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A Free Boundary Problem with a Volume Penalization
C. LEDERMAN

0. — Introduction

In this paper we study the problem of minimizing

J.(v) := / (%|VU[2 — 2v)dx + fe({x € Q/v(x) > 0}]), veKC,
Q

where
e(s — wp) s <awp,
Sfe(s) ==

g((s — wp) + (s — wp)?) s> wo

(we use |S| to denote the Lebesgue measure of a set S). The class K¢ consists
of all functions v in H!(2) N L1(R) such that v = ¢ on 3. Here  is an
unbounded domain in R”, more precisely Q2 := R"\H where H is a bounded
domain; c, &, wy are positive constants.

The present variational problem is motivated by the following optimal de-
sign problem: “Among all cylindrical elastic bars, with cross-section of a given
area and with a single given hole in it, find the one with the maximum torsional
rigidity”. This application is studied in the forthcoming paper [10] where we
solve this problem for holes belonging to a certain class. Given a hole in that
class, we prove —denoting by wy the area of the cross-section and by H the
hole— that the optimal cross-section is given by the set {# > 0}, where u is the
solution to the present variational problem for an appropriate pair of constants
c and ¢ (see [10] for a complete discussion).

The aim of this paper is to prove that a solution to our minimization problem
exists and to study regularity properties of any solution u# and the corresponding
free boundary Q2N a{u > 0}: We show that any solution is Lipschitz continuous
and that the free boundary is locally analytic except —possibly— for a closed
set of (n—1)-dimensional Hausdorff measure zero. Moreover, in two dimensions
singularities cannot occur, i.e. the free boundary is locally analytic.
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Furthermore, we prove that any solution u satisfies

Au = -2 in QN{u> 0},
0.1
u=0, o_,u=4i, on Q2Nau > 0}.

Here 1, is a positive constant and v denotes the unit outward normal to the free
boundary. The free boundary condition is satisfied globally in a weak sense
and therefore in the classical sense along the regular part of 2N d{u > 0}.

In addition, we show that for small values of the penalization parameter
¢ the volume of {u > 0} automatically adjusts to wp (recall the application
described above). The fact that it is not necessary to pass to the limit in & to
adjust the volume of {u > 0} to wp, allows us —for small values of e— to get
solutions satisfying this property and preserving at the same time the regularity
properties mentioned above. This will be a key point in [10].

We also study the dependence of our results on some of the data of the
problem, namely on H, ¢ and &. This analysis is motivated by the nature of
the problem studied in [10] and by the stability theory developed in that paper
which also includes a stability discussion of our present variational problem as
both the constant ¢ and the domain H vary (see Section 5 in [10] for further
details).

Many of the ideas we use here were inspired by the papers [1] and [2].
However, our problem presents several new aspects. On one hand, the existence
of a solution to our problem is not immediate due to the unboundedness of the
domain 2. We deal with this difficulty by solving first a family of auxiliary
minimization problems where the admissible functions have uniformly bounded
support.

Another interesting feature appears when studying the regularity of the free
boundary. Since we are dealing with weak solutions of (0.1), we cannot directly
apply the regularity theory established in [2] (where the right hand side of the
equation is zero), nor can we proceed as in the case of the obstacle problem
(where the right hand side of the equation is positive). Instead, we combine
here the ideas in [2] with a careful rescaling argument which eventually allows
us to show that near the free boundary our solutions behave like those in [2].

An outline of the paper is as follows: In Section 1 we formulate the
variational problem. In Section 2 we show that the functional has a minimum
if we impose that the admissible functions have their supports in a ball Bg(0).
We prove preliminary regularity properties of these minima, in particular: u > 0,
u is Lipschitz continuous, Au = —2 in {u > 0}, u has linear growth away from
the free boundary 2N d{u > 0}. We also prove the important fact that for R
large enough {u > 0} is connected and bounded independently of R.

This allows us to prove the existence of a solution to our original problem,
and to show that any solution satisfies analogous properties to the ones just
mentioned. In particular, we show that any solution to our original problem has
a bounded and connected support (Section 3).

We then obtain preliminary properties of the free boundary in Sections 4
and 5. We show that Q N d{u > 0} has finite (n — 1)-dimensional Hausdorff
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measure and, in addition, Au + 2x({u > 0}) is a Radon measure given by a
function g, times the surface measure of Q N d{u > 0}. Therefore, {u > 0}
is a set of locally finite perimeter and on the reduced boundary Oq{u > 0}
the normal derivative is well defined. We prove that almost everywhere on the
free boundary, the function g, equals a positive constant A, and thus (0.1) is
satisfied in a weak sense.

Next, we study the regularity of the free boundary (Sections 6 and 7). We
discuss the behaviour of a solution near “flat” free boundary points, and we
obtain the analyticity of the free boundary near such points. We also show that
singularities cannot occur in two dimensions.

Finally, in Section 8 we show that for ¢ small enough, the volume of
{u > 0} automatically adjusts to wy. We prove in an Appendix at the end of
the paper some results on harmonic functions and on blow-up sequences that are
used in different situations throughout the work and cannot be found elsewhere.

The results in this paper extend to the functional

J() = /(lel2 —gv)dx + f(l{x € 2/v(x) > 0}]),
Q

for a large family of regular functions g, with ¢ > y (¥ a positive constant)
and for a function f more general than our f,. Moreover, the hypotheses on
the domain 2 assumed here can be relaxed, as well as the boundary conditions
imposed on 92, and the main results will still hold.

This work is part of the author’s Ph.D. Thesis at the University of Buenos
Aires, which was partially done while visiting the Institute for Advanced Study
in Princeton. The author is very grateful to the I.A.S. for its hospitality and to
Professors Luis Caffarelli and Enrique Lami Dozo, who directed this research,
for many helpful discussions and for their continuous encouragement.

Notation

e |S| n-dimensional Lebesgue measure of the set S
e H* k-dimensional Hausdorff measure
e B,(xo) open ball of radius r and center xg

1
° ][ U= udx
By (xp) | B (x0)| JB,(xg)
1
3By (x0) H"=1 (9B, (x0)) JaB,(xp)
e x(S) characteristics function of the set S
e spt u support of the function u.
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1. - Statement of the problem

In this section we give a precise statement of the problem we are going
to study.
We assume n > 2. Suppose we are given
1) a bounded domain H in R" with boundary of class C? and such that R"\ H
is connected,
2) a number wg > 0,
3) a number ¢ > 0 and a small number & > 0.

Our purpose is to study the problem:
P{ = P{(H): minimize

1
J.(v) == / (§|Vv|2 - Zv)dx + f.(l{x € Q/v(x) > 0}])

Q

among all functions v € K¢, where Q := R"\H,

£(s — wp) s <awp,
fs(s) = { 1
g((s—wo)+(s—wo)2) s> wp,

and
K =K(H):={ve H(Q)NLY(Q),v=c on 9Q}.

We will show that a solution to Pf exists and we will study regularity prop-
erties of every solution and the corresponding free boundary, i.e. the boundary
of the set where the solution vanishes.

In addition, we will study the dependence of our results on some of the
data of the problem, namely on H, ¢ and ¢. This analysis is motivated by the
problem studied in [10], where all our results are applied. There, a stability
theory is developed involving a stability analysis of our problem Pf(H) as both
the constant ¢ and the domain H vary (see Section 5 in [10] for further details).

In order to have a clear understanding of the dependence of our results on
the constant ¢ and on the domain H, we fix

(1.1) a number r* > 0, such that H satisfies the uniform interior sphere con-
dition of radius r*,

(1.2) a number Ry > 0, such that {x € R"/dist(x, H) < 1} C Bg,(0),

(1.3) a function u® = ufy € HOI(BRO(O)) satisfying u¢ = ¢ in H, u¢ > 0,
l{x ¢ H/u(x) > 0} < wo,

and we define

(L) 1 =1 = VU122 g
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In this way, the relevant parameters in the paper will be n, wy, ¢, &, r*, R
and /.

Since the domain €2 is unbounded, we will not directly solve problem P;.
We will first study an auxiliary version, imposing that the admissible functions
have their supports in a ball Bz(0), showing later that for large values of R
both problems coincide.

Therefore, for R > Ry we state the problem:

P;R = P,:R(H) . minimize J;(v)
among all functions v € K§, where Qg := Br(0)\H and
K& =K4(H) :={ve H(Qg),v=c on dH and v =0 on 3Br(0)}.

We point out that, when necessary, the functions v € K5 will be considered
as belonging to H'(R"), by assuming v = ¢ in H and v = 0 in R"\Bg(0)
(analogously with K¢).

Note that we have

(1.5) u¢ € K¢ and inf J.(v) <1,
vek¢
and also, for R > Ry

(1.6) u € K and inf Jo(v) <.
veK‘I"e

2. — Existence of a solution to problem P . Basic properties

In this section we show that there exists a solution to the auxiliary problem
P; r (Theorem 2.3) and we prove some regularity properties that hold for any
solution u.

We first show the very basic properties: u is pointwise defined and it
satisfies globally Au > —2 (Lemma 2.4). In addition ¥ > 0 and Au = -2
where positive (Lemmas 2.5 and 2.10). In Theorem 2.6 we get an important
bound for the measure of {x € Qg/u(x) > 0}. The fact that this bound does
not depend on R implies that if R is large enough and u is a solution to Py p,
there exists a set of positive measure in Q2 where u vanishes and therefore a
free boundary Qg N d{u > 0}.

We continue our study by proving regularity and nondegeneracy results in
the style of [2]: we prove that u grows linearly as we go away from the free
boundary, i.e. there are positive constants C; and C, such that

Cidist(x, Qg No{u > 0}) < u(x) < Cydist(x, Qg N d{u > 0})
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near the free boundary, provided u(x) > 0 (Lemma 2.13). As a consequence,
u is Lipschitz continuous (Lemma 2.14), which is the maximum regularity of
u in the whole domain Q2. Lemmas 2.9 and 2.16 give a weak version of the
linear growth property in terms of the average of u over spheres with center in
the free boundary; the first of these lemmas estimates the average from above,
and the second one, gives an estimate from below.

We show that the free boundary stays away from d H (Theorem 2.11) and
we also show that u satisfies the positive density property for {# > 0} and for
{u = 0} at the free boundary (Theorem 2.17).

Throughout the section we carefully study the dependence of our results on
the domain H and on the constants of the problem. For this purpose, we define
two parameters u and § which take into account all these data (see Remarks
2.7 and 2.12), and we get estimates depending on these new parameters.

We finally prove the important fact that for R large enough {u > 0} is
connected and bounded independently of R (Theorem 2.18).

Let us define for v € H!(R") N L1(R")

1
J(v) = ~|Vu|*> = 2v)dx.
v R[(z v v)x

We will need two preliminary lemmas:

LemMma 2.1. Ifv € H'(R") N L' (R"), then
J() 2 =Cl{v > 0)|"F,

2
here C = ————|B;(0)|~%/".
where n(n+2)l 1(0)]

ProoF. Since J(v) > J(max(v,0)), we may assume that v > 0. We will
also assume without loss of generality, that {v > 0} is bounded. Let B be a ball
such that |B| = |[{v > 0}| and let v* € HO1 (B) be the Schwarz symmetrization
of v (see [4] or [8] for definition and properties), which satisfies

2.1 J(v) = J(v%).
By well known results, there exists a unique function ¥ € Hj (B) satisfying
(2:2) J(w) > J(¥) for every w € H} (B),

and explicit calculations show that ¥ > 0 in B and

23) J() = —C()|B|""
2
where C(n) := —————|B;(0)|~%/". Now the desired inequality follows from
n(n+2)

(2.1), (2.2), (2.3) and the choice of the ball B. m|
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LeMMA 2.2. Let D C R" be an open set. There is a positive constant C such
that if v € HO1 (D), then
nt2
vl g1py) < CA+ DI (I (v) + D] )2
Here C depends on n only.

