorem 4.7 holds for 1in-1 almost all

xo in ared[U &#x3E; 01. We observe, in addition, that Theorem 3.11 together with [5,
Theorem 4.5.6(3)] imply that n atu &#x3E; 0} B ared{u &#x3E; 0}) = 0.
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5. - Estimates ( and qu

In this section we prove estimates on I and related ones near the free
boundary, that will be needed later for the regularity theory.

Our first result is Theorem 5.1, where we prove that there exists a positive
constant ku such that qu(xo) = hu for H’-’ almost all xo in S2 n atu &#x3E; 0}.
This is an important step in proving that the free boundary condition

is satisfied (notice that this is already known is the weak sense given by The-
orems 4.3 and 4.7). The fact that almost everywhere the function qu equals a
constant -which is a regular function- will imply later the smoothness of the
free boundary.

On the other hand, we observe that the free boundary condition can be
written as a-vu = hu, which evidences that the regularity of the free
boundary is related to the behaviour of I Vu near the free boundary. In Theorem
5.1 (see (5.1)) we give an estimate from above for [ at every point in the
free boundary. Later in the section we prove a strengthened version of this
estimate (Theorem 5.4).

We also study the behaviour of u locally if a ball contained in {u = 01
touches the free boundary (Lemma 5.2). Finally, Lemma 5.3 provides estimates
for the constant Xu, depending on the paramenters of the problem.

In this section we will use some results that can be found in the Appendix
at the end of the paper.

THEOREM 5.1. If u is a solution to P£ , then there exists a positive constant ~,u
such that

PROOF.

Step 1. Suppose we are given two points xo, Xl e Q n 9{M &#x3E; 01 and pk a
sequence with pk &#x3E; 0, Pk - 0. Suppose, in addition, that for i = 0, 1, there
exists a sequence of balls Bpk (Xik) C S2 with Xik - xi and = 0, such
that the blow-up sequence with respect to Bpk (xik)

has limit Ài max(-x.vi, 0), with 0  Ài  oo and vi a unit vector. We
will prove that Ào = À 1 .
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Assume that k I  ~.o. We will arrive to a contradiction by constructing
suitable admissible functions. For this, choose q5 a nonnegative Co function,
~ ~ 0, supported in the unit interval, and let t be a small positive constant.
For k E N define

which is a diffeomorphism if t is small enough (depending only on 0). It
follows that the functions

are admissible for P), if k is large, and by (B.6) we have

for i = 0, 1 as k --~ oo. This shows that

and since {u &#x3E; 0} | and &#x3E; 0} are bounded (independently of k), and fe, is

Lipschitz continuous in bounded intervals we conclude

On the other hand, using (B .1 ) and (B.9), and proceeding as in [1, p.194] we
obtain

We now notice that by Lemma 3.10 there exists a constant C (independent of
k ) such that for y E i = 0, 1, we have
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which yields

Since we have supposed that ~,1  Ào, the main term in (5.4) becomes negative
if we choose t small enough (independent of k). Then from (5.3), (5.4) and
(5.5) we have that  ls(u) for large k, which is a contradiction and

completes the first step.

Step 2. Let, and let

We will prove that 0  h  oo, and we will find a sequence of balls Bdk C Q
with dk &#x3E; 0, dk -~ 0, yk -~ xo and yk e Q n a {u &#x3E; 0}, such that the blow-
up sequence with respect to has limit uo(x) = v, 0), with
v = v (xo ) a unit vector.

By (5.6), there exists a sequence zk - xo such that

Let yk be the nearest point to zk on Q n 9{M &#x3E; 0} and let dk = Ykl.
Consider a blow-up sequence with respect to with limit uo, such that
there exists

". - 1.

and suppose for simplicity v = en.
Using that uo and thus its directional derivatives are harmonic in tuo &#x3E; OJ,

and applying the results in Lemma B.3, we can proceed as in [3, p. 22] to

prove that 0  h  oo and

Finally, by (B.11) we have that 0 E a[Uo &#x3E; 0} and then, using (B.10) we
see that uo satisfies the hypotheses of Theorem A.1 (see Appendix). Therefore
uo = 0 in {xn &#x3E; 0}, and this completes Step 2.

