@article{ASNSP_1997_4_24_3_501_0, author = {Galanis, George N.}, title = {On a type of linear differential equations in {Fr\'echet} spaces}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {501--510}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 24}, number = {3}, year = {1997}, mrnumber = {1612393}, zbl = {0902.34052}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1997_4_24_3_501_0/} }
TY - JOUR AU - Galanis, George N. TI - On a type of linear differential equations in Fréchet spaces JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1997 SP - 501 EP - 510 VL - 24 IS - 3 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1997_4_24_3_501_0/ LA - en ID - ASNSP_1997_4_24_3_501_0 ER -
%0 Journal Article %A Galanis, George N. %T On a type of linear differential equations in Fréchet spaces %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1997 %P 501-510 %V 24 %N 3 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1997_4_24_3_501_0/ %G en %F ASNSP_1997_4_24_3_501_0
Galanis, George N. On a type of linear differential equations in Fréchet spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 24 (1997) no. 3, pp. 501-510. http://archive.numdam.org/item/ASNSP_1997_4_24_3_501_0/
[1] Differential Calculus, Herman, Paris, 1971. | MR
,[2] Projective limits of Banach-Lie groups, Period. Math. Hungarica 32 (1996), 179-191. | MR | Zbl
,[3] The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-221. | MR | Zbl
,[4] Linear Topological Spaces, Bull. Amer. Math. Soc. 51 (1945), 1-24. | MR | Zbl
,[5] On a differential structure for the group of diffeomorphisms, Topology 6 (1967), 263-271. | MR | Zbl
,[6] Some Frobenious theorems in global analysis, J. Differential Geom. 2 (1968), 279-297. | MR | Zbl
,[7] Equations differentielles linéaires dans les espaces de Fréchet, Rev. Roumaine Math. Pures Appl. 25 (1980), 83-88. | MR | Zbl
,[8] Topological Vector Spaces, Springer-Verlag, 1980. | MR | Zbl
,