Proor. Without loss of generality we may assume that D is bounded and
v e C& (D). By Poincaré’s Inequality ([6, p. 164]), there is a constant C = C(n)
such that

1/2 1/2
2.4) < v2) < C(n)|D|1/"< |Vv|2) )
/ /

This, together with Holder Inequality yields

2 n

/le|2 =2J(v) +4/v <2J() + Zcm)| D" +20t/|VU|2
o

D D D

for any @ > 0. Choosing for instance o = 1/4 and using again (2.4) we get
the desired inequality. O

THEOREM 2.3. There exists a solution u to problem P; p.

Proor. Using Lemma 2.1, we get J.(v) > —C for all v € K%. We now
consider a minimizing sequence u, and by Lemma 2.2 we have |juy|| HU(@p) = C

(here C and C denote positive constants). Hence for some u € K§ and a
subsequence

Vuy — Vu weakly in L2(QR),
ur — u in L'(S2g) and almost everywhere in Qp.

Moreover,
[{x € Qr/u(x) > 0} < likminfl{x € Qp/ur(x) > 0}|,
—00

/qu|2 §liminf/|Vuk|2,
k—00
Qp Qpr

by the well known semicontinuity properties of these functionals. It follows
that u is a solution to P, g. O

LEMMA 2.4. Ifu is a solution to problem P g, then Au > —2 in the distribution
sense in Qg. Hence we can assume that

u(x) =liﬁr)1 ][ u VxeQ,
Br(x)

and u is upper semicontinuous.
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Proor. For a nonnegative n € Cj°(2g) and ¢ > 0 we have J.(u — tn) >
Je(u) which implies
/(—Vu-Vn+217) >0,
Qpr

2
. . . . X
that is, Au > —2 in the distribution sense. Then, the function v := u + I—l—

n
is subharmonic. It follows that the second assertion of the lemma holds for v
and therefore for u. The proof is complete. O

LEMMA 2.5. Ifu is a solution to Pec, g thenu > 0.

Proor. Since J.(v) < J.(u) for v := max(u,0), with strict inequality if
{x € Qr/u(x) < 0}| > 0, it follows that ¥ > 0 in Q. O

In the sequel we shall not indicate the explicit dependence of constants
upon wgy or Ry.

THEOREM 2.6. There exist positive constants gy and C such that if ¢ < gy and
u is a solution to PGC, g then

l{x € Qr/u(x) >0}l <C.
Here gy depends on n only and C = C(n, |H|, 1), where | is given by (1.4). C

depends continuously on |H| and .

Proor. Let s(u) := |{x € Qg/u(x) > 0}. If s(u) < max(l — |H|, wp),
nothing to prove. Otherwise, let p(s) := —eC(n)(s + |H|)?> + (s — wp)® — €l,
where C(n) and ! denote respectively the constants in Lemma 2.1 and (1.4).
From Lemma 2.1 and from (1.6) we find that p(s(x)) < 0. It follows that if

we choose ¢ < gy :=

cw and denote by s, the largest zero of the quadratic
n
function p, then

su) <52 =s8(n, ¢ |H|,I) <Cn, |H|, D,

hence the theorem is established. O

REMARK 2.7. In the sequel we shall assume ¢ < gy, & given by Theo-
rem 2.6, and we shall fix a positive constant u, with the following property:

@5) [{x € Qr/u(x) > 0}] < pu for every R > Ry
’ and for every solution u to Py p,
noting that such a constant exists by Theorem 2.6.

From the fact that u does not depend on R, and from Lemma 2.5, we
conclude that if R is large enough and u is a solution to Py z, there exists a
set in Qg where u vanishes and therefore a free boundary Q2 N d{u > 0}.
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LEMMA 2.8. There exists a positive constant C such that if u is a solution to
g D C QR is an open set and s is the function satisfying As = —2 in D and
s =uon dD, then

‘/WW—QVSCO+M+WMU€DN@%=WL
D

Here C depends on ¢ only and u is given by (2.5).

Proor. Let us extend s by u into Qg\D. Since u > 0, s is positive in D.
Clearly s € K3 and therefore J.(u) < J:(s). Then, since

fe(fs > 0}) — fe(l{u > 0}]) = C(e)(1 + n+ [DDI{y € D/u(y) =0},
where p is given by (2.5), the lemma follows. O

LEMMA 2.9. There exists a positive constant C, such that if u is a solution to
P; g, v < 1and B,(x) C Qg, the following property holds:

l ][ u > C impliesu > 0in B,(x) .
’ 0Br(x)
Here C = C(n, &, 1), and u is given by (2.5).
Proor. The idea of the proof is that if the average of u on 9B, (x) is large,
then replacing u in B,(x) by the function s satisfying
As =—-2in B,(x), s=u on B,(x),

will decrease the functional unless s = u.
Since r < 1, we have by Lemma 2.8

2.6) /ﬂvw—wﬁscmaMMye&uvww=ow
By (x)

We wish to estimate the measure of B,(x) N {u = 0} from above by the left
hand side of (2.6). Proceeding as in [2, Lemma 3.2] and using that s can be
estimated from below by the harmonic function in B,(x) with boundary values
u, we obtain

1 ' 2
2.7 (— ][ u) l{y € B,(x)/u(y) =0}| < C(n) / IV —s)*.
r

9By (x) Br(x)
It follows from (2.6) and (2.7) that if
1
- ][ u>C,
,
0By (x)

and C is sufficiently large depending only on n,e and w, then u > 0O almost
everywhere in B,(x). From (2.6) we deduce that u = s almost everywhere in
B,(x) and by Lemma 2.4 u = s > 0 everywhere in B, (x). O
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LEMMA 2.10. Ifu is a solution to P g, then Au = =2 in the open set {x €
Qr/u(x) > 0}.

Proor. Let x € Qg such that u(x) > 0 and fix « such that u(x) > a > 0.
Then, by Lemma 2.4
u>a
Br(x)
for small . This fact allows us to apply Lemma 2.9 in a small ball B,(x).

Hence the set {x € Qg/u(x) > 0} is open, and the result now follows from
Lemma 2.8. O

For 0 < 8 < 1 let us define
2.8) Ds = Ds(H) := {x e R"/0 < dist(x, H) < §8}.
Since R > Ry, we have by (1.2)
Ds C {x e R*/0 < dist(x, H) < 1} C Q.

We will now show that the free boundary Qg N d{u > 0} stays away
from 0H.

THEOREM 2.11. There exists a constant 0 < 8y < 1, such that if u is a solution
to P, then
Ds, C {x € Qr/u(x) > 0}.

Here 89 = 8o(n, &, ¢, r*, ), wherer* and p are given by (1.1) and (2.5) respectively.
8o depends continuously on c.

ProoF. The idea of the proof is similar to that of Lemma 2.9.

Let xo € 0H,0 < § < min(l, r*), r* given by (1.1) and consider Bj;, the
interior tangent ball to H in xp, of radius §. For convenience let us assume
that Bs = Bs(0). Let s be the function satisfying

As = =2 in QrN Bys, s =u on 3(Rg N Bys)

(here we denote Bys = B,s(0)). Assume, in addition, that s = u = ¢ in Bys\Qg.

We will first estimate s from below by the harmonic function w in Bys\ B;
such that w = ¢ on 0Bs and w = 0 on 3B,;, using the Maximum Principle.
Therefore we get

C(n)

(2.9) s(x) > wx) >c¢ 5

(28 — |x|) for x € Qr N Bys .

On the other hand we have by Lemma 2.8

(2.10) / IV(u — ) < Cn, &, w)l{x € Qg N Bas/u(x) = 0}].
QRNBys
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We wish now to estimate the measure of Bys N {u = 0} from above by the left
hand side of (2.10). For any & € dB1(0) we define

re =inf{r/8 <r <26 and u(r§) = 0},

if the set is nonempty and r; = 2§ otherwise.
Proceeding as in [2, Lemma 3.2], but using (2.9) instead, we get

62 28
£ 05 —r) < Coy / IV — 5)(r&)dr
3

for almost all £ € dB;(0), from which we deduce

02 2
?I{x € Qg N Bys/u(x) =0} < C(n) / IV(u —s5)|"dx .

QRrNBys

Hence (2.10) implies that if § is sufficiently small, depending only on n, ¢, u
and ¢, then u > 0 everywhere in Qg N Bys. Thus the desired conclusion is
established. O

REMARK 2.12. In the sequel we shall fix a constant §,0 < § < 1 with the
following property:

D;s C {x € Qr/u(x) > 0} for every R > Ry

2.1
@10 and for every solution u to Py,

noting that such a constant exists by Theorem 2.11.
Given a solution u to P;p, we will let

d(x) =d,(x) ;= dist(x, Qg N {u > 0})
for any x € Qg such that u(x) > 0. In particular we will have d(x) > 0 and

By (x) N Qg C {u > 0}.
We will now show that u grows linearly away from the free boundary.

LeMMaA 2.13. There exist positive constants C1 and Cy such that ifu is a solution
to P g, x0 € {u > 0},d(x0) < 1 and Byxy)(x0) € Qpr, then

Ci1d(xg) < u(xp) < Cad(xop) .

Here Cy = Ci(n, g), Cy = Cy(n, &, ) and w is given by (2.5).
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ProoF. Let r := d(xp) and let B, := B,(xp) for p > 0. To establish the
first inequality, we will assume that

2.12) u(xg) < ar
and derive a lower bound on «. Defining

2
v(x) :=ulx) + Ix_x(i

we have v > u > 0 and Av = 0 in B,. Then by Hamnack’s Inequality and
(2.12) we get

(2.13) supu < supv < C(n)v(xp) < C(n)ar.

B2 :197)
Let us consider ¢ € C®(R") satisfying ¢y =0 in |x| <1, ¥y =1 in |x| > 2,
and ¥ > 0 otherwise. Now define for x € B,)»

. 4x
w(x) := min (u(x), C(n)arllf(T)) .
Extending w by u outside B,/; and recalling (2.13), we see that w is an

admissible function, and noting that w =0 in B,/s and w > 0 in B,3\B,/s we

get
1 1
5/[Vw|2—§/|Vu|25Ca2r",
QR Qp

—2/w+2/u5aCr”+l,
QR Qp

fe({w > 0}]) — fe(l{u > 0}]) < —Cr",
with C = C(n,¢) > 0. Since J.(w) > J.(u), we deduce that ¢ > Cj, for a
constant C; = C;(n, &) > 0 and the first inequality follows.
To show the second inequality, we observe that d B, touches d{u > 0}, and

by Lemma 2.9 we have
1
][ u<C
r+p

for small p > 0, hence

Considering again the function v defined above, we then obtain

u(xp) = ][ v < Cyr,

3By

where Cy = Cy(n, ¢, u). This completes the proof. O
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LEMMA 2.14. There exists a positive constant L such that if u is a solution to
Pip, x0 € QrN{u > 0}, 0 < r < 1and By (xg) € Qr, then u is Lipschitz
continuous in B, (x) with constant L. Here L = L(n, ¢, i) and p is given by (2.5).
It follows that u € C%'(QR).

Proor. If x € B,(xp) with u(x) > 0, we have by Lemma 2.13 that
(2.14) ux) <C(n,e, u),

where we have used that d := d(x) < 1. Proceeding as in the proof of the
same lemma we get

1
(2.15) 7 ][ u<C(n,e, .
9Bg(x)
From the fact that ¥« > 0 and then Au = —2 in By(x), we see that is

Xi
harmonic in B;(x) for 1 <i < n, implying that

[Vu(x)| < ?

3By (x)

Therefore, recalling (2.14) and (2.15), and using that [Vu| =0 a.e. in {u =0}
we get the conclusion. O

LEMMA 2.15. There exist constants C > 0 and 0 < ro < 1 such that ifu is a
solution to Pg g, xo € Qg N d{u > 0}, 0 < r < ro and By (x0) € 2R, then

sup u > Cr.
Br(xg)

Here C = C(n, &, ), ro = ro(n, &, u) and w is given by (2.5).