Step 3. Now comes actual proof of the theorem. Choose Xl E aredfu &#x3E; 01
for which the conclusion of Theorem 4.7 holds. Given 9{M &#x3E; 0}, set
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and apply Step 2 to xo, finding in this way a sequence of balls
and a unit vector v (xo), such that the blow-up sequence with respect to
has limit

By Theorem 4.7 the blow-up sequence with respect to Bdk (xl ) has limit

Hence, an application of Step 1 gives h(xo) = qu(xi). If we now set hu :=
and notice that xo was any point in &#x3E; 0}, we obtain (5.1 ). The

result (5.2) is now obtained from Remark 4.8.

LEMMA 5.2. Let u be a solution to P,. If B is a ball in {u = 01 touching
at xo, then

PROOF. Denote the left-hand side by y and let

Consider the blow-up sequence uk with respect to Bdk (Yk), where Yk E a B are
points with IYk - xkl = dk, and choose a subsequence with a blow-up limit uo,
such that 

-- -

exists. Therefore, by construction we have

and then by (B.7) 0  y  oo. Consequently, by the Strong Maximum Principle
and by analytic continuation

To finish the proof, we can proceed as in the last step of Theorem 5.1, but

working instead with the blow-up sequence we have just constructed. Choosing
a point xl E aed[U &#x3E; 01 for which the conclusion of Theorem 4.7 holds, we
get y = qu (xl ) = hu, thus establishing the desired result. D

LEMMA 5.3. There exist positive constants cmin, Cmax such that if u is a solution
to P~ , then

Here the constants cmin, Cmax depend only on n, E, it and 3 and, it and 6 are given
by (3 .1 ) and (3.2) respectively.
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PROOF. Choose xo E SZ n 8(u &#x3E; 0} and 0  R  1 with 
and set D := BR(xo). By Theorem 4.3 and Remark 4.4, there exist positive
constants c* and C* (depending only on n, 8, it and 8) such that for every ball

with r small and

and in addition

Therefore, since n a{u &#x3E; OJ) &#x3E; 0 by (5.7), the result follows from the
combination of (5.2) and (5.8). 0

THEOREM 5.4. There exist positive constants C and ro such that if u is a solution
and r  ro, then

Here and it and 8 are given by (3.1 ) and (3.2)
respectively.

PROOF. Since the functions a u are harmonic in u &#x3E; 0} for 1  i  n, we
axi 

- -

have that the function I is subharmonic in ju &#x3E; 0}, and so is the function

for k E N. From Theorem 5.1 it follows that Uk vanishes in a neighborhood
of the free boundary and therefore, Uk is continuous and subharmonic in the
entire domain Q.

Let ro = 8/3 with 8 as in (3.2), and let xo e Q n atu &#x3E; 01. By Lemma
3.15 there exists a constant L = L(n, s, /1) &#x3E; 0 such that

Now consider the function which is harmonic i

Setting we have

and therefore, the inequality also holds in Taking
we get

From Lemma 3.10 we have Cr in &#x3E; 0}, for r  ro and now
the result follows as an immediate consequence of (5.9) and Theorem 5.3. D
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6. - Flat free boundary points

This section, together with Section 7, is devoted to the study of the reg-
ularity of the free boundary. We will prove that if the free boundary is "flat"
enough at some point, then it is regular near that point.

Our approach is inspired in [2], which in turn is oriented by the regularity
theory for minimal surfaces. We combine here the ideas in [2] with a care-
ful rescaling argument which eventually allows us to show that near the free
boundary our solutions behave like those in [2].

We start the section by giving a precise definition of the "flatness condition"
at a free boundary point (Definition 6.1 ). We next proceed in the following
way: We perform a non-homogeneous scaling (or blow-up) in the "flat" direction
(Theorem 6.4), obtaining the graph of a subharmonic function f (Lemma 6.5).
We show further regularity properties of this function f (Lemma 6.6 to Lemma
6.8), that allows us to prove Lemmas 6.9 and 6.10, which are our main results
in the section. These last two lemmas roughly say that if the free boundary is
"flat" enough near some point, it is still "flatter" in a smaller neighborhood after
and adequate change of coordinates. The regularity study of the free boundary
is completed in Section 7.

