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Continuous Dynamical Systems on Taut Complex Manifolds

SERGIO VENTURINI

1. - Introduction and statements of main results

Let X be a smooth vector field on a smooth manifold M. In order to fix
some notation, let us recall that the flow associated to X is a pair (V, where
V C R x M is open and w : V -~ M, (t, m) H qJt(m), is a smooth map such
that

(i) for any M E M, (0, m ) E V, and = m ;

(ii) whenever (s, m), (t + s, m), E V;
(iii) for every m E M

(iv) the pair (V, cp) is maximal, i.e. if (V’, cp’) is an other pair satisfying (i),
(ii) and (ii) then V’ c V and w’ = 

It is a standard result that any smooth vector field has a unique associated
flow (and every flow comes from a vector field).

The vector field X with associated flow is complete (respectively right
complete) if for every m E M ’Pt(m) is defined for every t E R (respectively
t &#x3E; 0).

In the paper [W] Wu introduced the notion of taut complex manifold. Let
us recall briefly such a definition. Let M be a complex manifold and let

be the open unit disk. A sequence fn : 0 -~ M is said to be compactly divergent
if for any choice of a compact set H c A and K c M, fn(H) n K = 0
for n large enough. The complex manifold M is taut if given any sequence
fn : ~ --~ M of holomorphic maps admits a subsequence converging to a

holomorphic map f : 0 -~ M (uniformely on the compact subset of A) or a
subsequence compactly divergent.

Pervenuto alla Redazione il 20 ottobre 1996.
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The purpose of this paper is to describe the behaviour as t -~ of the
flow associated to a right complete holomorphic vector field X on a taut
complex manifold M and to investigate the link between the structure of the
zeroes of the vector field X (i.e. the fixed point set for the flow ~ot (-)) and the
topology of the manifold M.

If the manifold M is compact then the theory is quite trivial, since such a
manifold does not admit any non trivial holomorphic vector field. So, throughout
the paper M will be a non compact connected taut complex manifold, X a
holomorphic vector field on M with associated flow ~ot (.).

In order to explain our main results we need to introduce some notations.
We denote by S’ the circle group (the topological boundary of A), by

T r = S 1 x ... x S 1 the standard r-dimensional torus Lie group and by Sn the
unit sphere in 

We denote by Hol(M, N) the space of all holomorphic maps between two
complex manifold M and N endowed with the compact open topology, and by
Aut(M) the group of all holomorphic automorphisms of M.

Let X be right complete vector field on a complex manifold M with
associated flow CPt(’)’ We set

The flow CPt (.) on M is said
(i) compact if the is relatively compact in Hol(M, M),
(ii) compactly divergent if for each pair of compact subsets H, K C M for

some to one has wt (H) n K = 0 if t &#x3E; to.
For every m E M, s &#x3E; 0, set

we also set

("E" and "T" stand respectively for "ergodic" and "transient").
Let us recall that the Kuratowsky limits of a family of subset At C M,

t &#x3E; 0 are defined as

IM ~ M I V U neighbourhood of m 3 to &#x3E; 0 s.t. V t &#x3E; to At n U i= o I,
K-lim sup At =

t-+oo
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If u : [0, +oo[--* M is a map then we will write K - liminft,+oo u(t) (respec-
tively instead of (respectively

Finally, as usual, np (M), Hp(M, G) and HP(M, G) will stand respectively
for the p-th homotopy group (with respect to some base point in M), the p-th
homology and cohomology groups of M with coefficients in the abelian group
G. The manifold M is of finite topological type if for every p &#x3E;- 0

and for such a manifold the Euler characteristic is

Our main results on flows on taut manifolds are described by the followings
theorems :

THEOREM 1.1. Let X be a right complete vector field on a (non compact)
connected taut complex manifold M with associated flow CPt (.). Then CPt (-) is either
compact or compactly divergent. If it is compact then the following assertions hold:
(i) E (X) is a not empty closed integral submanifold of M;
(ii) the restriction of X to E (X) is a complete vector field on E (X);
(iii) if L is an integral submanifold of X and the restriction of X to L is a complete

vector field o L then L C E(X);
(iv) the inclusion map i : E (X ) --~ M is a homotopical equivalence between E (X)

and M;
(v) there exist a smooth toral action on E (X)

such that for all m E E(X) and any s &#x3E; 0

In particular, X (m) = 0 (i.e. CPt (m) = m) if and only if, m is a fixed point for
such a toral action;