Proor. Since
(2.16) Cid(x) <u(x) < Crd(x) Vx € B.(xg) N{u > 0}

by Lemma 2.13, we will construct a polygonal starting close to xo, along which
u grows linearly.

Step 1. (Essential part of the proof). Let us choose a point x; satisfying
u(x1) > 0 and By, )(x1) € B,(xo) -

Let us call d = d(xy), let y; be a contact point of B;(x;) with the free boundary,

2
x—x
and consider the function v(x) = u(x)+|————ll—, which is harmonic in B;(x1).
n
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Using (2.16) and Lemma 2.14, and choosing ry in the statement small
enough (depending only on n, ¢, 1), we find a constant ¢ = «a(n, e, u), 0 <
o < 1 such that

v(x1)

v(x) < for x € 0B;(x1) with |x — y;| < ad.

This, together with the fact that

v(xy)) = ][ v

9By (x1)

allows us to obtain a point x, € dBy;(x;) and a constant 8§y = do(n, &, u) > 0
such that v(x;) > (1+28p)v(x;). Now using (2.16) (if again r( is chosen small
enough) we conclude that the point x, satisfies

u(xz) > (1 +8)ulxy), |x2—xi| =d(xy).

Step 2. (Induction argument). Let us assume that a priori x; is chosen with
|x; — xo| < r/8 and thus |[x; — x1| < r/8.
Now suppose we get points xp, ..., Xk satisfying

u(x;) > 0, Bacy;)(xi) € By (xo),
2.17)
|xip1 — xi| =d (), ulxiy) = (1 4+ do)u(x;),

for 1 <i <k, as a result of the iteration of the first step. It is not hard to see
that having 2;‘:1 [xi+1 — x;| < r/8 will allow us to apply the first step to the
point Xg4i.

However, (2.16) and (2.17) imply that we will be able to perform the
iteration only a finite number of times, which means that for some ky > 1 the
points x1, x2, ... Xgy+1 Will satisfy

ko—1 ko
Z [xi+1 — x;| <r/8 and Z|xi+l —xi| >r/8.
i=1 i=1
This, in conjunction with (2.17) yields
u(x) >Cr, C=C(n,e,u)>0

for X = xy+1, and By (X) C B, (xo) N {u > 0}. The proof is complete. O
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LEMMA 2.16. For 0 < k < 1 there exist positive constants C,, and r, such that
for each solution u to P, g and for each ball B,(xo) C Qg, withdist(xo, dS2g) > 3/2
and 0 < r < ry, the following property holds:

1
- ][ u < Cimplies u = 0in B (xp) .
’

3By (xg)

Here C, = C(n, e, u,8,k),r. =r(n, &, u,8,«) and, i and § are given by (2.5)
and (2.11) respectively.

PROOF.

Step 1. We will first show that under our hypotheses B, (xo) N{u > 0} # @
implies

(2.18) sup u>Cr,
Bﬁr(xo)

for a constant C = C(n, ¢, u, 8, k), provided we choose r, in the statement
small enough.
Let us first assume that B,,(xo) C {u > 0}. If d(xp) < §/2 we get by
Lemma 2.13 that
u(xp) = Cyd(xo) > Cikr.
. . 82 Jx —xof?
If d(xg) > 8/2, we consider the function v(x) = i Clearly u —v
is harmonic in the ball Bs/;(xp), nonnegative on its boundary and therefore
u > v in this ball. Thus s
u(xo) = v(xp) > -
4n
provided we choose r, < 6.
Finally, we will show (2.18) assuming there is a point x;€B,, (xo)Na{u > 0}.
In this case, we can apply Lemma 2.15 to Br(x;) for 7 = (/k —«k)r/2, if again
r. is small enough. Then, we obtain

sup u > Cr,
Br(x1)

thus completing the first step.

2
Step 2. To establish the lemma, let us consider w(x) := u(x) + l—u(—)—l—

and let & denote the harmonic function in B,(xp) with boundary values w. By
the Mean Value Theorem we have

2
(2.19) h(x0)=%+ ][ u.

3By (xq)
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On the other hand, since & — w is superharmonic in B, (xp), with zero boundary
values, it follows that A > w > u in B,(xg). Thus, an application of Harnack’s
Inequality yields

(2.20) sup u< sup h<C(n,k)h(xp).
B ﬁr(xo) B ﬁr(‘xo)

1
- ][ u<Cy
’

3By (xp)

Now suppose that

for some constant C,. This, together with (2.19) and (2.20) will imply

sup u<Cr,
B /g, (x0)

with C as in (2.18), provided C, and r, are small enough. Thus, the first step
of the proof establishes our result. O

THEOREM 2.17. There exist constants 0 < Ay < Ay < 1,0 < rg < 1, such that
if u is a solution to P p,xo € QrN3{u > 0}, 0 < r < ro, Byr(x0) € Qr and
dist(xg, 9Q2g) > 6/2, then

1B, (x0) N {u > 0} _ "

A <
| By (x0)|

Here A; = Ai(n, &, u,8),i = 1,2, ro = ro(n, &, u, 8) and, u and § are given by
(2.5) and (2.11) respectively.

Proor. If ry in the statement is small enough (depending only on n,¢
and u), we can proceed as in Lemma 2.15 and find a point X satisfying

(2.21) u(x) > Cr, By (x) C Br(x0) N {u > 0},

where C = C(n,e,u) > 0. By Lemma 2.13 we have Cpd(X) > u(x), then
(2.21) yields
| B, (x0) N {u > 0}] > [Byx(X)| = Cr",

from which the first inequality follows.
To establish the second inequality let s denote the function satisfying
As = =2 in B,(xg), s =u on dB,(xy)
IZ

|x — xo

and consider the function v(x) := s(x)+ , which is harmonic in B, (xp).

By Lemma 2.8 and Poincare’s Inequality we get

C
(222)  |{x € B, (xo)/u(x) =0}| > C / IV(s—u)lzzr—2 / (s —u)?

By (xp) By (x0)
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where C = C(n, ¢, u). We will now find a lower bound for (s —u) in By, (xp),
for « small. Given y € B,,(xg), the application of the Poisson Integral for v
yields

_ 2 2
(2.23) v(y) — 'l—;fﬁ'— > (1 — 2na) ]l u— @

3By (xg)

and, on the other hand, from Lemma 2.13 we see that
2.24) u(y) < Car.

We can now apply Lemma 2.16 in B, (xo), provided we choose ry small enough.
Then, from (2.23) and (2.24) it follows that

s(y) —u(y) = Cr in By (x0),C =C(n,&,p1,8) >0

for o small enough, which by (2.22) yields the second inequality. O

In the next theorem we will use some results that can be found in the
Appendix (Section B) at the end of the paper.

THEOREM 2.18. There exist positive constants M and R, such that if R > R,
and u is a solution to P, then {x € Qr/u(x) > 0} is connected and contained in
By (0). Here M = M(n, e, u,8), Ry = Ri(n, &, u, §) > Ry and, L and § are given
by (2.5) and (2.11) respectively.

ProoF. By Theorem 2.11, the set {x € Qr/u(x) > 0} has a connected
nonempty component D such that dH C dD.

Step 1. We will start by showing that there exists a positive constant
M =M(n,e¢, u,d8) such that D C By (0).
By (1.2) we have that

(2.25) Br,(0) N D # 0,
and by (2.5)
(2.26) ID| < |{x € Qg/u(x) >0} < .

Thus, if we define, Ay = {x/k < |x| < k+ 1/2} for k > Ry, we find
ko = ko(n, ) > Ro such that

2.27) Ar ¢ D Yk>kp.

Let k; be the smallest integer such that D C By, (0) and suppose ki > ko + 2
(if not, there is .nothing to prove). Since D is connected, we have by (2.25)
that

AcrND#P for kog<k<k —2,
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and therefore, by (2.27) we can choose points x; € Qg N d{u > 0}, with
k <|xx| <k+1/2, for kg <k <k —2.

Now set r; = min{1/8, ro/2}, for ro given by Theorem 2.17. Then, applying
that theorem we get

(2.28) H{u > 0} N By (xi)| = AM|Bry (k)| ko <k <ky —2.
Therefore, noting that the balls B, (x;) are disjoint and that A; and r; depend

only on n,e, u and 8, we get from (2.26) and (2.28) that ky < M(n, &, u, 8),
thus completing the first step.

Step 2. We will now suppose that there exists an open set D’ # @, such
that DN D’ =@ and

{x € Qp/u(x) >0} =DUD’,
and we will find a contradiction, provided R > R; with R; a constant depending

only on n, &, u, and 8.
Let u, € H'(R") N L'(R") be the function given by

{ u in D
up 1=
0 in R®\D,
and let xo be a point satisfying

xo € dD\ 0H, D C {(x — x¢).en > 0}
(xp exists because D is bounded). Let B* be a ball such that
(2.29) 0 < dist(xp, B*) < 1, B* C {(x — x0).e» <0}, |B*| =[{uza >0} <,
and let u* € H}(B*) be a function satifying

w*>0in B*, Ju*) <J(u)

(we can find such a function proceeding as in Lemma 2.1). Then for Q = R*"\ H
and

u in D
u:=<¢ u* in B*
0 in Q\(DUBY,

we have that 7 € HY(Q)NLY(R), w =c on dH = 3L, and J,(u) > J.(a).
By the first step, and by (2.29), there exists a constant Ry = Rj(n, €, u, ) >
Ro, such that # has its support in Bg, (0). Therefore, # is a solution to PEf R
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provided R > R;. If in addition R > 2R;, we have that xog € Qz N 3{z > 0}
and an application of Theorem 2.17 for small r > 0 yields

| B:(x0) N D|
| By (x0)|
On the other hand, we could have proceeded as above in the construction
of u, but allowing in (2.29) that dist(xg, B*) = 0. Thus, we find a solution

u to P;p, for R > 2R, satisfying in a neighborhood of xo the hypotheses of
Lemma B.4 (see the Appendix at the end of the paper). Therefore we obtain

(2.30) O<X <

| B, (x0) N D|
— >0 as r—0,
| B, (x0)|
which contradicts (2.30) and gives the desired result. O

3. — Existence of a solution to problem P;. Basic properties

In this section we show that there is a solution to our original problem
P¢, and we derive regularity properties that hold for any solution.

The existence of a solution u to P with bounded support is not hard to
establish at this stage (Theorem 3.1). It follows from the fact that any solution
to a problem P is supported in a ball centered in the origin with a radius
independent of R (recall Theorem 2.18).

As a consequence, this solution # —and any other solution to P{ with
bounded support that might exist— will be a solution to P/, for R large
enough and therefore, the results established in the previous section can be
applied. The natural question here is: given a solution to PS, does it have
bounded support and thus the behaviour just described? We will be able to
give a positive answer, but not until the end of the section.

We proceed here as follows: We first show that every local result proved in
Section 2 for problem Py has an analogous version for problem P;. Namely,
a solution u to P{ is nonnegative and Lipschitz continuous, satisfying Au > —2
globally and Au = —2 where positive (Theorem 3.3). Also we get a bound
for |{x € Q/u(x) > 0}| (Theorem 3.4) and we show that the free boundary
QNd{u > 0} stays away from 0 H (Theorem 3.6). In addition, we see that u has
linear growth near the free boundary (Lemmas 3,8, 3.9 and 3.10) and that the
positive density property is satisfied for {# > 0} and {u = 0} (Theorem 3.11).

Next we show that all of these properties imply that any solution u to P¢
has bounded and connected support (Theorem 3.13). We eventually get to the
desired conclusion which is that problems P;p and P, are equivalent for R
large (Corollary 3.14).

