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Continuity Properties of Functions from Orlicz-Sobolev
Spaces and Embedding Theorems

ANDREA CIANCHI

1. - Introduction

The classical Sobolev embedding theorem tells us that if G is a sufficiently
smooth open subset of 2, then

if p  n and

if p &#x3E; n. Here:

- LP denotes Lebesgue space;
- W1,P(G) = {u E LP(G) : u is weakly differentiable on G and E

the customary Sobolev space;
- Cb (G) = L°° (G) n C (G), where C(G) is the space of continuous functions;
- The arrow "-~" stands for continuous embedding.
When p - n, as long as Lebesgue spaces only are taken into account,

what one can say is that

for every q E [n, oo), whereas simple counterexamples show that 
L°°(G). 

’

The embedding (1.3) can be improved if Orlicz spaces are employed.
Roughly speaking, the Orlicz space is the Banach space which is ob-
tained when the role played by the function sP in the definition of LP (G) is

performed by the N-function (or, more generally, Young function) A (s ); the

Pervenuto alla Redazione il 23 dicembre 1994 e in forma definitiva il 12 febbraio 1996.
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same replacement in the definition of yields the Orlicz-Sobolev space
W1,A(G) (see Section 2 for precise definitions on this subject).

Indeed, if the Lebesgue measure m ( G ) of G is finite, then

where n’ = n/(n -1), the Holder conjugate of n ([Tr]; see also [P]). Moreover,
this embedding is sharp, in the sense that there is no Orlicz space, strictly
contained in L B ( G ), B (s ) - esn - 1, into which w1,n(G) is continuously
embedded ([HMT]).

The present paper deals with the following optimal embedding problem:
given any N-function A, which is the N-function B such that LB (G) is the
smallest Orlicz space into which is continuously embedded?

Embedding theorems for Orlicz-Sobolev spaces have been studied in [DT]
and [Ad2]. In [DT] it is proved that, if G is sufficiently smooth, m (G )  oo

and A is any N-function, then

and

, where A* is the N-function defined by

Observe that such a result reproduces the Sobolev theorem if A (s ) = sP with
p # n. However, it does not solve the optimal embedding problem in general,
and the reason it twofold. Firstly, as we shall see below, the convergence of
the integral °° is not a sharp condition for the embedding (1.5) tothe integral f 
hold. Secondly, definition (1.5) for a Sobolev conjugate of A fails to give
optimal results when j°° ‘4 1 rn d t = oo and the asymptotic behaviour of A(s)f 
near infinity is close to that of sn . For instance, (1.6) yields - L B (G)
with B(s) = es - s - 1, a weaker result than (1.4).

Special situations have been studied by means of ad hoc methods - see,
for instance, [EGO] and [FLS] for the case where A(s) behaves like sn(lg(s))q
for large s, with q ~!: n - 1 and q  0, respectively.

Our results can be summarized as follows. In [Ta2] it is shown that, if

m (G)  oo, then the condition  oo is sufficient for the embeddingr 1+n
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to hold. Here, A is the Young conjugate of A and is the subspace
of of those functions which vanish (in an appropriate sense) on 8G.
Notice that the convergence of the integral f 00 At, dt is a weaker condition

t 1+n

than the convergence of f °° (see [Ta2]). As a first result, we show

that, in fact, the following holds.

THEOREM 1 a. Denote by G an open subset of R n, n &#x3E; 2. Let A be an N-

function. A constant C, depending only on A, m (G) and n, exists such that

for every G having finite measure and all u E W¿,A(G) if and only if

Inequality (1.9) holds also when m(G) = oo (and hence with C independent
of m (G)) if and only if the full integral

An analogous result concerning the embedding (1.5) is proved in Theo-
rem lb, Section 3. Theorem 3 of the same section deals with the modulus of
continuity of functions from Thus, the existence of embeddings for
Orlicz-Sobolev spaces into Cb (G) is characterized.

Assume now that f °° = oo. In this case we prove that, at least

when A is sufficiently regular, the optimal embedding problem is solved by the
N-function A defined as

where

and I&#x3E; -1 I is the inverse of (D.

The following is a prototype of our results in this context.
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THEOREM 2. Denote by G an open subset of n &#x3E; 2. Let A be an N function
such that 

-

If

then a constant C, depending only on A, m (G) and n, exists such that

for every G having finite measure and all u E W¿,A(G).
Inequality ( 1.15) holds also when m (G) = oo (and hence with C independent

of m(G)) provided that (1.14) is replaced by

and A satisfies the additional assumption

In any case, irrespective of whether ( 1.14) (or ( 1.16) ) is satisfied or not, ( 1.15)
cannot hold if is replaced by any smaller Orlicz space.