(vi) there exist a holomorphic retraction p : M --~ E (X ) such that for all m E T (X)

In particular qJt (m) converges to m E M as t - +00 if, and only if, m = p (m) and
X (m ) = 0.
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THEOREM 1.2. Let X, M and ~pt (~) be as in Theorem 1.1 and assume further
that M is of finite topological type and the flow ~pt ( ~) is compact. Then Z(X) is a
closed complex submanifold of finite topological type and

In particular, if X (M) =A 0 then Z (X ) ~ 0.

We recall that a topological space S is acyclic (over Q) if dimQ Hi (X, Q) =
0 for every i &#x3E; 0.

THEOREM 1.3. Let X, M and CPt(’) be as in Theorem 1.2 and assume further M
is a connected acyclic manifold. Then Z (X ) also is a connected acyclic connected
(closed) submanifold of M.

THEOREM 1.4. Let X, M and CPt(’) be as in Theorem 1.2. If the even rational
homotopy groups of M vanish then Z(X) is either empty or a connected complex
submanifold of M.

I thank Prof. Angelo Vistoli for some helpful conversation on the subject.

2. - Proofs

Let X, M and CPt (.) be as in Theorem 1.1. Since the law of composition
is continuous in Hol(M, M) then the family

is compact (with respect to the compact open topology on Hol(M, M)). Set
also f = M -~ M; then the sequence f ’ = f o ... o f = ~o, : M -* M
of the iterates of f is either relatively compact in Hol(M, M) or compactly
divergent ( [A 1 ] ) .

Assume the sequence f n relatively compact. Since every is of the
form with (p, E .~’, then is a relatively compact family in Hol(M, M).
Assume now that the sequence f n is compactly divergent. Let H and K be

any two compact subset of M. Then, being ,~’ a compact family,

is a compact subset of M. Since, by assumption, the sequence f n is compactly
divergent then there exists no such that f n (H’) n K = 0 for all n &#x3E; no. Then,
for every t &#x3E; no, writing t = n + s with n E N and S E [0, 1 [,
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which shows that the flow CPt (.) is compactly divergent. The first statement of
Theorem 1.1 is thus proved.

Assume now that the flow is compact. Let S be the closure of the
in Hol(M, M). Then S is a compact topological abelian

semigroup with respect to the law of composition of (holomorphic) maps. It
is a standard fact of the theory of compact (semi-)topological semi-groups that
S contain an idempotent element p (i.e. p satisfies p2 - p) such that the
semigroup G = pS is a compact topological abelian group with identity p ([Ru]).

The map p : M ~ M is therefore a retraction of M onto its image
N = p(M). It follows from a result of Rossi ([R]) that N is a closed complex
submanifold of M.

Let m E N. Then, since S is abelian,

that is, N is invariant under each CPt, or, equivalently, N is an integral subman-
ifold of X.

Moreover, since G is a group, it easily follows that the restriction of each
wt to N is an automorphism of N, and setting

then ~t (~) is a smooth one parameter group of automorphisms of N such that

It follows that the restriction of X to N is a complete vector field on N.
Before going further we need to recall some basic fact on the "Kobayashi

distance". Such a pseudodistance

is defined for every (connected) complex manifold M, and can be characterized
as the biggest one among all the pseudodistances 8 : M x M - [0, ~-oo [ such
that for all f E Hol(A, M) and all z, w E A

where w) is the Poincar6 distance on A, i.e. the integrated form of the
Poincar6 metric

If it happens that is a distance, that is kM(m, m’) &#x3E; 0 if then the

complex manifold M is said hyperbolic.
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We summarize here the results on hyperbolic manifold that we need in the
sequel. For references see e.g. [K], [A2].
(i) if f E Hol(M, N) then, for each pair of points m and m’ E M,

(ii) if N is a complex submanifold of M and M is hyperbolic then N is

hyperbolic;
(iii) the group Aut(M) of an hyperbolic complex manifold M is a Lie group

acting smoothly on M;
(iv) every taut manifold is hyperbolic.