As in the previous section, we are concerned with the dependence of ‘our
results on the domain H and on the constants of the problem. For this purpose
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we define two new parameters u and § (see Remarks 3.5 and 3.7) which
take into account all these data. Let us finally remark that the results in this
section that are stated without proof can be obtained by proceeding —with
minor modifications— as in Section 2.

THEOREM 3.1. There exists a solution u to P¢.

Proor. Let
Y= vg}(fc Je(v),

and let u; be a minimizing sequence. Without loss of generality we may assume
that for large k, sptuy C Bi(0) and moreover, uy is a solution to P;,. Then,
by Theorem 2.18, we get for large k

sptuy C By (0),

where M is a constant not depending on k. If we choose R > M and a solution
u to P g, we have
Je(u) < Je(ui) .

Now, taking k — oo, we see that y > —oo and u is a solution to Pf, thus
completing the proof. O

REMARK 3.2. The previous theorem guarantees the existence of a solution
of problem P¢, and moreover, from its proof we deduce that any solution to
Py is also a solution to P;, if R is large enough.

THEOREM 3.3. Let u be a solution to P{. Thenu > 0, u € Ccol(Q) N CO(Q),
Au > —2 in the distribution sense in Q2 and Au = —2in {x € Q/u(x) > 0}.

THEOREM 3.4. There exists a positive constant C such that if u is a solution to
P¢, then
l{x € Q/u(x) >0} <C.

Here C = C(n, |H|, 1), where | is given by (1.4) and C depends continuously on
|H| and l.

Remark 3.5. In the sequel we shall fix a positive constant wu, with the
following property:

3.1 l{x € Q/u(x) > 0}] < u for every solution u to P;,

noting that such a constant exists by Theorem 3.4.

The last theorem also implies that if u is a solution to P¢, there exists a
set where u = 0 and therefore a free boundary Q N ad{u > 0}.

For 0 < § < 1, we define Ds = Ds(H) as in (2.8) and we have:

THEOREM 3.6. There exists a constant 0 < 8y < 1, such that if u is a solution
to P{, then
Ds, C {x € Q/u(x) > 0}.

Here by = 8o(n, €, c, r*, ), wherer* and p are given by (1.1) and (3.1) respectively.
8o depends continuously on c.



A FREE BOUNDARY PROBLEM WITH A VOLUME PENALIZATION 269

ReEMARK 3.7. In the sequel we shall fix a constant §,0 < § < 1 with the
following property:

3.2) Ds C {x € Q/u(x) > 0} for every solution u to P;,

noting that such a constant exists by Theorem 3.6.

LEMMA 3.8. There exists a positive constant C, such that if u is a solution to
P{,r < 1and B,(x) C K, the following property holds:

1
- ][ u > C implies u > 0in B,(x) .
r

dBr(x)

Here C = C(n, &, 1), and  is given by (3.1).

LeEMMA 3.9. For 0 < k < 1 there exist positive constants C,. and r, such that
for each solution u to P{ and for each ball B,(xg) C 2, with dist(xp, 9S2) > §/2
and 0 < r < ry, the following property holds:

1
- ][ u < C, implies u =0 in B,,(xp) .
’

3Br (x)

Here C, = C(n,&, u,8,k), r, = r(n,& u,é8,k) and, u and § are given by (3.1)
and (3.2) respectively.

Given a solution u to P{, we will let
d(x) =d,(x) :=dist(x, QN a{u > 0}),

for any x € Q such that u(x) > 0.
LEMMA 3.10. There exist positive constants Cy and C, such that if u is a
solution to P;, xo € {u > 0}, d(x0) < 1 and By(xy)(x0) € €2, then
Ci1d(x0) < u(xp) < Cad(xp).

Here C; = Cy(n, ¢), C, = Ca(n, &, u) and u is given by (3.1).

THEOREM 3.11. There exist constants 0 < Ay < Ay < 1,0 < ry < 1, such that
if u is a solution to PS, xo € QN d{u > 0} and 0 < r < ry, then

B0 _
S BGol

Here A; = Ai(n, e, 1, 8),i = 1,2, rg =ro(n, &, u, 8) and p and § are given by (3.1)
and (3.2) respectively.

Al

ReEMARK 3.12. Theorem 3.11 implies that & N d{u > 0} has Lebesgue
measure zero, for any solution u to Pf.
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THEOREM 3.13. There exists a positive constant M such that if u is a solution
to P{, then
{x € Q/u(x) > 0}

is connected and contained in By (0). Here M = M(n, €, u, 8) and u and 8 are
given by (3.1) and (3.2) respectively.

We now have, as a direct consequence of the last theorem:

COoROLLARY 3.14. There exists a constant R such that
u is a solution to P; <> u is a solutionto P VR > R;.

Here Ry = Ry(n, &, 1, 8) = Ry, and 1 and § are given by (3.1) and (3.2) respectively.
The next lemma provides bounds that will be useful later.
LemMA 3.15. Let u be a solution to P;.
1) If xq satisfies \
xo€ QNaof{u >0}, 0<r < 1and By (x9) € 2,
then
IVullLooB, (xg)y < L.

Here L = L(n, e, u) > 0, and u is given by (3.1).

2) Let D be a domain satisfying
DeQ,DNa{u>0}#0.
Then
llullLoo(py + I Vel Loopy < C .

HereC = C(n, &, u, s, D) > 0, s isany number suchthat0 < s < dist(D, 9R2)
and p is given by (3.1).

ProoF. To prove part 1) we can proceed as in Lemma 2.14. To see 2), let
us define D' = {x € R"/dist(x, D) < s/2}.

Step 1. Let ro := min{s/4, 1} and choose a point z € D N d{u > 0}. Since
D’ is connected, for x € D’ there exist points xg,...,x; in D’ (k depending
only on D and s), such that

Xo=Xx, Xx=2, |xit1—xi|<ro/2, 1<i<k,
and there exists 0 < j < k such that B, (x;) C {u >0} for 0 <i < j—1 and

By (x;) € {u > 0}.
For 0 <i < j —1 we consider in B,,(x;) the harmonic function

2
X — X;
v,-(x>=u(x>+’T’+",
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which satisfies

(3.3) ux) < sup v;(x) < C(Mu(xit1)
Br/2(xi)

by Harnack’s Inequality. Since from Lemma 3.10 we get u(x;) < Cro, C =
C(n, e, n), we obtain, applying inductively (3.3), that u(x) = u(xo) < Cro.
That is,

34 lullLoopy < llullpoopy < C, C=C(n,¢e,n,s,D).

Step 2. Let r; := min{s/10,1/4} and let x € DN {u > 0}. If d(x) > ry,
then

C(n) C(n)
(3.5) Vu()| < Fou= = i)
ri r
8Br; ()
On the other hand, if d(x) < r;, we choose y € N d{u > 0} such that
|x —y| =d(x), and part 1) implies

IVux)| < [Vl Loo(sy, ) < L L=L(n,eun,
which together with (3.4) and (3.5) establishes the result. O

4. — The measure 1, and the function g,

In this section we prove preliminary regularity properties of the free bound-
ary.

We first prove that A, := Au + 2x({u > 0}) is a positive Radon measure
supported in the free boundary (Lemma 4.1). Next, the linear growth condition
proved in the previous section implies a density property on the free boundary
(Theorem 4.2).

As a consequence we get a representation theorem, which says that 2N
d{u > 0} has finite H"~! measure and that the measure A, is given by a function
g, times the surface measure of QNd{u > 0} (Theorem 4.3). Therefore {u > 0}
is a set of locally finite perimeter.

Our next step is the study of the behaviour of u near the reduced boundary
Orea{u > 0}, that is, near the points in 2 N d{u > 0} where the unit outward
normal with respect to {# > 0} exists. We prove that the normal derivative
of u is well defined for certain points xy on the reduced boundary: there, u
behaves like the positive part of a linear function with slope g,(xp) (Theorem
4.7). We finally show that this behaviour holds #"~! almost everywhere on the
free boundary (Remark 4.8).

In this section we use the notions of blow-up sequences and limits. To
this effect we refer to definitions and results given separately in the Appendix
at the end of the paper. '
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LeEMMA 4.1. If u is a solution to P{ then A, := Au+2x ({u > 0}) is a positive
Radon measure with support in Q N d{u > 0}.

Proor. Let f(s) = max(min(2 — s, 1),0). Since Au = —2 in {u > 0}, we
have for nonnegative functions n € C§°(2) and k € N

—/Van+2 / nz—/VuV(nf(ku))z— / |Vuvn|.

Q {u>0} Q O<u<2/k

Letting k — oo we conclude that Au + 2x({fu > 0}) > 0 in the sense of
distributions. Consequently, a measure A, with the desired properties exists. O

THEOREM 4.2. Let u be a solution to P;. For any D € K2, there exist constants
0 < ¢ < C and ro > 0 such that for any ball B, C D with center in Q N d{u > 0}
andr <ry

el < /dAu <Cr* L.
By

ProoOF. Let
4.1 c1 = ||VullLom) ,
let A := Au, and choose xo € D N d{u > 0}. For n € Cg°(2) we have
/ndA:—/VnVu.
Q Q

Approximating x (B,(xg)) from below by suitable test functions n and using
(4.1) we get for almost all r < 1 with B,(xg) C D

/ dr, = / Vu-vdH" ' 42 / x{u >0} <Cr 1,
Br(xp) 9Br(xp) By (xg)
which proves the second inequality. To prove the first one, let us fix 0 <k < 1
and let C, and r, be the constants in Lemma 3.9. Now choose r < r, such that

B.(x9) C D. By Lemma 3.9, given 0 < o < 1 there is a point y € 9By, (xo)
with u(y) > C.ar > 0. Thus (4.1) implies

4.2) u(y) <cily — xol = crar and u > 0 in Beyr(y) ,

where c(a) := *Cu

. Let G, be the positive Green function for the Laplacian
acy
in B,(xp) with pole y. Let s be the function satisfying As = —2 in B,(xp) and
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s =u on 3B,(xg). Now set A := A(u —s). It follows from (4.2) that dA =0
in B (y), thus we can write

w-0)=- [ Gd&,
Br(XO)
which implies
/ GydA = —u(y) + / ud_,GydH" .
Br(xp) 9Br(xp)
Then, using (4.2) and Lemma 3.9 we have
/ Gydr, > —u(y) + / ud_,GydH"!
Br(xo) 3Br(xo)
> —cijar + (1 — 2na)Cyr > cr,
for @ small enough. On the other hand, by Lemma 4.1 and (4.2)
/ Gydr, < sup G, / dr, < Cr¥™ / dhy
Brxg) Br (x0)\Be(a)r () B, (xg) By (o)

and this establishes the desired inequality. O

We shall denote by H"~!|3{u > 0} the measure H"~! restricted to the set
do{u > 0}.

THEOREM 4.3. Let u be a solution to Pf. Then,
1) (N a{u > 0}) < oo.
2) There is a Borel function q, such that

Au+2x({u > 0}) = g, H" ! 8{u > 0},
that is, for every ¢ € C3°(2) we have
—/VuV(p +2 / 0= / oqdH"!.
Q {u>0} QNa{u>0}

3) For any D € Q2 there exist constants 0 < ¢* < C* and ro > 0 such that for
every ball B,(x) C D withr <rgand x € QN a{u > 0},

¢* < qux) < C*, " < HTN B N > 0) < €

Proor. It follows from Theorem 4.2 precisely as in [2, Theorem 4.5], if
we us that, by Theorems 3.6 and 3.13, there exists a set £ € 2 such that
QNai{u >0} CE. O
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REMARK 4.4. It is not hard to see that given D € 2, the constants ¢* and
C* in Theorem 4.3 depend only on n and on the constants ¢ and C that we
get for D in Theorem 4.2.