Theorem 2 is a special case of a more general result which also includes
the embedding

(Theorem 5, Section 5). Such a result holds under weaker assumptions than
(1.14) (or ( 1.16)). However, we remark that conditions (1.14) and (1.16), which
in a sense amount to requiring that A has a uniform rate of growth, are satisfied
by customary N-functions.

Section 4 deals with embeddings of W1,A(G) into Marcinkiewicz spaces,
which will be referred to as weak-type embeddings. In this context, an exhaus-
tive picture of the situation is given. Indeed, we show that, for any N-function
A and any sufficiently smooth G,

where MA(G) is the Marcinkiewicz space associated to A. Furthermore, this is
the best possible among all embeddings of weak-type for (Theorem 4).
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2. - Orlicz spaces and rearrangements of functions

In this section we recall a few basic definitions and properties about Orlicz,
Orlicz-Sobolev and Marcinkiewicz spaces and about the behaviour of norms in
these spaces under rearrangements of functions. For a detailed treatment of
Orlicz and Orlicz-Sobolev spaces we refer to [Adl] and [RR]; Marcinkiewicz ’
spaces are presented e.g. in [BS].

2.1. An N-function A is a convex function from [0 + oo) into [0, +oo) which
vanishes only at 0 and such that = 0 and -~ = oo .

Let G be any measurable subset of R n and let A be an N-function. For

any measurable function u on G, set

The Orlicz space LA (G) is defined as the set of all (equivalence classes of)
measurable functions u on G such that IIUIILA(G)  oo. LA (G), equipped
with the norm II ’ IILA(G), is a Banach space. Clearly, if A(s) = sP, then

The following generalized version of Holder’s inequality holds:

Moreover,

(see e.g. Lemma 8.17 of [Ad1]). Here, A is an N-function and A is its Young
conjugate; namely A is the N-function defined by

Embeddings between Orlicz spaces defined by different Young functions
are characterized in terms of the following partial-ordering relation between
functions. A function B is said to dominate a function A globally [respectively
near infinity] if a positive constant K exists such that

for all s &#x3E; 0 [respectively for s greater than some positive number]. Two
functions A and B are called equivalent globally [near infinity] if each dominates
the other globally [near infinity]. If for every K &#x3E; 0 a number so &#x3E; 0 exists such
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that the last inequality holds for s &#x3E; so, then A is said to increase essentially
more slowly than B.

The embedding LB(G) -* LA(G) holds if and only if either B dominates A
globally or B dominates A near infinity and m (G)  oo ([Ad 1], Theorem 8.12).

2.2. Orlicz spaces are rearrangement invariant spaces; namely, de-

pends only on the distribution function of u or, equivalently, on the decreasing
rearrangement of u. Indeed, the equimeasurabilty of u and of its decreasing
rearrangement u * implies that

for any N-function A; hence, by (2.1),

Recall that u* is the right-continuous non-increasing function on [0, m(G))
which is equimeasurable with u; in formulas,

where

the distribution function of u (we refer to [BS] for a detailed treatment of

rearrangements and of rearrangement invariant spaces).
The Hardy-Littlewood maximal function of u*, denoted by u**, is given

by

u** is non-increasing, since u* is. Clearly,

and

Moreover,



581

for any couple of measurable functions u and v on G and all S E [0, m (G)]
([BS], inequality (3.10)).

For any measurable function u on a subset G of Rn having finite measure,
the signed decreasing rearrangement uo of u is defined by

Observe that

Hereafter, u+ = lul+u and u- = the positive and the negative part of u,
respectively. Clearly, a property analogous to (2.6) holds for uo; namely

2.3. The definition of Marcinkiewicz spaces is based on the notion of u**. Let

0(s) be a non-decreasing function from [0, +oo) into [0, +oo] which tends to
+oo as s goes to -E-oo. Denote by the (generalized) inverse of 0, i.e.

so that

For any measurable subset G of R’ and any measurable function u on G, set

The Marcinkiewicz space M~ (G) is the collection of all functions u such that
00. Thanks to inequality (2.12), M~ (G), endowed with II I

is a (rearrangement invariant) Banach space. If A is an N-function, we shall
call M(A; G) the weak Olircz space defined by A. In fact, the embedding

holds and

for any function u on G (see [O], Lemma 3.1 ).
Notice that M~(G) = L(p, oo), the weak Lebesgue space, if 0(s) = sP

and M~ (G) = L°° (G) equals 0 for 0  s  1 and takes the value oo
otherwise.
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2.4. In this subsection we consider spaces of weakly differentiable functions.
If G is an open subset of R’, the Orlicz-Sobolev space W1,A(G) is defined as

is weakly differentiable on G and

equipped with the norm
Banach space. By we denote the subspace of those functions from
W1,A(G) whose continuation by 0 outside G belongs to W1,A(JR.n).

