@article{ASNSP_1997_4_24_4_593_0, author = {Hungerb\"uhler, Norbert}, title = {$m$-harmonic flow}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {593--631}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 24}, number = {4}, year = {1997}, mrnumber = {1627342}, zbl = {0911.58011}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1997_4_24_4_593_0/} }
TY - JOUR AU - Hungerbühler, Norbert TI - $m$-harmonic flow JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1997 SP - 593 EP - 631 VL - 24 IS - 4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1997_4_24_4_593_0/ LA - en ID - ASNSP_1997_4_24_4_593_0 ER -
Hungerbühler, Norbert. $m$-harmonic flow. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 24 (1997) no. 4, pp. 593-631. http://archive.numdam.org/item/ASNSP_1997_4_24_4_593_0/
[1] The approximation problem for Sobolev maps between manifolds, Acta Math. 167 (1991),153-206. | MR | Zbl
,[2] Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988), 60-75. | MR | Zbl
- ,[3] Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differential Geom. 36 (1992), 507-515. | MR | Zbl
- - ,[4] The weak solutions to the evolution problem of harmonic maps, Math. Z. 201 (1989), 69-74. | MR | Zbl
,[5] Heat flow of p-harmonic maps with values into spheres, Math. Zeit. 215 (1994), 25-35. | MR | Zbl
- - ,[6] Existence and partial regularity results for the heat flow for harmonic maps, Math. Z. 201 (1989), 83-103. | MR | Zbl
- ,[7] Hölder continuity for solutions of certain degenerate parabolic systems, Nonlinear Anal. 18 (1992), 235-243. | MR | Zbl
,[8] Hölder regularity for the gradient of solutions of certain singular parabolic equations, Comm. Partial Differential Equations 16 (1991), 1709-1732. | MR | Zbl
,[9] Nonuniqueness for the heat flow of harmonic maps, Ann. Inst. H. Poincaré, Anal. Non Linéaire 7 (1990), 335-344. | Numdam | MR | Zbl
,[10] Minimizing p-harmonic maps into spheres, J. Reine Angew. Math. 401 (1989), 82-100. | MR | Zbl
- ,[ 11 ] C1,α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827-850. | Zbl
,[12] Degenerate parabolic equations, Universitext, Springer, Berlin, 1993. | MR | Zbl
,[13] Regularity of solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math. 349 (1984), 83-128. | MR | Zbl
- ,[14] Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math. 357 (1984), 1-22. | MR | Zbl
- ,[15] Existence and regularity of functions which minimize certain energies in homotopy classes of mappings, Asymptotic Anal. 5 (1991), 129-144. | MR | Zbl
- ,[16] Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524. | MR | Zbl
- ,[17] Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-169. | MR | Zbl
- ,[18] J. L. ERICKSEN - D. KINDERLEHRER (ed.), Theory and applications of liquid crystals, IMA Vol. Math. Appl., vol. 5., Springer, New York, 1987. | MR | Zbl
[19] A new proof of local C 1, α regularity for solutions of certain degenerate elliptic P.D.E., J. Differential Equations 45 (1982), 356-373. | Zbl
,[20] Uniqueness for the harmonic map flow in two dimensions, Calc. Var. Partial Differential Equations 3 (1995), 95-105. | MR | Zbl
,[21 ] Uniqueness for the harmonic map flow from surfaces to general targets, Comment. Math. Helv. 70 (1995), no. 2, 310-338. | MR | Zbl
,[22] Correction to: "Uniqueness for the harmonic map flow from surfaces to general targets" , Comment. Math. Helv. 71 (1996), no. 2, 330-337. | MR | Zbl
,[23] Weak convergence of wave maps from (1 + 2)-dimensional Minkowski space to Riemannian manifolds, Invent. Math., to appear. | MR | Zbl
- - ,[24] Hindernisprobleme, Habilitationsschrift Düsseldorf, Düsseldorf, 1987.
, p-harmonische[25] Everywhere regularity theorems for mappings which minimize p-energy, Comment. Math. Univ. Carolin. 28 (1987), 673-677. | MR
,[26] Some regularity theorems for mappings which are stationary points of the p-energy functional, Analysis 9 (1989), 127-143. | MR | Zbl
,[27] p-harmonic obstacle problems, Part I: Partial regularity theory Ann. Mat. Pura Appl. 156 (1990), 127-158. | MR | Zbl
,[28] p-harmonic obstacle problems, Part II: Extensions of Maps and Applications Manuscripta Math. 63 (1989), 381-419. | MR | Zbl
,[29] p-harmonic obstacle problems, Part III: Boundary regularity. Ann. Mat. Pura Appl. 156 (1990), 159-180. | MR | Zbl
,[30] p-harmonic obstacle problems, Part IV: Unbounded side conditions Analysis 13 (1993), 69-76 159-180. | MR | Zbl
,[31] Partial regularity for minimizers of certain functionals having non quadratic growth, Preprint, CMA, Canberra, 1985.