Caming back to the proof of Theorem 1.1, set

Then K, being a compact connected abelian subgroup of Aut(N), which by the
assertions above is a Lie group, it is a Lie group. But a compact connected
abelian Lie group is isomorphic (as Lie group) to a standard real torus T r for
some r &#x3E; 0. Thus we have a toral action

Since every u E K is limit of a sequence of maps in the flow CPt, it easily
follows that for every m E N and s &#x3E; 0

which clearly implies that N c E (X ) .
Now let m E MBN. Choose a sequence fn converging in Hol(M, M)

to p. Given c &#x3E; o, pick n large enough in such a way that /o())  8 -
Then, for every t &#x3E; tn,

whence

(Where, by definition, for a subset A c M we set kM (m, A) = m’) I
m’ ~ Al).

The estimates above, together with the fact dense in

T r p (m), implie that for every s &#x3E; 0 
-

and also m E T(X), being m E M B N.
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Since m E M B N is arbitrary, it follows then that M B N G T(X), which
combined with the previously proved inclusion yields the equalities
N = E(X) and M B N = T(X).

All that proves statements (i), (ii), (v) and (vi) of Theorem 1.1.
Let us prove statement (iii).
Let L C M be an integral submanifold of the vector field X, and assume

that the restriction of X to L is complete. Let 1/1t(.)be the flow on L essociated
to X. It is an one parameter group of automorphisms of L, which is a hyperbolic
complex manifold, relatively compact in Aut(L). Its closure G in Aut(L) is
therefore a compact connected abelian Lie group, whence it is isomorphic to a
r-dimensional torus Tr. As before, given m E L, we obtain rm = whence

m E rm, that is m E E(X). Since m E L is arbitrary the inclusion L C E(X)
follows.

It remains to prove statement (iv) of Theorem 1.1.
Because the spaces M and E(X) = p(M) are connected (complex) mani-

fold, they have some C W -complex structure, and hence it suffices to prove that
the induced group homomorphisms

are isomorphisms in each dimension k.
The identity p o i = i dN yields p* o i * = i dN *, and hence i * is a monomor-

phism. We will prove that i * is an epimorphism showing that p* is a monomor-
phism.

Let [u] E represented by the continuous map u : Sk ~ E (X ),
be in the kernel of p*. Let f n = qJtn (here the "n" in " f n" is an index written
as superscript for "typographical" reason) be a sequence converging to p in

Hol(M, M). Then, since M is a [u o = [u o ~o] =
p* ([u]) = 0 for n large enough. Obviously f n = qJtn is homotopic to qJo, which
is the identity map on M, and hence [u] = [u o (po] = [u o f"] = p*([u]) = 0.

The proof of Theorem 1.1 is complete.
Let now X, M, and F. By Theorem 1.1, after replacing M with a

closed submanifold homotopically equivalent to M if necessary, we may assume
that X is a complete vector field, that is E (X ) = M. Again by Theorem 1.1
there exists a toral action

such that rm = T’’m for each m E M. Obvoiusly the set F is then the fixed
point set of such an action. Theorem 1.2 then follows immediatly from the
following

THEOREM 2.1. Let T r x V - V be a smooth action on the (not necessarily
connected) smooth manifold V, anf let F be the fixed point set for such an action.
If V is a manifold of finite topological type then also F it is and
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PROOF. Let us write T r = S 1 x and let Fl be the fixed point set
for Sl. Since a smooth action of a compact Lie group is linearizable in a

neighbourhood of each fixed point, it follows that Fl is a smooth (obviously
closed) submanifold of V. Moreover T’-’ acts on Fl. After r steps we so
obtain a chain

of closed submanifold with the fixed point set of a circle action on Fi.
Then, clearly it suffices to prove the theorem for r = 1, that is for a circle

action, which is done, e.g., in [Br] Theorem 10.9 (and remark below). D

Theorems 1.3 and 1.4 follow immediatly from the corresponding state-

ments on toral actions (see, e.g., respectively [B, Theorem 5.3 (a)] and [H,
Teorem (IV.5)]).
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