The following generalisation of Pòlya-Szegö principle will play a basic role
in our proofs (see e.g. [BZ]). Let u be any function from Then u*
is locally absolutely continuous on (0,/~(G)) and

Here, Cn = nn/2/ r(I + n/2), the measure of the unit ball in Rn .
The decreasing rearrangement defined by (2.7) has been shown to be a

usefull tool for dealing with Sobolev-type embeddings involving spaces of func-
tions vanishing on the boundary (see [Au] and [Tal]): indeed the n-dimensional
problem is reduced to a 1-dimensional one thanks to (2.6) and (2.22).

To treat spaces of functions which do not necessarily vanish on the bound-
ary, the signed decreasing rearrangement turns out to be appropriate. An in-
equality analogous to (2.22) for this kind of functions is stated in Lemma 1

below in terms of the isoperimetric function hG of G. Such function is defined
by

where P(E; G), the perimeter of E relative to G, coincides with the (n - 1)-
dimensional Hausdorff measure of a E n G provided that E is smooth, and is
given by the total variation over G of the gradient of the characteristic function
of E otherwise.

Observe that, when m (G)  oo,

The very definition of hG implies

for any measurable subset E of G. (2.25) is called the isoperimetric inequality
relative to G. In particular, if positive numbers cr and Q exist such that

for
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then G is said to satisfy a relative isoperimetric inequality with exponent of.

The smallest number Q which renders (2.26) true is denoted by 6y(G) and is
called the relative isoperimetric constant of G for the exponent a.

It is easily verified that (2.26) cannot hold with cr  1 / n’, whatever G is.
On the other hand, (2.26) is known to hold with cr = 11n’ if G is sufficiently
regular, e.g. connected and with the cone property (see [M], Corollary 3.2.1/3
and Lemma 3.2.4). Recall that G has the cone property if there exist a cone
1: such that for any x E G, G contains a cone which is congruent to band
whose vertex is x. In case dimension n = 2, explicit evaluations and estimates
for Qa (G) are available ([Cl]).

A proof of inequality (2.22) is based on the standard isoperimetric inequality
in (see [B] for an alternative approach). Inequality (2.25) is a substitute of
the latter for proving (see also [G] and [RT])

LEMMA 1. Let G be any connected open subset having finite measure.
Let A be an N function. Assume that u is a weakly differentiable function on G andI Du is locally absolutely continuous and C~ G ~AMf

PROOF. The absolute continuity of u° is proved in Lemma 6.6 of [CEG].
Moreover, if we set 

I 

then inequality (6.18) of the same paper tells us that

Thus, (2.27) follows from Proposition 2.1 of [ALT]. 0

3. - Embeddings into Cb ( G )

Theorem la of Section 1 and the results of this section are a completion
of the theorem of [Ta2].

Theorem la characterizes the existence of the embedding 
Cb(G). The existence of embedding for spaces of functions which do not
necessarily vanish on aG requires some regularity assumption on G. Classes
of sets which are appropriate to deal with such embeddings are introduced in
the following definition (see also [M], Chapter 3).
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DEFINITION 1. For a &#x3E; 1 / n’ we set

G is open and satisfies a relative isoperimetric
inequality with exponent cr }

and

: G is the union of a finite number of
sets from I(a) I .

EXAMPLE 1. Any open set G, with finite measure and having the cone
property, belongs to the class In fact, under these assumptions, G has
a finite number of connected components each one having the cone property
and thus satisfying a relative isoperimetric inequality with exponent 1 / n’ (see
Section 2).

THEOREM lb. Denote by G an open subset of 2. Let A be an N-

jhnction. The following assertions are equivalent

ii) A constant C, depending only on A, m (G), Q1/n,(G) and n, exists such that

for every G E Z( 1 / n’) having finite measure and all U Here UG =

m(G) f G u (x)dx, the mean value of u over G.
iii) The embedding

holds for every G E having finite measure.

Under the assumption that  oo, information about the modulus.f t 1 +n
of continuity of functions from W1,A(G) is available in terms of the function
H defined by

where
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THEOREM 3. Let G be an open subset n &#x3E; 2. Let A be an N-function
satisfying 

-

Then, for every compact subset G’ of G, a constant C exists such that

for any u E W1,A(G)anda.e. x , y E G’.
Under the additional assumption that G is a bounded strongly Lipschitz do-

main, (3.7) holds for a.e. x, y E G.

Recall that a bounded open set G c called strongly Lipschitz if,
for each x E a G, there exist a neighbourhood Ux of x, a coordinate system
(Ç1, ... , çn) centered at x and a Lipschitz continuous function 0 of Ç1, ... , Çn-1 i
such that

Theorems 1 a, 1 b and 3 yield, via Ascoli-Arzelà theorem, the following
compactness result.

COROLLARY 1. Let G be a bounded open subset of R n, n &#x3E; 2. Let A be an

N-function satisfying 
-

Then the embedding

is compact. If in addition G has the strong Lipschitz property, then also the embed-
ding 

~ .

is compact.