Let u be a solution to P{. Fix X and R satisfying

xeQNafu>0},Br(x)eR, 0<R<1,

and now set D = Bg(x) in Theorem 4.2. It follows from its proof (and from
Lemmas 3.9 and 3.15) that in this case the constants ¢ and C (and therefore
the constants ¢* and C* in Theorem 4.3) will depend only on n, &, u and § (u
and § the constants in (3.1) and (3.2) respectively).

REMARK 4.5. Let u be a solution to PS. From Theorem 4.3, 1) it follows
([5, Theorem 4.5.11]) that the set A = {u > 0} has finite perimeter locally in €2,
that is —V x(A) is a Borel measure. We denote by dq4A the reduced boundary
of A, that is,
OredA 1= {x € Q/|v,(x)| =1},

where v,(x) is the unique unit vector such that

3) / IX(A) = X (/Y = X)ma(x) < OP] = 0™
By (x)

for r — 0, if such a vector exists, and v,(x) = O otherwise; see [5], [7].

REMARK 4.6. Given a solution u to P and a sequence of points x; €
such that x; — xo € Q and u(x;) = 0, there exists a neighborhood D C  of
Xxo, where u satisfies the hypotheses B.1 in the Appendix (see Lemma 3.9 and
Theorem 3.11). Therefore, we can define blow-up sequences and limits as in
B.2, and make use of the results in the Appendix (Section B).

In the next statement we use the following notation (see [5, 2.10.19,
3.1.21]): For any set E and xp € E we denote by Tan(E, xo) the tangent
cone of E at xop, i.e.,

Tan(E, xo) = {v/v = ,,,li_r,‘},ormv'"’rm >0,x0+ v, € E, v, > 0}.

Given a measure u on R" and xo € R" we denote by 6*"~!(u, xo) the (n —1)-
upper density of u at xp, i.e.

lim sup u(B, (xo))

-1 r—0
0™ (1, x0) = —,
Oy

where «,_; denotes the Lebesgue measure of the unit ball in R 1,
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THEOREM 4.7. Let u be a solution to P{ and let xo € dreq{tt > 0}. Then
Tan(d{u > 0}, xo) = {x/x.v,(x0) = 0}.
If, in addition
0** ' (H" ! [0fu > 0}, x0) < 1
and
9w — qu(x0)ldH" ™' = o(" Y asr > 0,
By (x9)N3{u>0}

then for x — 0
u(xg + x) = qu(x0) max(—x.v,(xo), 0) + o(|x]) .

Proor. Take for simplicity v,(xp) = e,. Let u; be a blow-up sequence with
respect to balls Bk (xp), with blow-up limit ug. Then x ({ux > 0}) converges in
LIIOC(IR") to x ({uo > 0}) by (B.6) and to x({x, < 0}) by (4.3). It follows that
up =0 in {x, > 0} and uy > 0 a.e. in {x, < 0}. From (B.10) we deduce that
ug > 0 in {x, < 0} and therefore, {x, = 0} is the (topologlcal) tangent space
of af{u > 0} at xop.

Now define

£(x) = min(2(1 — |xa|), Dn(x1, ..., Xn—1)

for |x,| < 1 and zero otherwise, where n € C§°(B;)(B’ is an (n— 1)-dimensional
ball with radius r). By Theorem 4.3, we have for large k

_ / ViR VE + 20 / £ = / £ () qu(ro + px)dHI
R"® {ur >0} d{uy >0}

Then, using (B.2), (B.3), (B.5) and (B.7), and proceeding as in [2, p. 121] we
get
- [Vuvs = [ auomarn.
R Rn«l

Recalling that Aug =0 in {x, < 0} and ug =0 in {x, > 0}, we obtain
ug(x) = —q,(xg)x, for x, < 0.

Finally, since the blow-up sequence was arbitrary whereas the limit is unique,
the last statement of the theorem follows. O

REMARK 4.8. If u is a solution to P{, then by [5, Theorem 4.5.6(2)] and
[5, Theorem 2.9.9] the conclusion of Theorem 4.7 holds for H"~! almost all
Xo in deq{u > 0}. We observe, in addition, that Theorem 3.11 together with [5,
Theorem 4.5.6(3)] imply that H"~ (2 N d{u > 0} \ drea{u > 0}) = 0.
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5. — Estimates on |[Vu| and g,

In this section we prove estimates on |Vu| and related ones near the free
boundary, that will be needed later for the regularity theory.

Our first result is Theorem 5.1, where we prove that there exists a positive
constant A, such that g,(xo) = A, for H"~! almost all xo in N d{u > 0}.
This is an important step in proving that the free boundary condition

u=0, d_,u=21, on QNa{u > 0}

is satisfied (notice that this is already known is the weak sense given by The-
orems 4.3 and 4.7). The fact that almost everywhere the function g, equals a
constant —which is a regular function— will imply later the smoothness of the
free boundary.

On the other hand, we observe that the free boundary condition can be
written as |Vu| = d_,u = A,, which evidences that the regularity of the free
boundary is related to the behaviour of |Vu| near the free boundary. In Theorem
5.1 (see (5.1)) we give an estimate from above for |Vu| at every point in the
free boundary. Later in the section we prove a strengthened version of this
estimate (Theorem 5.4).

We also study the behaviour of u locally if a ball contained in {u=0}
touches the free boundary (Lemma 5.2). Finally, Lemma 5.3 provides estimates
for the constant A,, depending on the paramenters of the problem.

In this section we will use some results that can be found in the Appendix
at the end of the paper.

THEOREM 5.1. If u is a solution to P;, then there exists a positive constant A,
such that

a1 limsup |Vu(x)| = A, for all xo in 2 N d{u > 0},
x—)xo

u(x)>0

(5.2) qu(x0) = Ay for H* ! almostall xo in 2N 3{u > 0}.

PRrOOF.

Step 1. Suppose we are given two points xg, x; € 2 Nd{u > 0} and p; a
sequence with pr > 0, pr — 0. Suppose, in addition, that for i = 0, 1, there
exists a sequence of balls B, (xjx) C € with x; — x; and u(x;) = 0, such
that the blow-up sequence with respect to B, (xix)

u(xik + prx)
Pk

uir(x) :=

has limit u;(x) = A; max(—x.v;, 0), with 0 < A; < oo and v; a unit vector. We
will prove that Ag = A;.
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Assume that A; < X9. We will arrive to a contradiction by constructing
suitable admissible functions. For this, choose ¢ a nonnegative C§° function,
¢ # 0, supported in the unit interval, and let ¢ be a small positive constant.
For k € N define

X —X
x+ tpkd’(l——p—(—)k—l) vo for x € Bor(xor) ,
%
T (x) 1= |x — x1kl
x— tpk¢(p—)vl for x € Bor(x1k) ,
K
X elsewhere ,

which is a diffeomorphism if ¢ is small enough (depending only on ¢). It
follows that the functions

v (x) = u(ry N (x))

are admissible for P/,

if k is large, and by (B.6) we have

i v > 0) N By (x| = / det Doy (xix + piy)dy
By (0)N{u; >0}

Y

> [ (1+eniwan.
Iyl

B (0)N{y.v; <0}

vi)dy,

for i =0,1 as kK — oo. This shows that
o " ({vk > 0} — [{u > 0}|) - O,

and since |{u# > 0}] and |{vx > O} are bounded (independently of k), and f; is
Lipschitz continuous in bounded intervals we conclude

(5.3 fe({ve > O}) — fe(l{u > 0}]) = o(py) -
On the other hand, using (B.1) and (B.9), and proceeding as in [1, p.194] we

obtain
/|Vvk|2 - / Vul?
Q Q

= (0i-3 [ s o) +oth.
B1(0)N{yn=0}

5.4

We now notice that by Lemma 3.10 there exists a constant C (independent of
k) such that for y € B, (xix), i =0, 1, we have

u(y) =Cpr, u®y) <Cp,
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which yields

5.5) —!vk +!u = o(py) -

Since we have supposed that A; < Ao, the main term in (5.4) becomes negative
if we choose ¢ small enough (independent of k). Then from (5.3), (5.4) and
(5.5) we have that J.(v;) < Jc(u) for large k, which is a contradiction and
completes the first step.

Step 2. Let xo € 2N d{u > 0} and let

(5.6) A = A(xp) := limsup |Vu(x)|.
x—>x0

u(x)>0

We will prove that 0 < A < 0o, and we will find a sequence of balls By, (yx) C 2
with dy > 0, dy > 0, yv > xo and y; € QN d{u > 0}, such that the blow-
up sequence with respect to By, (y) has limit ug(x) = A max(—x - v,0), with
v = v(xp) a unit vector.

By (5.6), there exists a sequence z; — x( such that

u(zg) >0, |Vu(z)| — 2.

Let y; be the nearest point to z; on Q Nd{u > 0} and let dp = |zx — |-
Consider a blow-up sequence with respect to By, (yx) with limit ug, such that
there exists
. Yk — 2k
v:= lim ——
k—oo  di

E]

and suppose for simplicity v = e,,.

Using that ug and thus its directional derivatives are harmonic in {ug > 0},
and applying the results in Lemma B.3, we can proceed as in [3, p. 22] to
prove that 0 < A < oo and

up(x) = —Ax, in {x, <0}.
Finally, by (B.11) we have that 0 € d{up > 0} and then, using (B.10) we
see that ug satisfies the hypotheses of Theorem A.1 (see Appendix). Therefore

up =0 in {x, > 0}, and this completes Step 2.

Step 3. Now comes actual proof of the theorem. Choose x; € Oreq{u > 0}
for which the conclusion of Theorem 4.7 holds. Given xo €  Nad{u > 0}, set

A(xp) = limsup |Vu(x)|,
x—)XO
u(x)>0
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and apply Step 2 to xo, finding in this way a sequence of balls By, (yx) C 2
and a unit vector v(xp), such that the blow-up sequence with respect to By, (yi)
has limit

up(x) = A(xp) max(—x.v(xp), 0).

By Theorem 4.7 the blow-up sequence with respect to Bg, (x;) has limit
u1(x) = qu(x1) max(—x - v, (x1), 0).

Hence, an application of Step 1 gives A(xp) = gu(x1). If we now set A, :=
q.(x1) and notice that xo was any point in 2N d{u > 0}, we obtain (5.1). The
result (5.2) is now obtained from Remark 4.8.

LEMMA 5.2. Let u be a solution to P{. If B is a ball in {u = 0} touching
QN o{u > 0} at xg, then

lims u)

1 up —— = .
TSP Gistx, By
u(x)>0

Proor. Denote the left-hand side by y and let zz — xo, u(zx) > 0,

u(zk)
di

— vy, d:=dist(z, B).

Consider the blow-up sequence u; with respect to By, (yi), where y, € B are
points with |y; — xx| = di, and choose a subsequence with a blow-up limit uo,
such that
. Vk— %
v := lim
k—00 dk

exists. Therefore, by construction we have ug(—v) = y,
up(x) =0 for x v >0, up(x) <—yx-vforx-v=<0,

and then by (B.7) 0 < y < oo. Consequently, by the Strong Maximum Principle
and by analytic continuation

up(x) = y max(—x - v,0).

To finish the proof, we can proceed as in the last step of Theorem 5.1, but
working instead with the blow-up sequence we have just constructed. Choosing
a point x; € deqfu > 0} for which the conclusion of Theorem 4.7 holds, we
get y = q,(x1) = A,, thus establishing the desired result. O

LEMMA 5.3. There exist positive constants Cyin, Cmax SUch that if u is a solution
to P{, then
Cmin < Ay < Crjax -

Here the constants cyn, Cmax depend only on n, e, u and § and, | and & are given
by (3.1) and (3.2) respectively.
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Proor. Choose xg € Nad{u > 0} and 0 < R < 1 with Byr(xg) € Q
and set D := Bg(xp). By Theorem 4.3 and Remark 4.4, there exist positive
constants ¢* and C* (depending only on n, ¢, u and §) such that for every ball
B,(x) C D with r small and x € QN d{u > 0}

(5.7) Al < H Y B, (x) N d{u > 0) < C* L,
and in addition
(5.8) c*<g,<C* H"! almost everywhere in D N 3{u > 0}.