DEFINITION 6. l. Let 0  1 and r &#x3E; 0. We say that u belongs
to class T) in Bp = Bp (0) if u is a solution to Pc, Bp C Q,
OEa{u&#x3E;0} and

where hu is the constant in Theorem 5.1. If the origin is replaced by xo and
the direction of flatness en is replaced by a unit vector v, then we say that u
belongs to the class 0(a+, a- ; r) in Bp (xo) in direction v.

REMARK 6.2. Let u be a solution to P~ and let hu be the constant in
Theorem 5.1. By Lemma 5.3 there exists a constant Cmin (not depending on u)
such that

Then, if Bp (0) c Q, we can consider the function V E given by

which will clearly satisfy
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and

In this section we shall denote balls with center in the origen by Bp. *

THEOREM 6.3. There exist positive constants C = C(n) and ao = ao(n) such
that if u E 1; a) in Bp with a  ao and p  cmina then u E F(2a, Ca; a) in

Bpl2. Here is the constant in (6.4).

PROOF. Let k = hu and define for . Let

and choose s &#x3E; 0 maximal such that

where x = (x’,Xn). Thus there exists a point z E &#x3E; 01. Also
since 

We consider the function w 1 satisfying

By well known estimates we have

where we have used that p  On the other hand, since v - w 1 is

subharmonic in D and v - wi j 0 on aD by construction of D and by (6.3),
we infer v  w I in D.

We will prove an estimate for v from below for points ~ E 8~3/4, ~ 
-1 /2. For that, let W2 be the harmonic function in D B such that

Then, if o- is small (depending only on n) we have by the Hopf Principle
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If we suppose that v (x )  for x E for a positive
constant d, we conclude as above w 1 - in D B Then,
from (6.5), (6.6) and Lemma 5.2 it follows that

a contradiction, if d is large. Thus

for some xi E and C = C(n). Now, using similar arguments to those
in [2, Lemma 7.2], we get for a &#x3E; 0

which says that u E ~(2or, Ca ; or) in

We shall denote points in with balls in

; and

LEMMA 6.4. Let Uk be a sequence of class ak ; tk) in Bpk with
I and Pk = 0 (-rk). Let Àk := ÀUk and for x E BI define

Iffor,

then, for a subsequence

Further, f is continuous with f (0) = 0, and locally and
uniformly

PROOF. We can prove this result proceeding as in [2, Lemma 7.3], but using
Theorem 6.3 instead. We observe that this is possible since by our hypotheses
we have ak -~ 0, tk = o(ak) and pk = o(ak) , 0

LEMMA 6.5. f is subharmonic.
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PROOF. If the assertion is not true then there is a ball Bl and a
harmonic function g in a neighborhood of this ball such that

We proceed as in [2], setting

and similarly ZO(4)) and Z-(O). Letting be a function which

converges as 8 -~ 0 to the characteristic function of Z+(akg), we have by
Theorems 4.3 and 5.1, and Remark 4.8.

Taking 8 -~ 0 (and assuming that zo(akg) f1 a {vk &#x3E; 01 has measure zero;
otherwise we replace g by g + c for some suitable small c), we get

Using that by 1 + Lk, we deduce

The set

has finite perimeter in the cylinder Z, with

If we show the estimate

for large k, and we substitute this into (6.8) and use (6.7) and (6.4), we get a
contradiction to the relations tk = pk = which were assumed in
Lemma 6.4. Now to get (6.9), we proceed as in [2, p. 136] and the lemma
follows. D
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We will let for

LEMMA 6.6. Let

Then, there exists a constant C = C (n) such that

for k large, and for a subsequence,

where the convergence is uniform in compact subsets of RI. In addition, w satisfies:

in the sense that lim w (y, h) = f (y) and
h TO

PROOF. By definition of wk and vk and by the flatness assumption in Lemma
6.4, we get (6.10) and also

hence, the functions

are harmonic in B, n { h  Since ~ -+ 0, by (6.10) we have that
- 

XkO’k
[ are bounded (independently of k) in compact subsets of Bi and then,

for a subsequence Wk -+ w uniformly in compact subsets of Therefore

(6.11), (6.12) and (6.13 ) follow.
On the other hand, since
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we have for (y, h) E Bi and

and letting

If we suppose that (6.14) holds, we can take h’ - 0 in (6.17) and (6.15) is

proved. It remains to establish (6.14).
We will need to use that, for any small a &#x3E; 0 and any large constant K