Proposition 1 below generalises Theorem 1 in case of less smooth domains.

PROPOSITION 1. Denote by G an open subset of n &#x3E; 2. Let a E [ 1 / n’, 1 ).
Let A be an N-function such that

Then:

i) A constant C, depending only on A, m (G), Qa (G) and n, exists such that

for every G E l(a) having finite measure and all u E W1, A(G).
ii) The embedding 

4 .

holds for every G E F(cr) having finite measure.
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A proof of Proposition 1 makes use of the same arguments of the proof
of Theorem 1 b and will be omitted.

Before proving Theorems la, lb and 3, we establish the following lemma.

LEMMA 2. Let n &#x3E; 2. Let A be an N function. Then
s &#x3E; 0 if and only if 

-

Moreover,

for s &#x3E; 0, where H is the function defined by (3.5).
In particular,

PROOF. By definition (2.1 ),

A change of variable in the integral on the right-hand side of (3.11) yields

whence if and only ifs If this is the case,

equation (3.12) easily implies that

where (recall (3.6))

Equations (3.5) and (3.14) give

Thus, (3.9) follows from (3.13) and (3.15).
Equation (3.10) is a consequence of (3.12).
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PROOF OF THEOREM la. Let G be an open subset of R’. Set V = m(G).
Then

for all u E W¿,A(G). Hence, via (2.2), we get

This is the point where the main ingredient of the proof, i.e. Polya-Szego
principle in the form of inequality (2.22), plays its role. Indeed, using (2.22)
and recalling (2.11), one obtains from (3.17)

Thus, by Lemma 2,

if V  oo, and

if V = oo.
The continuity of u can be established as in the proof of Theorem 1 b

below. Thus, (1.9) follows from (1.10) when V  oo and from ( 1.11 ) when
V = oo .

Conversely, assume that (1.9) is true. Denote by S either a ball of R’ or
the whole of R’ according to whether (1.9) is assumed to hold for sets having
finite measure or for any set. Set V = m(S). Consider radially decreasing
functions U from Since

inequality (1.9) yields
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Hence, thanks to the arbitrariness of U, we infer from (2.3) that

By Lemma 2, (3.23) implies (1.10) or ( 1.11 ) according to whether V  o0 or

V = oo. D

PROOF OF THEOREM lb. Let G be a set from having finite measure.
Set V = m(G). Then

for all u E W, (G).
Applying inequality (2.2) to the right-hand side of (3.24) we get

(3.25) ess sup u - ess inf

From (2.24), (2.26) with a = 1 / n’ and (3.9) one infers

Our basic tool is now the generalized Polya-Szego principle expressed by in-
equality (2.27). Combining such inequality with (3.25)-(3.26) we get

whence, in particular,

Moreover, since

via triangle inequality and inequalities (3.28) and (2.2) one obtains

Thus ii) and (in the special case where G E iii) will follow from (3.28)
and (3.30), respectively, if we show that u equals a.e. a continuous function.
To this purpose, consider any cube E(~) contained in G and having sides of
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length 8. Call v the restriction of u to E(8). Using inequality (3.25) with u
replaced by v we get

Since the relative isoperimetric constant is dilation-invariant,

for every 8 &#x3E; 0. Owing to (2.26), (3.9) and (3.32), we have

Moreover, by (2.27),

From (3.31), (3.33) and (3.34) one obtains

Notice that H -1 (8 -n ) tends to 0 as 8 goes to 0+.
Now, for kEN set - the mean value of u (extended by 0
outside G) over the cube centered at x and having sides of length
11 k which are parallel to the coordinate axes. Observe that uk is a continuous
function.

Assume, for instance, that k  h ; then inequality (3.35) implies that

whenever G. Thus, lukl is Cauchy sequence in C(G’) for any
compact subset G’ of G. Therefore, [Uk) converges to a continuous function,
say u, in G. By Lebesgue theorem, u = u a.e. in G. Hence, the continuity of
u follows.

Therefore, ii) is proved and iii) is proved under the additional assumption that
G E The generalisation of iii) to the case where G E is

straightforward.
Finally, both ii) and iii) imply i) and IIDuIlLA(G) are

equivalent norms in W6,A(G) by Lemma 3 of [Ta3]. The proof is complete. 0

PROOF oF THEOREM 3, SKETCHED. Inequality (3.7) for x, y in compact subsets
of G is easily deduced from (3.35).
To prove that (3.7) holds for a.e. x, y E G when G is a strongly Lipschitz
domain one may assume, without loss generality, that G is a cube (see e.g. [DT],
Theorem 3.6). In this case, for every x, y E G, a cube having sides of
length x - y which are parallel to those of G, exists such that 
and G. Thus, (3.7) follows from (3.35). D
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4. - Embeddings into Marcinkiewicz spaces

We have seen that the assumption

is necessary and sufficient for the embedding

to hold for any sufficiently smooth open set G having fixed finite measure.