Therefore, since H*~1(D N d{u > 0}) > 0 by (5.7), the result follows from the
combination of (5.2) and (5.8). m

THEOREM 5.4. There exist positive constants C and rg such that if u is a solution
to Pf, xo € QN 3{u > 0} and r < ro, then
\

sup [Vu(x)| <A, (1 +Cr).
x€Br(xg)

Here ry = ro(§),C = C(n, ¢, u,8) and u and § are given by (3.1) and (3.2)
respectively.

du .. .
Proor. Since the functions — are harmonic in {u# > 0} for 1 <i <n, we
Xi
have that the function |[Vu| is subharmonic in {# > 0}, and so is the function

U :i=(|Vu| — A, — 1/k)F

for k € N. From Theorem 5.1 it follows that U, vanishes in a neighborhood
of the free boundary and therefore, U; is continuous and subharmonic in the
entire domain 2.

Let ro = §/3 with § as in (3.2), and let xp € N d{u > 0}. By Lemma
3.15 there exists a constant L = L(n, &, u) > 0 such that

U < L in By (xo) N {u > 0}.

2
Now consider the function v(x) = u(x) + u, which is harmonic in
n
L
By (x0) N {u > 0}. Setting C = n_2 we have
o

Ur < Cv on 9(Byy(x0) N {u > 0})

and therefore, the inequality also holds in B, (xo) N {u > 0}. Taking k — oo
we get

(5.9) IVu| < Ay + Cv in Byy(xo) N {u > 0}.

From Lemma 3.10 we have that v < Cr in B,(xp) N{u > 0}, for r < r¢ and now
the result follows as an immediate consequence of (5.9) and Theorem 5.3. O
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6. — Flat free boundary points

This section, together with Section 7, is devoted to the study of the reg-
ularity of the free boundary. We will prove that if the free boundary is “flat”
enough at some point, then it is regular near that point.

Our approach is inspired in [2], which in turn is oriented by the regularity
theory for minimal surfaces. We combine here the ideas in [2] with a care-
ful rescaling argument which eventually allows us to show that near the free
boundary our solutions behave like those in [2].

We start the section by giving a precise definition of the “flatness condition”
at a free boundary point (Definition 6.1). We next proceed in the following
way: We perform a non-homogeneous scaling (or blow-up) in the “flat” direction
(Theorem 6.4), obtaining the graph of a subharmonic function f (Lemma 6.5).
We show further regularity properties of this function f (Lemma 6.6 to Lemma
6.8), that allows us to prove Lemmas 6.9 and 6.10, which are our main results
in the section. These last two lemmas roughly say that if the free boundary is
“flat” enough near some point, it is still “flatter” in a smaller neighborhood after
and adequate change of coordinates. The regularity study of the free boundary
is completed in Section 7.

DerINITION 6.1. Let 0 < 04,0- <1 and 7 > 0. We say that u belongs
to class F(o4,0_;7) in B, = B,(0) if u is a solution to PS, B, C £,
0 € 9{u > 0} and

(6.1) u(x) =0 for x, > 04p,x € B,,
(6.2) u(x) > =i, (x, +0o_p) for x, < —o_p,x € B,,
6.3) |Vu| <r,(147) in B,,

where A, is the constant in Theorem 5.1. If the origin is replaced by x¢ and
the direction of flatness e, is replaced by a unit vector v, then we say that u
belongs to the class F(o4,0_; T) in B,(xp) in direction v.

REMARK 6.2. Let u be a solution to P and let A, be the constant in
Theorem 5.1. By Lemma 5.3 there exists a constant cpi, (not depending on u)
such that

6.4) 0 < Cpin < Ay -
Then, if B,(0) C 2, we can consider the function v € C%1(B,(0)) given by

_ u(px)
.

v(x)

k]

which will clearly satisty

—2P in B,(0)

u

v>0,Av >
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and

P in(v>0).
u

Av=—

In this section we shall denote balls with center in the origen by B,.

THEOREM 6.3. There exist positive constants C = C(n) and o9 = oy(n) such
thatifu € F(o,1;0) in B, witho < og and p < cmin0 thenu € F(20,Co; o) in
B, /2. Here cyq is the constant in (6.4).

ProoF. Let A = A, and define v(x) := u(px) for x € B;. Let
0 o= exp (2 for 1yl < 173,
1—9]y[?
=0 for |yl > 1/3,

and choose s > 0 maximal such that
BiN{v>0CD=D; :={x€Bi/x, <o —snx)}

where x = (x’, x,,). Thus there exists a point z € Bj; N 9D Na{v > 0}. Also
s <o since 0 € a{v > 0}.
We consider the function w; satisfying

-2
Aw; = —r in D,
A

wi =0on DN By,
wy = (14 20)(0c —x,) on dD\B;.

By well known estimates we have
(6.5) o_,wi(z) <l+4+cm)p/r+chn)o <1+ Cn)o,

where we have used that p < c¢mino. On the other hand, since v — w; is
subharmonic in D and v — w; <0 on 3D by construction of D and by (6.3),
we infer v < w; in D.

We will prove an estimate for v from below for points & € B34, §, <
—1/2. For that, let w, be the harmonic function in D\ B, s10(€) such that

w,=0on oD,
wy = —Xx, on dBy10(§) .

Then, if o is small (depending only on n) we have by the Hopf Principle

6.6) 0_,wr(z) >c(n) >0.
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If we suppose that v(x) < w;(x) + dox, for x € By;19(§), for a positive
constant d, we conclude as above that v < w; —dow; in D\ By/10(§). Then,
from (6.5), (6.6) and Lemma 5.2 it follows that

. v(x)
1<l _ W) 4 Cm)o —doc),
< limsup o oDy = | T €mo —docln)

a contradiction, if d is large. Thus
v(xg) > wi(xg) + Coxgp,

for some x; € By;10(§) and C = C(n). Now, using similar arguments to those
in [2, Lemma 7.2], we get for a >0

U(S + ae,,) 2 _‘(En +a) - C(n)cr ’

which says that u € 7 (20, Co;0) in B,),. O

We shall denote points in R” by x = (y, h) with y € R*~!, balls in R""!
by B,(y); and B, (0) by Bj.

LEMMA 6.4. Let uy be a sequence of class F(ox, oi; tx) in Box with o — 0,
140; > — 0and pp = O(%). Let Ay := A, and for x € By define

Iffory € Bj
fE ) = sup{h/(y, oh) € 3{v, > 0}},
fi ) :=1inf{h/(y, oxh) € 3{vy > O},
then, for a subsequence

f) :=limsup f;" (z) = limjinf ;" (z) for all y € B .
=y

k—00 k—o0

Further, f is continuous with f(0) = 0, and locally fk+ — fand f — f
uniformly.

ProoOF. We can prove this result proceeding as in [2, Lemma 7.3], but using
Theorem 6.3 instead. We observe that this is possible since by our hypotheses
we have o, — 0, 7p = o(o}) and pr = o(oy). 0

LEMMA 6.5. f is subharmonic.
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Proor. If the assertion is not true then there is a ball B, (yo) € B] and a
harmonic function g in a neighborhood of this ball such that

g > f on 3B,(y0) and f(y0) > g(yo)-
We proceed as in [2], setting
Z:=B,(yo) xR, Z*(@):={(.h)€Z/h>o(H)},

and similarly Z°(¢) and Z~(¢). Letting ds(Z*(org)) be a function which
converges as § — 0 to the characteristic function of Z*(oyg), we have by
Theorems 4.3 and 5.1, and Remark 4.8.

2

- / VuvdyZt @) + 2 [ d(Z*(oe)

{vx >0} {vg >0}
- / d5(Z*+ (o))"
ded{vr >0}

Taking § — 0 (and assuming that Z%(oxg) Nd{v; > 0} has H"~! measure zero;
otherwise we replace g by g + ¢ for some suitable small c), we get
2
Vo - vdH" ! + %|z+(akg) N {ve > O}
k
(ZF (o NN (v >0}
=H""(Z" (08)) N Brea{vi > 0}).
Using that by (6.3) |Vuv| <1+ 1, we deduce
C
(6.7) H* ' (Z" (0k8) NBrea{vi > 0}) < —f—k+(1+tk)H"_l(Z°(Gkg)ﬂ{vk >0}).
k
The set
E; :={v > 0}UZ (0rg)

has finite perimeter in the cylinder Z, with
H'NZ N BreaEr) < H'™H(ZT (0k8) N Brea{vic > O})

(6.8)
+ H*1(Z%org) N {ve = 0)).

If we show the estimate
(6.9) HNZ N BeaEx) > H1(Z%(0n8)) + Co}Z,

for large k, and we substitute this into (6.8) and use (6.7) and (6.4), we get a
contradiction to the relations 1, = o(ak2), pr = O(ty) which were assumed in
Lemma 6.4. Now to get (6.9), we proceed as in [2, p. 136] and the lemma
follows. O
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We will let B, := B, N {h <0} for p > 0.

LEMMA 6.6. Let
w(y,h)+h

Ok

wi(y, k) ==
Then, there exists a constant C = C (n) such that
(6.10) lwi| < C in B{
for k large, and for a subsequence,

6.11) w = lim wy exists everywhere in By ,
k—00

where the convergence is uniform in compact subsets of By . In addition, w satisfies:

(6.12) lwl <C,
(6.13) Aw =0inBJ,
(6.14) w(,0) = f(y)

in the sense that ng)l w(y, h) = f(y) and

(6.15) w(y,h) —w(y,0 <0 for (y,h) e By .

ProOF. By definition of w; and v, and by the flatness assumption in Lemma
6.4, we get (6.10) and also

-2
(6.16) Awg= "% in BIN{h<-0y).
)\ko'k
hence, the functions .
- x
wk(x) = wk(x) + &u_
MOk R

are harmonic in B; N {k < —ox}. Since )\& — 0, by (6.10) we have that
kOk

|Vivg| are bounded (independently of k) in compact subsets of B, and then,
for a subsequence wy —> w uniformly in compact subsets of B;. Therefore
(6.11), (6.12) and (6.13) follow.

On the other hand, since

V| =1 T
w1l _n

Ok Ok

oh o

owe 1 <3vk N 1)
oh
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we have for (y,h) € B and h <k’ <0
’ n Tk
wk(y’h)—wk(y9h) 5 Ih_h I_’
Ok

and letting k — oo
(6.17) w(y, h) —w(y, k) <0.

If we suppose that (6.14) holds, we can take A" — 0 in (6.17) and (6.15) is
proved. It remains to establish (6.14).
We will need to use that, for any small @ > 0 and any large constant K

(6.18) wi(y, hox) = f(y) uniformly for y € B|_,,—K <h < —1.

We can prove this by proceeding a in [3, Lemma 5.7], but applying Theorem
6.3 and Lemma 6.4 instead. This will be possible since we have oy — O,

X 0 and o = O(z).
Ok

Now using (6.18), (6.16) and proceeding again as in [3, Lemma 5.7] we
deduce (6.14), thus establishing the result. O

LEMMA 6.7. There exists a positive contant C = C(n) such that, for any
y € Bj /2

1/4

(6.19) 0/ F(emamoy [ ¢ - fovawar=c.

3B (»)

Proor. Let y € By, and

1 _h _ _
W', h) == w(5y +5.5) —wG.0) for (v.h) € By .
Setting
N
80) = f(3+5) - fG) for y € B,

we have by Lemma 6.6, 6.4 and 6.5 that [3, Lemma 5.5] can be applied to the
function w*, which satisfies

. * — !/
;ggw (y,h) = g(y) for y € By,

where g subharmonic and continuous in Bj, with g(0) = 0. Therefore (6.19)
holds. o

Using now Lemma 6.4, 6.5 and 6.7 we obtain as in [2, Lemma 7.8] the
following lemma:
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LEMMA 6.8. There is a large constant C = C(n) > Oand for0 <0 < la
small constant cg = C(0, n) > 0, such that we find a ball B, and a vectorl R*1
with

0
co <r=<0,|l|<C, and f(y) <ly+ Erforlyl <r.