We can prove this by proceeding a in [3, Lemma 5.7], but applying Theorem
6.3 and Lemma 6.4 instead. This will be possible since we have ok --+ 0,
tk2" ---&#x3E;0 and pk=O(ik).
ak-7k 

Now using (6.18), (6.16) and proceeding again as in [3, Lemma 5.7] we
deduce (6.14), thus establishing the result. 0

LEMMA 6.7. There exists a positive contant C = C (n) such that, for any

PROOF. Let y E B 1 ~2 and

Setting

we have by Lemma 6.6, 6.4 and 6.5 that [3, Lemma 5.5] can be applied to the
function w*, which satisfies

where g subharmonic and continuous in B1, with g (0) = 0. Therefore (6.19)
holds. D

Using now Lemma 6.4, 6.5 and 6.7 we obtain as in [2, Lemma 7.8] the
following lemma:
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LEMMA 6.8. There is a large constant C = C(n) &#x3E; 0 and for 0  o  1 a

small constant co = C (0, n) &#x3E; 0, such that we find a ball Br and a vector I E 1

with 
I

LEMMA 6.9. Let C* &#x3E; 0, 0  o  1 and C, ce as in Lemma 6.8. Then, there
is a constant cro &#x3E; 0, such that

with ~ I and C* p  t implies

Ca-. 
and Cmin as in (6.4).

PROOF. If the result were not true, then for each positive integer k there
would exist

with such that the conclusion of the

lemma does not hold. clearly, Uk is a sequence as in Lemma 6.4 and therefore,
Lemma 6.8 will yield a contradiction if we proceed as in [2, Lemma 7.9]. o

LEMMA 6.10. Let 0  8  1 and C* &#x3E; 0, then there exist positive constants
co and C such that if

with I and then

for some p and v with I and Here
and Cmin as in

PROOF. The idea is similar to that of [2, Lemma 7.10]. Let 0  91 j 1/2. If

or~ in the statement is small enough we obtain by Theorem 6.3 and Lemma 6.9
that

for some rl, VI with 01 and
For k E N, we consider the function
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which is subharmonic and continuous (see Theorem 5.4). Then, there is a
constant 0  c (n )  1 such that

If we let k -~ oo, it follows that

where 80 := ,/l --c(n), provided 81 is chosen small enough (depending only
on n). Then repeating this argument a suitable number of times and using
Theorem 6.3 again, we finish the proof. D

7. - Smoothness of the free boundary

In this section we complete the study of the regularity of the free boundary
started in Section 6. Here we prove that the reduced free boundary is locally
analytic and that in two dimensions singularities cannot occur.

In Section 6 we showed that if the free boundary is flat enough near some
point, it is still flatter in a smaller neighborhood. This fact, together with the
estimates in Section 5, is used in Theorem 7.1 to prove -by means of an
iteration argument- that the free boundary is a surface near flat enough
free boundary points. Moreover, we show that the free boundary is locally
analytic except possibly for a closed set of measure zero (Theorem 7.2).
Now Theorem 4.3 implies that along the regular part of the free boundary, the
condition

is satisfied in the classical sense. We complete the section with additional
results valid for the two dimensional case. Theorem 7.4 gives an estimate from
below for IVul [ near any free boundary point (compare with Theorem 5.4). This
important estimate allows us to prove that in two dimensions singular points of
the free boundary cannot occur (Theorem 7.6).

In this section we will use some results that can be found in the Appendix
at the end of the paper.

THEOREM 7. l. Let u be a solution to P~ . Then there exist positive constants a,
ao and ro such that

with a  ao and , implies that
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more precisely, it is a graph in the direction v of a function. Moreover, for any
Xl, X2 on this surface,

The constants depend only on n, E, it and 8, it and 8 given by (3.1 ) and (3.2) respec-
tively

PROOF. We will proceed as in [2, Theorem 8.1 ] . If ~o and zo are chosen
small enough, we have by Theorem 5.4 that

Let and . then using Theorem 6.3 we

We want to apply Lemma 6.10 in for some 0  9  1 and

Indeed, if we choose

we can apply this lemma. If in addition, we choose 9 = 1/2, it will be possible
to apply Lemma 6.10 inductively, following the idea of [2, Lemma 8.1]. Finally,
observing that the constants in our proof depend only on those of Theorems
5.4 and 6.3, and Lemma 6.10, we complete the theorem. D

THEOREM 7.2. Let u be a solution to P~ . Then 8red (u &#x3E; 01 is a surface
locally in Q, and the remainder of Q n a {u &#x3E; 01 has Hn-l measure zero. It follows
that &#x3E; 01 is locally analytic.