Thus, henceforth we shall be concerned with embeddings for when

The following result solves the optimal embedding problem for embeddings into
Marcinkiewicz spaces.

THEOREM 4. Denote by G an open subset of n &#x3E; 2. Let A be an N function.
Assume that

Let A be the function defined by ( 1.12). Then:

i) A constant C, depending only on A, m (G) and n, exists such that

for every G having finite measure and all u E W6’ (G).
ii) A constant C, depending only on A, m (G), Q1/nl(G) and n, exists such that

for every G E Z( 1 / n’) having finite measure and all U 
iii) The embedding

holds for every G E having finite measure. 
fm(G)Moreover, i) holds also when m (G) = oo (and hence C is independent of m (G)

in (4.2)) provided that A satisfies the additional assumption

In any case, is the smallest Marcinkiewicz space which renders (4.2)-
(4.4) true.
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REMARK 1. When dealing with sets G having finite measure, one may

assume, without loss of generality, that fo dt  oo. Indeed, if this is not

the case, A can be replaced by another N-function which is equivalent to the
original one near infinity and makes the relevant integral converge. Such a

replacement does not effect the result since the corresponding Orlicz-Sobolev
space remains unchanged (see Section 2). In particular, the function A, given
by (1.12), can always be assumed to be well-defined.

EXAMPLE 2. Consider N-functions A (s ) which are equivalent to 
near infinity, where either p &#x3E; 1 and q E R or p = 1 and q &#x3E; 0. Let G be
an open subset of R’ having finite measure. Then Theorem 1 a tells us that the

embedding 
- .

holds if and only if either p &#x3E; n, or p = n and q &#x3E; n - 1.
Theorem 4 yields 

-

where

(4.5) A (s ) is equivalent near infinity to 

The same embeddings are true (and optimal) with replaced by 
provided that G E 

The following version of Theorem 4 (with analogous proof) holds under
weaker smoothness assumptions on G. The role played by A in Theorem 3 is
performed here by the function A, defined by

where

Notice that A = 

PROPOSITION 2. Denote by G an open subset of : I
Let A be an N- function such that
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Then:

i) A constant C, depending only on A, m (G), and n, exists such that

for every G E I(a) having finite and all u E 

ii) The embedding

holds for every G E having finite measure.

The origin of the function A is explained by the following lemmas.

LEMMA 3. Let n &#x3E; 2. Let A be an N function such that

Set

where (D is defined by ( 1.13). Then

and

fors &#x3E; 0.

The function An, given by (4.12), is not necessarily convex. However, An
is equivalent to the N-function A defined by (1.12) (Lemma 4 below). Thus,
Theorem 4 could have been equivalently stated with A replaced by An. We have
preferred to make use of the former function for homogeneity with Theorems 2
and 5.
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LEMMA 4. Let n &#x3E; 2. Let A be an N function satisfying (4.11 ). Let A and An
be the functions defined by ( 1.12) and (4.12), respectively. Then A is an N- function
and

PROOF OF LEMMA 3. By (2.1)

A change of variable in the latter integral shows that

where

and (D is the function defined by (1.13). On the other hand, by (4.12) and (4.18),

Equations (4.17) and (4.19) give (4.13).
As far as (4.14) is concerned, we have

Since A is non-decreasing, convex and vanishing at 0,

Combining (4.20) and (4.21) and making use of the fact that 1 for

y &#x3E; s yields

Thus, (4,14) is a consequence of (4.22) and (4.13).
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PROOF OF LEMMA 4. We have

Since is increasing, formula (4.23) shows that A is an N-function.

Moreover, the following chain holds:

for s &#x3E; 0. Hence, the conclusion follows. D

PROOF or THEOREM 4. We begin by proving part i). Let G be an open

subset of By Remark 1, we can assume that Jo  oo also in case

m ( G )  00. Let u e Wo ’ A ( G ) . Extending u by 0 outside G (and still denoting
by u the extended function) we have u e and

for s &#x3E; 0. From (4.24), via Fubini’s theorem, we obtain

By (2.2), equation (4.25) implies

Using Polya-Szego principle in the form of (2.22) and recalling (4.13)-(4.14)
one gets from (4.26)

Thus, (4.2) follows from (4.27) and (4.15).
Conversely, suppose that q5 is any (admissible) function enjoing the follow-

ing property: a constant C exists which renders the inequality
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true for every open subset G of having a fixed measure V and all u E

Wo ’ A ( G ) . Let S be either a ball of having measure V or the whole of
according to whether V  oo or V = oo. Fix s E (0, V). If U is any

radially decreasing function from such vanishes outside

(s, V), then (4.28) tells us that

On the other hand, by (2.10),

Owing to (2.3) and to the arbitrariness of U, inequalities (4.29)-(4.30) lead to

Equation (4.13) and inequality (4.31) ensure that a constant K exists such that

Inequalities (4.32) and (4.15) imply that M (G) is continuously embedded into
M~ (G) for any open set G having measure V. Thus, M~(G) is the smallest
- Marcinkiewicz space which renders (4.2) true.