LEMMA 6.9. Let C* > 0,0 < 8 < 1 and C, cg as in Lemma 6.8. Then, there
is a constant og > 0, such that

u € F(o,0; 1) in B, in direction v
witho < 0y, T < 0po2and C*p < 1 implies
u € (0o, 1; 1) in Bs in direction v
forsomep andv withcgp <p <6pand|v—v| < Co. Hereoy = o (0, n, C*, cpmin)

and cpin as in (6.4).

Proor. If the result were not true, then for each positive integer k there
would exist
u; € F(og, 0 ; Tx) in Bpk

1
with o < 1/k, ©w < —crk2, C*pr < 1, -and such that the conclusion of the

lemma does not hold. Clearly, u; is a sequence as in Lemma 6.4 and therefore,
Lemma 6.8 will yield a contradiction if we proceed as in [2, Lemma 7.9]. O

LemMMA 6.10. Let 0 < 6 < 1 and C* > 0, then there exist positive constants
0y, cg and C such that if
u € F(o,1;t) in B, indirection v
witho < 0y, T < 0po? and C*p < 7, then
u € F(bo,00; 92‘:) in Bj in direction v
for some p and v with cgp < p < %p and |v — v| < Co. Here cy = c(0, n),
C=C(n), oy =0(0,n,C*, cpin) and cyin as in (6.4).

ProOF. The idea is similar to that of [2, Lemma 7.10]. Let 0 < 6; < 1/2. If
oy in the statement is small enough we obtain by Theorem 6.3 and Lemma 6.9
that

ue€ FCo,1;t) in B, , in direction vy,

for some ry, vy with ¢y <2r; <6; and |[v; —v| < Co.
For k € N, we consider the function

U = (IVul =2 = 1/0)7,
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which is subharmonic and continuous (see Theorem 5.4). Then, there is a
constant 0 < ¢(n) < 1 such that

Ui < (1 —cm)r,t in Byp.
If we let k — oo, it follows that
u € F(6yo, 1; 031:) in B, p in direction vy,

where 6y := /1 — c(n), provided 6; is chosen small enough (depending only
on n). Then repeating this argument a suitable number of times and using
Theorem 6.3 again, we finish the proof. |

7. — Smoothness of the free boundary

In this section we complete the study of the regularity of the free boundary
started in Section 6. Here we prove that the reduced free boundary is locally
analytic and that in two dimensions singularities cannot occur.

In Section 6 we showed that if the free boundary is flat enough near some
point, it is still flatter in a smaller nelghborhood This fact, together with the
estimates in Section 5, is used in Theorem 7.1 to prove —by means of an
iteration argument— that the free boundary is a C'® surface near flat enough
free boundary points. Moreover, we show that the free boundary is locally
analytic except possibly for a closed set of H"~! measure zero (Theorem 7.2).
Now Theorem 4.3 implies that along the regular part of the free boundary, the
condition

0_yu = Ay

is satisfied in the classical sense. We complete the section with additional
results valid for the two dimensional case. Theorem 7.4 gives an estimate from
below for |Vu| near any free boundary point (compare with Theorem 5.4). This
important estimate allows us to prove that in two dimensions singular points of
the free boundary cannot occur (Theorem 7.6).

In this section we will use some results that can be found in the Appendix
at the end of the paper.

THEOREM 7.1. Let u be a solution to P{. Then there exist positive constants «,
op and Ty such that

ueF(,1;00) in B,(xo) indirection v
with o < 0 and p < 1902 implies that

B, s(x0) No{u >0} isa C"™  surface,
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more precisely, it is a graph in the direction v of a C"* function. Moreover, for any
X1, X2 on this surface,

Xy — X2
v(x) —v(x)| < CUI——p—‘la .

The constants depend only on n, €, 1 and 8, . and 8 given by (3.1) and (3.2) respec-
tively.

Proor. We will proceed as in [2, Theorem 8.1]. If op and ¢ are chosen
small enough, we have by Theorem 5.4 that

sup |Vu(x)| <A, (1+Cp).
By (xp)

Let 7 := 6,0 and x; € B,/2(xp) N d{u > 0}, then using Theorem 6.3 we get
u€F(Co,Co;t) in Byu(x)) in direction v.

We want to apply Lemma 6.10 in B,/4(x;) for some 0 <6 <1 and C* = C.
Indeed, if we choose

[’]
0o <—= and 79 < ——,
c

we can apply this lemma. If in addition, we choose 6 = 1/2, it will be possible
to apply Lemma 6.10 inductively, following the idea of [2, Lemma 8.1]. Finally,
observing that the constants in our proof depend only on those of Theorems
5.4 and 6.3, and Lemma 6.10, we complete the theorem. O

THEOREM 7.2. Let u be a solution to P{. Then 0req{u > 0} isa C La surface
locally in Q, and the remainder of Q N d{u > 0} has H"~! measure zero. It follows
that 0,.4{u > 0} is locally analytic.

PrOOF. Let xg € Orea{u > 0} and u; be a blow-up sequence with respect to
balls B, (xo) with limit uo. By the first part of Theorem 4.7 and (B.7) there
is a sequence oy — 0 such that

u € F(ox,1;00) in By (xp) in direction v,(xo),

hence for large k Theorem 7.1 can be applied. Analyticity now follows from
[9, Theorem 2], if we use that by Theorems 4.3 and 5.1, |Vu| = A, on any
smooth portion of 2 N d{u > 0}. O
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REMARK 7.3 Let u be a solution of P and x a free boundary point such
that B,(x) N d{u > 0} is smooth for some small r > 0. Near X we make a
smooth pertubation of the set {u > 0}, increasing its volume by o > 0 (« small)
and in the perturbed set D,, where

B,(x) N {u > 0} C Dy C B,(x),
we consider the function v, satisfying

Ava = —2 in Da )
Vg = U on dD, NAoB,(x),
vy =0 in B, (X)\Dy .
We have that v, — u in H'(B,(X)) as @« — 0, and since d_,u = A, on
B,(x) N 3{u > 0} it follows that
/ Ve — Vu|? = 220 + o(a) .
Br(x)

We get the same estimate if we decrease by o > 0 the volume of {# > 0} and
define v, analogously in the perturbed set.

THEOREM 7.4. Let n = 2 and let u be a solution to P{. If xo € Q N d{u > 0}
then

1
(7.1) = / max(A2 — |Vu>,0) > 0 for r— 0.
r

By (xg)N{u>0}

ProOOF. Let 0 < r < p small and

1 -
8@/l Z 30D for 1 € B, ()\ By (x0).
(x) = log(p/r)
n(x):
1 for x € B, (xp) .
Let ¢t > 0 and define in B,(xo)
vo ;= max(u — tn,0) = u — min(u, tn) .
Consider now a point x; € QNd{u > 0} away from xo such that B, (x;)Nd{u >
0} is smooth for some small r; > 0. We make a smooth pertubation of the set

{u > 0} near x; increasing its volume by o where

(7.2) o =ap, = |{x € By(x0)/0 < u < tn}|.
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Then, letting v, be the function defined in the perturbed set as in Remark 7.3,
we get that the function

Vo in Bp(xo) .
v:i=1< v, in By (x1),
u  elsewhere,

is admisible for P¢ and satisfies [{v > 0}/ = |{u > 0}|. We thus obtain by
construction that

: 1 A2
0= 1)~ Jow) = 5 / IV minGe, i) — > + 0(@),
Bp(xg)

where A = A, and this estimate, together with (7.2) implies

W2 = |VuP) < 72 / Va2 + o).

Bp (xp)N{0<u<tn} Bp (xp)Nfu>tn}

By Lemma 3.10 we have u < Cr in B,(xg) and if we choose t = Cr we get

max(A2 — |Vu|?,0) < / max(|Vu|> — A2, 0)
By (xg)N{u>0} Bp (x0)

Ccr?

* iog(oyn) %)

where 8, := |{x € B,(xp)/0 < u < Cp}|. Using Theorem 5.4 we obtain

1 1
= / max(A* — |Vul?,0) < —(Cp’ +0(5,)) +
r r

By (xg)N{u>0}

log(p/r) "

Finally, if we observe that §, < Cp? by Theorem 3.11 and wé choose r =
pf(P)'/* with f(p) := max (p, 52, we get (7.1). O

COROLLARY 7.5. Letn = 2 and let u be a solution to P{. If xo € QN d{u > 0}
and uy is a blow-up sequence with respect to balls B, (xo) with limit uo, then

up(x) = A, max(—x.e, 0) .

Here e = e(xg) is a unit vector.
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Proor. By Lemma B.3 and Theorems 5.1 and 7.4, we see that
(7.3) |[Vugl| = A, in  B;(0) N {uo > 0}.

Since 0 € d{up > 0}, there exists a connected component D of {uy > 0} such

 —Vuon)
that 0 € dD. Let y; € DN By(0) and ¢ := ————. From (7.3) and from
[Vuo(y1)|

ou
the fact that uy is harmonic in {yy > 0} we deduce that 8_0 is harmonic in
e
D N B1(0) and achieves its minimum in y;. Then,

uo(y) = —A,y.e for y.e<0.

The result now follows if we apply Theorem A.l to show that ug = 0 in
y.e > 0. O

THEOREM 7.6. Let n = 2 and let u be a solution to P{. Then 0{u > 0} is a
CY® curve locally in Q. It follows that 3{u > 0} is locally analytic.

ProoF. Let xp € QN d{u > 0} and let u; be a blow-up sequence with
respect to balls B, (xo) with limit u9. From Corollary 7.5 and from (B.7) there
is a unit vector e and a sequence oy — 0 such that

u € F(ox,1;00) in Bui(xp) in direction e,

hence for large k Theorem 7.1 can be applied. Analyticity now follows as in
Theorem 7.2. a

8. — Behaviour of the solutions for small ¢

The aim of this section is to show that the volume of {u > 0} automatically
adjusts to wyp, for small values of ¢.

In the previous section, we proved that the free boundary is locally analytic
(except possibly for a closed subset of H"~! measure zero), and thus d_,u = A,
along the regular part of it. This allows us to use a comparison argument in
Lemma 8.2 to prove that if ¢ is small and u is a solution to PS, then A, stays
away from

0<Ci<M=<(C <0,

where C; and C, are constants not depending on ¢ (compare with Lemma 5.3).
As a consequence, we prove in Theorem 8.3 that |{x € Q/u(x) > 0}| = wp
(when ¢ is small). This result is derived from Lemma 8.2 and from the fact
that f/(s) jumps from a small to a large number at s = wy (recall that f; is
the function appearing in the penalized functional J;). The fact that it is not
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necessary to pass to the limit in ¢ to adjust the volume of {# > 0} to wy,
allows us —for small values of e— to get solutions satisfying this property and
preserving at the same time the properties proved before. This will be a key
point in [10].

As in the previous sections, we analize the dependence of our results on
the data of the problem.

LemMMA 8.1. There exists a positive constant C = C(2) = C(H) such that if
ve HY(Q)NLY) and v > 0 then

2

(8.1) (/vd’H"—l) < C(H)|{x € Q/v(x) > 0}]. /(v2+ V).
aQ Q

Proor. The result follows if we integrate along lines O

LeEMMA 8.2. There exists positive constants C and C; such that if u is a solution
to P{ then
Cl <Ay < C2 .

Here the constants C; depend only onn, |H|,c,r*,l and C(H) (r*,l and C(H) as
in (1.1), (1.4) and (8.1) respectively). Moreover, C; depend continuously on |H |, c
and l.