PROOF. Let xo E ared(u &#x3E; 0} and uk be a blow-up sequence with respect to
balls Bpk (xo) with limit uo. By the first part of Theorem 4.7 and (B.7) there
is a sequence crk - 0 such that

hence for large k Theorem 7.1 can be applied. Analyticity now follows from
[9, Theorem 2], if we use that by Theorems 4.3 and 5. l, ~ 1 Vu I = Àu on any
smooth portion of S2 n 9{M &#x3E; 0}. 0
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REMARK 7.3 Let u be a solution of P) and x a free boundary point such
that Br(i) fl 9{M &#x3E; 0} is smooth for some small r &#x3E; 0. Near Jc we make a
smooth pertubation of the set ju &#x3E; 0}, increasing its volume by a &#x3E; 0 (a small)
and in the perturbed set Da , where

we consider the function va satisfying

We have that as a -+ 0, and since hu on
it follows that

We get the same estimate if we decrease by a &#x3E; 0 the volume of {u &#x3E; 01 and
define va analogously in the perturbed set.

THEOREM 7.4. Let n = 2 and let u be a solution to P,. If xo e Q n 8 (u &#x3E; ol
then

PROOF. Let 0  r  p small and

Let t &#x3E; 0 and define in .

Consider now a point xl &#x3E; 0} away from xo such that &#x3E;

0} is smooth for some small rl &#x3E; 0. We make a smooth pertubation of the set
ju &#x3E; 0} near xl increasing its volume by a where
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Then, letting va be the function defined in the perturbed set as in Remark 7.3,
we get that the function

is admisible for P) and satisfies liv &#x3E; 0} ~ = {u &#x3E; 0} ~ . We thus obtain by
construction that

where k and this estimate, together with (7.2) implies

By Lemma 3.10 we have Cr in Br(xo) and if we choose t = C r we get

where Using Theorem 5.4 we obtain

Finally, if we observe that 8p  Cp2 by Theorem 3.11 and we choose r =
pf(p)I/4 with f (p) := max (p, °ss’°, we get (7.1). D

p

COROLLARY 7.5. Let n = 2 and let u be a solution to P . If xo EQnatu &#x3E; ol
and Uk is a blow-up sequence with respect to balls Bpk (xo) with limit uo, then

Here e = e(xo) is a unit vector.
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PROOF. By Lemma B.3 and Theorems 5.1 and 7.4, we see that

Since 0 E 9{Mo &#x3E; 0}, there exists a connected component D of luo &#x3E; 0} such

that Let yi 1 E and From (7.3) and from

the fact that uo is harmonic in luo &#x3E; 01 we deduce that is harmonic in

and achieves its minimum in yl. Then,

The result now follows if we apply Theorem A.1 to show that uo _ 0 in

THEOREM 7. 6. Let n = 2 and let u be a solution to P~ . Then a {u &#x3E; 01 is a
curve locally in Q. It follows that a {u &#x3E; 01 is locally analytic.

PROOF. Let Xo E Q n a {u &#x3E; 01 and let Uk be a blow-up sequence with
respect to balls BPk (xo) with limit uo. From Corollary 7.5 and from (B.7) there
is a unit vector e and a sequence ak - 0 such that

hence for large k Theorem 7.1 can be applied. Analyticity now follows as in
Theorem 7.2. D

8. - Behaviour of the solutions for small 8

The aim of this section is to show that the volume of lu &#x3E; 0} automatically
adjusts to coo, for small values of 8.

In the previous section, we proved that the free boundary is locally analytic
(except possibly for a closed subset of Hn-l measure zero), and thus a-vu = Xu
along the regular part of it. This allows us to use a comparison argument in
Lemma 8.2 to prove that if e is small and u is a solution to P~ , then ku stays
away from

where Ci 1 and C2 are constants not depending on 8 (compare with Lemma 5.3).
As a consequence, we prove in Theorem 8.3 that {x E &#x3E; 0} ~ = coo
(when s is small). This result is derived from Lemma 8.2 and from the fact
that jumps from a small to a large number at s = too (recall that f, is
the function appearing in the penalized functional J,). The fact that it is not
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necessary to pass to the limit in e to adjust the volume of lu &#x3E; 0} to too,
allows us -for small values of c to get solutions satisfying this property and
preserving at the same time the properties proved before. This will be a key
point in [10].