Consider assertions ii) and iii). Let G be any set from having
finite measure. By Remark 1, we may assume that Jo  00. Set

V = m(G). Let u E Our starting point for the proof of (4.3)-(4.4)
are the inequalities

and

respectively, which hold for S E [0, V] and follow, via (2.12), from the equations

and
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Now, first recall (2.14) and deduce that

for a.e. s E [0, V/2], whereas

Starting from equations (4.37), proceeding along the same lines as in the proof
of (4.2), making use of (2.27) (instead of (2.22)) and of (2.26) with o- = 11n’
one arrives at

for some constant C and for S E [0, V].
Next, it is easily verified that

Inequality (4.39), Holder inequality and Theorem 3.2.3 of [M] tell us that

Hence, by (2.2) and (3.29),

Finally, (2.2) and (3.29) imply

Thus ii) is a consequence of inequalities (4.33), (4.38), (4.15) and (4.41);
iii) follows, in the special case where G E from (4.34), (4.38), (4.15),
(4.41) and (4.42). Assertion iii) is easily extended to the case where G E

by means of inequality (2.12).
The fact that M~(G) cannot be replaced by any smaller Marcinkiewicz

space in (4.3)-(4.4) is a consequence of the same assertion for inequality (4.2),
thanks to the equivalence of the norms in WJ,A(G)
(Lemma 3 of [Ta3]). 0



597

5. - Embeddings into Orlicz spaces

Let A be an N-function such that

We already know (Theorem 4) that, if G is sufficiently smooth and has finite
measure, then is the smallest weak Orlicz space into which 
is continuously embedded.

On the other hand, Proposition 4 below ensures that any Orlicz space into
which W1,A(G) is embedded cannot be smaller than 

These facts suggest that A is a good candidate to solve the optimal em-
bedding problem for Orlicz-Sobolev spaces stated in Section 1. We are able

to prove that A is in fact the solution under some regularity assumption on A.
The regularity we need will be expressed in terms of the quantities defined as
follows.

For any positive non-decreasing function f on (0, too), set

Notice that the above limits exists by Lemma 1 of [Bo]. Clearly,

for any such f.
Theorem of [Bo] tells us that, if A is an N-function, then the upper and the

lower Boyd indices of the Orlicz space L A (G ) agree with and 

respectively, if m(G)  oo and with and if m (G) = oo. We
need not recall the definition of Boyd indices here (see e.g. [BS]); let us only
mention that they play a role in the theory of interpolation in rearrangement
invariant spaces. The following relations hold for any N-function A:

(see [Bo]). The same equations are true with a and f3 replaced by aoo and 
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THEOREM 5. Denote by G an open subset ofJRn, n  2. Let A be an N function
such that 

-

Assume that

either

(in particular, the latter condition is fulfilled exists for large ~,).
Let A be the N- function defined by ( 1.12). Then:

i) A constant C, depending only on A, m (G) and n, exists such that

for every G having finite measure and all u E WÓ,A(G).
ii) A constant C, depending only on A, m (G), Q1/n,(G) and n, exists such that

for every G E Z( 1 /n’) having finite measure and all u 

iii) The embedding

holds for every G E F(lln’) having finite measure.
Assertion i) is true also when m (G) = oo (and hence C is independent of m (G)

in (5.3)) provided that (5.2) is replaced by

(in particular, the latter condition isfuljilled A~~s&#x3E;&#x3E;  Const. for
large À) and A satisfies the additional assumption

In any case, irrespective ofwhether (5.2) (or (5.6)) is satisfied or not, (5.3)-(5.5)
cannot hold if LA (G) is replaced be any smaller Orlicz space.
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REMARK 3. Let us make a few comments about assumption (5.2) (analogous
remarks hold for (5.6)).

Arguing as in the proof of Lemma 2 of [Ta3] shows that, if a (A)  n,

then A (s ) is dominated near infinity by sP for some p  n.

A condition ensuring that a (A)  n is

This assertion can be proved by using the fact that in the definition
of a can be replaced by "sup,,," (see [Bo], Lemma 1) and arguing as in
remark ( v ) of [Ta3]. 

_

The assumption f °° = oo implies that n &#x3E; Indeed, if n t 1 +n

f3(A), then Const.(slr)n’-8 for sufficiently small 8 r

and r is large enough (see Lemma 2 of [Ta3]). Consequently, the hypothesis
2013~ 2013 «~A~  n plays a role in case a (A). Such an hypothesis
requires that a (A) and do not differ "too much", i.e. the rate of growth
of A is (any but) uniform enough.