PrOOF.
Step 1. (First inequality) Since H C Bg,(0) and HU{u > 0} is connected,
satisfying by Theorem 3.4 that

(8.2) |HU{u >0}l <C, |H|D,
there is a constant R; and a point y; such that
yi€QN3{u>0}, |yl <R and Ry =Ri(n, |H|,I)>Ro.

Let r; := dist(y;, 0H) ja_nd r* as in (1.1)_._Then, there are points yp € dH and
y2 € H such that yo € B, (y1) N H and B,+(y2) N Q2 = {yo}. Now assume that
e, is the outward normal to H at yy and for 0 <t <1 consider

D, := {x e R"/dist(x, I;) < r*},

where
I ={xeR'/x=y,+se,,0<s5 <2Ryt},

that is D, is a smooth family of smooth domains such that D, C D, if t < ¢'.
Moreover, Dy = B,x(y;), D, N2 # @ for t > 0 and y; € D;. Let t be the first
value for which D; touches a free boundary point xo € 9D, N Q2 N d{u > 0}.
We have that 0 < ¢ < 1 and

(8.3) D,NQC{u>0}.
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Consider the function w satisfying

Aw=0 in D,\Bwp(y),
w=1 on 09B+;(y),
w=0 in R\D;.

Then, by the Hopf Principle, there is a constant y such that
(8.4) I_yw(xg) =y >0, y=y@n,R,r"),

where v is the unit outward normal to D, in xo. Recalling (8.3) we have
Alu—cw)=-2in D,NQ,u —cw >0 in 3(D, N Q) and therefore, from the
Maximum Principle and the estimate (8.4) we get for small r > 0

1
(8.5) - uzE ][ w > ca
r

where o« = a(n, |H|, r*, ).
Now consider the function v satisfying Avy = —2 in B,(xp), vp = u on
dB,(xp). Reasoning as in (2.7) and using (8.5) we get

1 2
|V (vo — w)|* > C(n)|B,(x0) N.{u = 0}|<— ][ u)
.
8.6) B (x) 3By (xg)

> (ca)*C(n)|B,(x0) N {u = 0}].

Next choose a point x; € QNad{u > 0} away from xo such that B,(x;)No{u > 0}

is smooth for some small p > 0. Near x; we make a smooth pertubation of

the set {u > 0} decreasing its -volume by §,, where &, := |B,(xp) N {u = 0}

and we consider the function v; = vgr defined in B,(x;) as in Remark 7.3.
Then the function

vp in B,(xo),
v:=4¢ v in B,(x1),
u elsewhere,

is admissible to P¢ and satisfies [{v > 0} = [{u > 0}|. Consequently, from
(8.6) and Remark 7.3 we deduce that

0<J,(v) — Jo(u) < —(car )2—(33 + 2"3 + (a)

that is, caC(n) < A,.
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Step 2. (Second inequality) We first see, using (8.2), Lemma 2.2 and (1.5),
that

®.7) el g1 gy < C(n, |HI, 1)

and therefore, denoting by v the unit outward normal to €2, we have

(8.8) c/E).,udH"_l = / ulu + / |Vul> < Cn, |H|, 1)
] {u>0} {u>0}

(note that we have used that Au = —2 in {# > 0}). On the other hand, we
have the Isoperimetric Inequality

(8.9) HU QN8 > 0) > Cm)l{u > 0|7 .

In addition, from Lemma 8.1 (applied to u) , (8.7) and again the Isoperimetric
Inequality, it follows

(8.10) C(H).C(n, |H|,D|{u > 0}| = EH"1(3R))? > *C(n, |H]|).

Now, recalling Theorem 5.1, 2) and applying Theorem 4.3, 2) to suitable
functions we deduce

(8.11) /auud’H"—l +2l{u > 0} = LM H(Q N d{u > 0}).
IQ

Finally, we combine (8.2) and (8.8) to estimate the left hand side of (8.11) and
then, (8.9) and (8.10) to estimate its right hand side. Thus, we conclude that
Cy > Ay O

THEOREM 8.3. There exists a positive constant g1 such that ife < ey andu is a
solution to P{, then
[{x € Q/u(x) > 0} = wp .

Here ¢ depends onlyonn, |H|,c,r*,land C(H) (r*,l and C(H) asin (1.1), (1.4)
and (8.1) respectively). Moreover, €1 depends continuously on |H|, c and 1.

ProoF. Suppose |{u > 0} > wp. Choose a regular point in Q N d{u > 0}
and in a neighborhood of it make a smooth inward pertubation of {u > 0}
decreasing its volume by év > 0. Let v; be the admissible function that
equals u everywhere except in the perturbed region, where it is defined as in
Remark 7.3. If 8v is small enough, we will have |{v; > 0}| > wp and since

1
fl(s) = — for s > wy, we get
3

1 1 1 1
Jo@) = Je) < 5 / V@ = v = =8v= (532 = = )av+o(sv).
2 £ 2 £
Q

Now using Lemma 8.2 we find a constant £ (depending only on C3) such that
if € <& then J.(v;) < J(u), provided 8v is small, a contradiction.

If {u > 0} < wp we argue similarly, using now the first inequality in
Lemma 8.2 and the fact that f.(s) = e(s — wp) for s < wy. O
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Appendix

In this Appendix we prove some results on harmonic functions and on
blow-up sequences that are used in different situations throughout the paper.

A. — A result on harmonic functions with linear growth

THEOREM A.l. Let u be a Lipschitz continuous function on R" with constant L
such that
Du>0 in R",Au=0 in {u>0},
2) {x,<0}cCc{u>0Lu=0 on {x,=0},
l{u = 0} N Br(0)|

3) Thereexists 0 <A <1 suchthat >A, VR>O0.
|Br(0)|
Then
(A.1D) u=0 in {x,>0}.
PROOF.

Step 1. (Essential part of the proof) Let R > 0 and

_r(Rx)
=—

w(x) :
Suppose that there is 0 < a < L such that
(A.2) wkx) <ax, in B;(0)N{x, > 0}.

We will show that there are constants ¢, = c4(n,A,L,®),y = y(n,A) such
that
w(x) < (@ —ca)x, in B,(0)N{x, >0},

with 0 <y <1,0<c¢, <a and ¢, > 0 when « > 0.
To prove this, suppose « > 0 and consider the superharmonic function

v(x) == ax, — w(x).

A|B,(0)]
2n
z€ B1(0), z,>B and w(z)=0.

Let r := |z]. We consider the harmonic function 4 in B,(0) N {x, > 0} with
boundary values v and extend it to a harmonic function in the entire ball by
setting h(xy,...,x,) = h(x, ..., —x,) for x, <O.

Setting B :=
that

we deduce from 2) and 3) that there is a point z such
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Using the Maximum Principle and the Poisson Integral we get for all y
such that |y| < /2 and y, > 0

2 2
rc— 1 1 e
a3 oo zho =" [ (e,
nwy, x—yl*  1x =yl
lx|=r
xn>0
where for x = (x1,..., x,) we have denoted x = (xq,..., —x,). On the other
hand, using that w is Lipschitz continuous with constant L, we get

off 38 aff

v(x) > > and x, > T for |x —z| < aL’
Therefore (A.2) and (A.3) yield
v(y) = aCyn,
where C =C(n, A, L,a) > 0 and if we now set
co :=0aC, y = B/2,
the first step is establised.
Step 2. (Introduction argument) Let ry > 0 and

1
wo(x) 1= —u(rox) .
ro

By 2), using that u is Lipschitz continuous, we have for g = L
wo(x) < aoxp, in B1(0) N {x, > 0},
and therefore, an application of the first step yields
wo(x) < (@0 — Cqp)xn in B, (0) N {x, > 0}.
We can normalize the situation to the unit ball and apply the first step inductively.
Then, if we denote
(A.4) w; (x) == %u(rix), rivr =y, aign = — e
1
for i > 0, we get
0<aiy1 <o <L, wix)<ax, in B1(0)N{x, >0}

and consequently
(A.S) u(x) <ajx, in B,(0)N{x, >0} for i>0.

In oder to prove (A.1), now suppose there exists a point & such that

& >0 and u(€) > 0.

Observing that the sequence «;, which does not depend on ry, tends to zero as
i — 00, we have that

(A.6) u(§) > axéy

for some k € N. Then, if we start in (A.4) with ry > l—%l

Y
(A.5) that u(§) < apé,, which contradicts (A.6). The result is established. O

we will have by
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B. - Blow-up limits

HyporHESES B.1. D is a domain in R” and u a function satisfying

1) u is nonnegative and Lipschitz continuous with constant L in D and Au =
=2 in DN {u > 0},

2) For 0 < k < 1 there exist positive constants C and r,, such that for balls
B,(x)Cc D with 0 <r <r,

1
- ][ u<C, implies u=0 in B, (x),
r

dBr(x)

3) There exist positive constants ro and A; < A, < 1, such that for balls
B,(x)C D with x €ed{fu>0}and 0 <r <rg

< |Br (x) N {u > 0} <
| B (x)]

DEFINITION B.2. Let u be a function as in B.1, and let B, (x;) C D be a
sequence of balls with pp — 0, x; — xo € D, u(x;) = 0. We call the sequence
of functions defined by

1
up(x) == —ulxg + prx)
Pk

the blow-up sequence with respect to B, (xx). Since
(B.1) |Vup| < L in every compact set of R",

if k is large enough, and since u;(0) = O, there exists a blow-up limit u :
R" — R, such that for a subsequence

(B.2) ug > up in CR¥(R") forevery 0<a <1,
(B.3) Vuy — Vuy weakly star in Lo (R").

LEMMA B.3. Let uy and ug in B.2. Then, the following properties hold:

(B.4) uqy isnonnegativein R" and harmonicin {uy > 0},
(B.5) 0{up > 0} — 9{uo > 0} locally in the Hausdorff distance ,
B.6) x({ur > 0}) > x({uo > 0}) in Lj, (R,
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B.7) IfK € int{ug = 0}, then uy =0in K for large k ,
B.8) IfK & {uog > 0} U int{ug = 0}, then Vuyp — Vug uniformly in K,
B.9) Vup —> Vuy a.e.,

B N =0
(B.10) There is 0 < A < 1 such that 1BrG) N tuo I > A, forall R > 0,

|Br(y)I

andy € d{up > 0}
(B.11) If xx € 3{u > 0} then 0 € d{uy > 0}.
Proor. Let B € {ug > 0}. Then, the functions

x|
Ve (%) == ug(x) + pk—nl—

are harmonic in B if k is large enough, and vy — u( uniformly in B. Therefore
(B.4) follows.

The proof of (B.5) now follows from (B.2) and B.1,2). Using B.1,3) and
(B.5), and arguing as in [2, p. 120] we obtain

(B.12) [0{ug > 0}| =0

and the assertion (B.6) follows.

The proof of (B.7) follows from B.1,2). To prove (B.8) we need (B.7)
when uy = 0 and when uy > O we use the functions v,y as we did above.
Combining (B.8) with (B.12) we show (B.9).

By (B.5), for y € d{up > 0} there are points y; € d{uy > 0} converging to
y. By B.1,3) we have for R > 0 and k large

_BrOW N> 0N _
S B0l

Recalling (B.6), we see that (B.10) holds. Finally, combining (B.2) with B.1,2)
we obtain (B.11). O

Al

LeMMA B.4. Let u be a function as in B.1 satisfying
1) There is xo € D N d{u > 0} such thatu(x) =0in {x € D/(x — x¢).e, = 0},
2) There is a ball B such that xo € 0B, B C {x € D/(x — xp).e, < 0} and
u(x) > Oforx € B.
Then,

. |{x € By(x0)/(x — x0).en > 0} N {u > 0}
lim =

0.
r—0 | By (x0)|

Proor. Let u; be a blow-up sequence with respect to balls B, (xp) with
limit up. By 1), 2) and Lemma B.3, we can apply Theorem A.1l to ug and this
fact in conjunction with (B.6) yields the desired result. O
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