As in the previous sections, we analize the dependence of our results on
the data of the problem.

LEMMA 8.1. There exists a positive constant C = C (0) = C (H) such that if
v E n and v &#x3E; 0 then

PROOF. The result follows if we integrate along lines 0

LEMMA 8.2. There exists positive constants CI and C2 such that ifu is a solution
to Pc then

Here the constants Ci depend only on n, c, r * , I and C (H) (r * , I and C (H) as
in ( 1.1 ), (1.4) and (8.1 ) respectively). Moreover, Ci depend continuously on c

and I.

PROOF.

Step 1. (First inequality) Since H C BRo(O) and H Ulu &#x3E; 01 is connected,
satisfying by Theorem 3.4 that

there is a constant R1 and a point YI such that

Let ri := dist(yl , a H) and r* as in (1.1). Then, there are points yo E a H and
Y2 E H such that yo E B,.l and Br* (y2) n S2 = lyol. Now assume that
en is the outward normal to H at yo and for 0  t  1 consider

where

that is Dt is a smooth family of smooth domains such that Dt if t  t’.

Moreover, Do = B,. * ( y2 ) , Dt n for t &#x3E; 0 and yi l E Di . Let t be the first
value for which Dt touches a free boundary point xo E a Dt f1 Q n a {u &#x3E; 0}.
We have that 0  t  1 and
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Consider the function w satisfying

Then, by the Hopf Principle, there is a constant y such that

where v is the unit outward normal to Dt ’in xo. Recalling (8.3) we have
-2 in 0 in and therefore, from the

Maximum Principle and the estimate (8.4) we get for small r &#x3E; 0

where
Now consider the function vo satisfying 0 vo = -2 in vo = u on

aBr(xo). Reasoning as in (2.7) and using (8.5) we get

Next choose a point Xi &#x3E; 0} away from xo such that &#x3E; 0}
is smooth for some small p &#x3E; 0. Near xl we make a smooth pertubation of
the set ju &#x3E; 0} decreasing its ,volume by where 8r := 
and we consider the function v defined in as in Remark 7.3.

Then the function 
- 

~ 

. - I I

is admissible to Pc and satisfies Consequently, from
(8.6) and Remark 7.3 we deduce that

that is,
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Step 2. (Second inequality) We first see, using (8.2), Lemma 2.2 and (1.5),
that

and therefore, denoting by v the unit outward normal to S2, we have

(note that we have used that Au = -2 in ju &#x3E; 0}). On the other hand, we
have the Isoperimetric Inequality

In addition, from Lemma 8.1 (applied to u) , (8.7) and again the Isoperimetric
Inequality, it follows

Now, recalling Theorem 5.1, 2) and applying Theorem 4.3, 2) to suitable
functions we deduce

Finally, we combine (8.2) and (8.8) to estimate the left hand side of (8.11) and
then, (8.9) and (8.10) to estimate its right hand side. Thus, we conclude that

THEOREM 8. 3. There exists a positive constant 8 1 such that if E  E 1 and u is a
solution to Pc, then

(1.4)
and (8.1 ) respectively). Moreover, 81 1 depends continuously on IHI, c and I.

PROOF. Suppose {u &#x3E; 0} ~ I &#x3E; wo. Choose a regular point in Q n a {u &#x3E; 0}
and in a neighborhood of it make a smooth inward pertubation of lu &#x3E; 0}
decreasing its volume by 8v &#x3E; 0. Let v, be the admissible function that

equals u everywhere except in the perturbed region, where it is defined as in
Remark 7.3. If 8v is small enough, we will have 1 &#x3E; 0} ~ &#x3E; cvo and since

for s &#x3E; a)o, we get

Now using Lemma 8.2 we find a constant 8 (depending only on C2) such that
if s :S 8 then  J£ (u), provided 8v is small, a contradiction.

If &#x3E; 0} (  wo we argue similarly, using now the first inequality in
Lemma 8.2 and the fact that _ ~ (s - wo) for s  úJo. F
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Appendix

In this Appendix we prove some results on harmonic functions and on
blow-up sequences that are used in different situations throughout the paper.