REMARK 4. The same argument as in Theorem 3.7 of [DT] ensures that,
whenever the embedding (5.5) is true and G is bounded, then the embedding

is compact for any N-function B which increases essentially more slowly than
A near infinity.

EXAMPLE 3. Let us take into account again N-functions A (s ) which are
equivalent to near infinity, where either p &#x3E; 1 and q E R or p = 1
and q &#x3E; 0. Such functions are easily seen to satisfy (1.14). Let G be an open
subset of R’ having finite measure. Then, by Theorem 2,

whenever p and q are such that dt = oo. Furthermore, such embeddingi 1 +n 
_

is optimal. The asymptotic behaviour of the N-function A is described by (4.5).
If G E then also the embedding

holds and is optimal, by Theorem 5.
Notice that (5.7) includes known results as special cases: when p  n then (5.7)
agrees with Sobolev theorem (1.1) if q = 0, and overlaps with (1.6) if q # 0;
when p = n, (5.7) reproduces the embedding (1.4) for q = 0 and gives results
of [FLS] if q  0 and of [EGO] if q = n - 1.

The following extension of Theorem 5 holds for less smooth domains G.
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PROPOSITION 3. Denote by G an open subset of R’, n ? 2. Let
Let A be an N function such that

Assume that

either

Let A, be the function defined by (4.6). Then:

i) A constant C, depending only on A, m (G), and n, exists such that

for every G having finite measure and all U E W1,A(G).
ii) The embedding 

-

holds for every G E having finite measure.

A proof of Proposition 3 is analogous to that of Theorem 5 and makes
use of versions of Lemma 4 above and Lemmas 5-7 below with A replaced by
Ãu and n’ replaced by The details will be omitted for brevity.

We establish now some results which will be used in the proof of Theo-
rem 5. We being by a proposition concerning the optimality of our embedding.

r 

PROPOSITION 4. Let n &#x3E; 2. Let S be either or a ball of Assume that A
and B are N-functions enjoing the following property: a constant C exists such that

for all U E Wo’A (S). Then

for every open subset G of or for every open subset G of JR.n having finite
measure, according to whether S is the whole of JRn or a ball.

The embedding (5.9) is true for every open subset G of JR.n having finite measure
also is a ball and inequality (5.8) is replaced by the inequality

for u E W 1’ A (S), or by the embedding W 1 ~ A (S) ~ LB(S).
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PROOF. Set V = m(S). Let U be any radially decreasing function from
WJ,A(S). From the equation in (4.30) and from (2.6), (3.21), (5.8) we get

Fix S E (0, V). For any U such that vanishes outside (s, V), one has

and

Let An be the function defined by (4.12). From (5.10)-(5.12), thanks to (2.3),
(4.13) and to the arbitrariness of U, one infers that

for s e (0, too), or for s greater than some so, according to whether V = 00 or
V  oo. Thus, by (4.15), A dominates B globally or near infinity, respectively.
Hence, the embedding (5.9) is a consequence of Theorem 8.12 of [Adl].

The second part of the statement follows from the equivalence of the norms
and IIDuIlLA(S) in (Lemma 3 of [Ta3]). 0

LEMMA 5. Let n &#x3E; 2. Let A be an N-function satisfying (4.11). Let A be the
If

then

The same statement is true with a and fl replaced by and respectively.
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PROOF. Lemma 4 ensures that a(Ã-1) = a (An 1 ). Moreover, equation (4.19)
and the very definition of a and f3 yield

Hence, (5.14) is equivalent to

The following relations hold for any N-function 0:

This is a consequence of the fact that the functions

and

are related by

(see the Remark in [Bo]).
Thus, since both A and ’11 are N-function (note that ds is non-decreasing

since A(S) so is), equations (5.17) imply that (5.16) is in turn equivalent tos

A change of variable yields

for h &#x3E; 0. Hence, by I’Hospital rule,

From (5.23) we deduce

Combining (5.17) and (5.24) we get

Hence, via (5.1), (5.17) and (5.13), inequality (5.21) follows.
The proof of the same statement for and is completely analo-

gous, since (5.18), (5.19) and (5.23) also hold with "limsup~_~" replaced by
0
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LEMMA 6. Let n &#x3E; 2. Let A be an N-function satisfying (4.11 ). Let A be the
function defined by ( 1.12). If (5.13) is fulfilled, then for every a E (0, oo) a constant
C exists such that

for every measurable function f : (0, a) - [0, oo).
Inequality (5.26) holds with a = oo provided that (5.13) is satisfied with a and

f3 replaced by and f300, respectively.

PROOF. To avoid misunderstandings in the notations, the function A will be
denoted by B throughout the proof.