- ,[32] Remarks on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math. 57 (1986), 55-99. | MR | Zbl
- ,[33] Un esempio di solutioni discontinue per un problema di minima relativo ad un integrale regolare del calcolo delle variazioni, Boll. Un. Mat. Ital. 2 (1968), 1-8. | MR | Zbl
- ,[34] Zum Einbettungssatz von J. Nash, Math. Nachr.,144 (1989), 165-187. | MR | Zbl
,[35] Harmonic maps of manifolds with boundary, Lect. Notes Math. 471, Springer, Berlin, 1975. | MR | Zbl
,[36] A remark on H1-mappings, Manuscripta Math. 56 (1986), 1-10. | MR | Zbl
- ,[37] Mappings minimizing the LP norm of the gradient, Comm. Pure and Appl. Math. 15 (1987), 555-588. | MR | Zbl
- ,[38] Regularité des applications faiblement harmoniques entre une surface et une variteé Riemannienne, C.R. Acad. Sci. Paris Ser. I Math. 312 (1991), 591-596. | MR | Zbl
,[39] Non-uniqueness for the p-harmonic flow, Canad. Math. Bull. 40 (1997), 174-182. | MR | Zbl
,[40] Global weak solutions of the p-harmonic flow into homogeneous spaces, Indiana Univ. Math. J. 45/1, (1996), 275-288. | MR | Zbl
,[41] Compactness properties of the p-harmonic flow into homogeneous spaces, Nonlinear Anal. 28/5 (1997), 793-798. | MR | Zbl
,[42] Reaction-diffusion processes and evolution to harmonic maps, SIAM J. Appl. Math. 49 (1989), 1722-1733. | MR | Zbl
- - ,[43] Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46, No. 9 (1993), 1221-1268. | MR | Zbl
- ,[44] Linear and quasilinear equations of parabolic type, AMS, Providence R.I. 1968. | MR
- - ,[45] Applications harmoniques de surfaces riemannienne, J. Differential Geom.13 (1978),51-78. | MR | Zbl
,[46] Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J. 32 849-858. | MR | Zbl
,[47] Partial Holder continuity of energy minimizing p-harmonic maps between Riemannian manifolds, preprint, CMA, Canberra, 1986.
,[48] On the local dynamical system associated to a fully nonlinear abstract parabolic equation, Nonlinear Analysis and Applications (ed. V. Laksmikantham, M. Decker), (1987), 319-326. | MR | Zbl
,[49] Multiple integrals in the calculus of variations, Grundlehren 130, Springer, Berlin, 1966. | Zbl
,[50] A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134. | MR | Zbl
,[51 ] On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math. 24 (1971), 727-740. | MR | Zbl
,[52] Global existence of wave maps in 1 + 2 dimensions for finite energy data, Top. Methods Nonlinear Analysis, to appear. | MR | Zbl
- ,[53] The embedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63. | MR | Zbl
,[54] The existence of minimal immersions of 2-spheres, Ann. of Math. 113 (1981), 1-24. | MR | Zbl
- ,[55] Approximation theorems for sobolev mappings, preprint.
- ,[56] Weak solutions and development of singularities in the SU(2) σ -model,, Comm. Pure Appl. Math. 41 (1988), 459-469. | Zbl
,[57] Weak compactness of harmonic maps from (2 + 1) -dimensional Minkowsky space to symmetric spaces, preprint, 1994.
,[58] On the evolution of harmonic maps of Riemannian surfaces, Math. Helv. 60 (1985), 558-581. | MR | Zbl
,[59] On the evolution of harmonic maps in higher dimensions, J. Diff. Geom. 28 (1988), 485-502. | MR | Zbl
,[60] Everywhere regularity for some quasilinear systems with a lack of ellipticity, Ann. Math. Pura Appl. 134 (1983), 241-266. | MR | Zbl
,[61 ] Regularity for a more general class ofquasilinear equations, J. of Differential Equations 51 (1984), 126-150. | MR | Zbl
,[62] Compactness properties of weakly p-harmonic maps into homogeneous spaces, Indiana Univ. Math. J. 44 (1995), 87-113. | MR | Zbl
- ,[63] Regularity for a class of nonlinear elliptic systems, Acta Math. 138 (1977), 219-240. | MR | Zbl
,[64] Degenerate quasilinear elliptic systems, Zap. Naucn. Sem. Leningrad. Otel. Mat. Inst. Steklov 7 (1968), 184-222. | MR
,[65] Local existence, uniqueness and regularity for a class of degenerate parabolic systems arising in biological models, Quaderno/Dipartimento di Matematica "F.Enriques"', Universita degli Studi di Milano, no. 33/1988.
,