A. - A result on harmonic functions with linear growth

THEOREM A.1. Let u be a Lipschitz continuous function on constant L

such that

Then

PROOF.

Step 1. (Essential part of the proof) Let R &#x3E; 0 and

Suppose that there is 0  L such that

We will show that there are constants such
that

with 0  y  1, 0  ca  a and ca &#x3E; 0 when a &#x3E; 0.
To prove this, suppose a &#x3E; 0 and consider the superharmonic function

Setting we deduce from 2) and 3) that there is a point z such
that

Let r := Izl. We consider the harmonic function h in Br (o) n {xn &#x3E; 0} with
boundary values v and extend it to a harmonic function in the entire ball by
setting h (x 1, ... , xn ) = h (xi, ... , -xn ) for xn  0.
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Using the Maximum Principle and the Poisson Integral we get for all y
such that Iyl  and yn &#x3E; 0

..

where for x = (x 1, ..., xn ) we have denoted x = (x 1, ... , -xn ) . On the other
hand, using that w is Lipschitz continuous with constant L, we get

Therefore (A.2) and (A.3) yield

where C = C(n, À, L, a) &#x3E; 0 and if we now set

the first step is establised.
Step 2. (Introduction argument) Let ro &#x3E; 0 and

V’

By 2), using that u is Lipschitz continuous, we have for ao = L

and therefore, an application of the first step yields

We can normalize the situation to the unit ball and apply the first step inductively.
Then, if we denote

for i ~ 0, we get

and consequently

In oder to prove (A.1 ), now suppose there exists a point ~ such that

Observing that the sequence ai, which does not depend on ro, tends to zero as
i ~ oo, we have that

for Then, if we start in (A.4) with ro &#x3E; 2013, we will have by( ) o 
Y k~ 

y

(A.5) that u()) s akÇn, which contradicts (A.6). The result is established. D
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B. - Blow-up limits

HYPOTHESES B.1. D is a domain in M" and u a function satisfying
1 ) u is nonnegative and Lipschitz continuous with constant L in D and Au =

-2 in D f1 ju &#x3E; 0},
2) For 0  K  1 there exist positive constants CK and rK , such that for balls

Br (x) D 

3) There exist positive constants ro and h2  1, such that for balls

Br (x) c D withxEafu&#x3E;0} and0rro

DEFINITION B.2. Let u be a function as in B. l, and let Bpk (xk) C D be a
sequence of balls with pk -~ 0, xk - xo E D, = 0. We call the sequence
of functions defined by

the blow-up sequence with respect to Bpk (Xk). Since

if k is large enough, and since uk(0) = 0, there exists a blow-up limit uo :
R, such that for a subsequence

LEMMA B.3. Let Uk and uo in B.2. Then, the following properties hold:
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PROOF. Let B C f uo &#x3E; 01. Then, the functions

are harmonic in B if k is large enough, and vk 2013~ uo uniformly in B. Therefore
(B.4) follows.

The proof of (B.5) now follows from (B.2) and B.1,2). Using B.1,3) and
(B.5), and arguing as in [2, p. 120] we obtain

and the assertion (B.6) follows.
The proof of (B.7) follows from B.1,2). To prove (B.8) we need (B.7)

when uo = 0 and when uo &#x3E; 0 we use the functions vk as we did above.

Combining (B.8) with (B.12) we show (B.9).
By (B.5), for y E 9{Mo &#x3E; 0} there are points yk E aluk &#x3E; 0} converging to

y. By B.1,3) we have for R &#x3E; 0 and k large

Recalling (B.6), we see that (B.10) holds. Finally, combining (B.2) with B.1,2)
we obtain (B .11 ) . El

LEMMA B.4. Let u be a function as in B, I satisfying
1) There is Xo E D n a{u &#x3E; 01 such that u(x) = 0 in {x E D/(x - xo).en = OJ,
2) There is a ball B such that Xo E a B, B C {x E D/ (x - xo).en  01 and

u(x) &#x3E; OforX E B.
Then, .

PROOF. Let uk be a blow-up sequence with respect to balls Bpk (xo) with
limit u o . By 1), 2) and Lemma B.3, we can apply Theorem A.1 to u o and this
fact in conjunction with (B.6) yields the desired result. D
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