A duality argument easily shows, via (2.2) and (2.3), that (5.26) holds if
(and only if) a constant C1 exists such that

for all g E (5.27) is a weighted Hardy-type inequality in Orlicz

spaces. Owing to Theorem 2 of [Be], such inequality will be proved if we
show that

a number p &#x3E; 1 exists such that L A (0, a ) satisfies an upper
(5.28) -

p-estimate and L B(0, a) satisfies a lower p-estimate

and

We refer to [LT] for the definition of upper and lower estimates in Banach
lattices. Let us only recall that, if a Banach lattice satisfies an upper [respectively
lower] p-estimate, then it satisfies an upper [lower] q-estimate for every q E
[1, p] [q E [p, 00]].

Consider (5.28). By Lemma 5, assumption (5.13) ensures that a(ji) 
1 - a ( B -1 ) . Hence, owing to (5.1),

In particular,  1 and &#x3E; 0. Proposition 2.b.5 of [LT] tells us
that

sup{p : LA (0, a) satisfies an upper p-estimate}
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and

satisfies a lower p-estimate}.

Thus, there exist numbers p and p2 such that 1  p2  p 1, L A (o, a ) satisfies

an upper p 1-estimate and satisfies a lower p2-estimate. Therefore,
(5.28) is proved.

As far as (5.29) is concerned, we have

by the former of inequalities (4.15). On the other hand,

Thus, by (5.30), (5.31) and (4.13),

Hence, (5.29) follows. In case a = oo the proof is analogous. 11

LEMMA 7. Let n &#x3E; 2. Let A be an N-function.  n, then a constant
K exists such that

for s &#x3E; 0. If a (A)  n and fo dt  oo, then a positive number so exists sucht 1 +n
that (5.33) is satisfied for s &#x3E; so.

PROOF. Assume that  n (the proof of the latter assertion is anal-
ogous). Thanks to equations (5.1 ) and (5.17), .our assumption implies that

f3oo(Ã) &#x3E; n’. Let 8 be any positive number smaller than f3oo(Ã) - n’. Arguing
as in Lemma 2 of [Ta3] we infer that a constant C exists such that

for r &#x3E; 0. By (5.34),

whence (5.33) follows with K = 1
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PROOF OF THEOREM 5. Let G be an open subset of Rn and set V = m(G).
Consider assertion i). Assume that V  oo. Therefore, by Remark 1, we way

suppose that fo  oo. Our proof of inequality (5.3) proceedes along
different lines according to whether the assumption a (A)
is in force.

First, let us take into account the case where a(A)  n. Under this

assumption, a proof of inequality (5.3) parallels that of the embedding (1.6)
in [DT], which in turn is based on the embedding ~ Ln~ (G) . An

inspection of that proof shows that, thanks to Lemma 4, the whole argument
applies to establish (5.3) provided that a positive constant C is known to exist
such that

Straightforward computations show that (5.36) is equivalent to

where s and r are related by r"~ = 4S(s) (recall (1.13)).
By Lemma 7, positive numbers K and so exist such that

for s &#x3E; so &#x3E; 0. Modifying, if necessary, A near 0, we may assume that (5.38)
is fulfilled for all S E (0, oo). Thus

We claim that

Actually, since A is non-decreasing,
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Inasmuch as n’l (2 n’ - 1)  1, (5.41) implies (5.40).
Inequality (5.37), with C = 2(1 + n’K), is a consequence of (5.39)-(5.40).

Hence, (5.3) follows. 
~ ~ 

Assume now that We have

for all u E WJ,A(G). Thanks to (5.42), (2.6) and Pòlya-Szegö principle (2.22),
inequality (5.3) will follow if we prove that a constant C, independent of u,
exists such that

Inequality (5.43) follows from Lemma 6.
Assertion i) is fully proved in case V  oo. When V = oo and fo io t+

oo, the proof of i) proceeds exactly through the same steps as for V  oo: one

has simply to make use of Lemmas 6-7 with aoo and instead of a and 6.
Take now into account ii) and iii). Let G E and V  oo. Suppose

that a(A)  n. Our assumption on G ensures that a constant C exists such
that

for all u E W 1~ 1 (G) (see e.g. [C2], where the best constant in (5.44) is charac-
terized). By triangle inequality, (5.44) implies that

Starting from (5.44) and (5.45), inequality (5.4) and embedding (5.5) respectively
follow via the same arguments as in the proof on Theorem 3.2 of [DT] and
part i) above.

Suppose now that From equa-
tions (4.36), (4.37) and (2.6) one gets
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On the other hand, Polya-Szego principle in the form of (2.27) and the isoperi-
metric inequality (2.26) yield

Via Lemma 6, inequalities (5.46) and (5.47) give

From (4.41) and (4.42) we obtain

and

respectively.
Assertion ii) follows from (5.48) and (5.49). Moreover, (5.48)-(5.50) prove

iii) when G E the extension to the case where G E is straight-
forward.

- 

Finally, none of (5.5)-(5.5) can be true for any Orlicz space smaller than
LA (G) by Proposition 4. The proof is complete. 0
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