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A General-Weighted Sturm-Liouville Problem

ADRIAN CONSTANTIN

1. In this paper we describe the periodic, anti-periodic, Dirichlet and
Neumann spectrum of the differential equation

where m , q e COR) are of period 1 and q (x ) &#x3E; 0, x E JR, q =1= 0. We refer to
m as the potential.

Equation ( 1 ) plays a crucial role in the study of a recently
derived shallow water equation (see [1], [4], [5]).

It is well-known that for the similar Hill’s equation

with Q E of period 1, the following holds (see [3], [6], [7], [8]).

There is a simple periodic ground state Xo followed by alternately anti-periodic
and periodic pairs

of simple or double eigenvalues accumulating at oo. There is precisely one simple
eigenvalue of the Dirichlet spectrum in each interval ),2n], n = 1, 2, ...
and no others. All elements of the Neumann spectrum are likewise simple real
eigenvalues, one in (-00, Ào) and one in each of the intervals [À2n-l, ~.2n~~ n =
1, 2,...

Our aim is to prove an analogous result for ( 1 ).

THEOREM 1. Assume that m # 0.
1) If m  0, there is a simple periodic ground state Ào &#x3E; 0 followed by

alternately anti-periodic and periodic pairs

of simple or double eigenvalues accumulating at oo. There is precisely one simple
eigenvalue of the Dirichlet spectrum in each interval [~.2n-1 ~ À2n], n = 1, 2, ...
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and no others. All elements of the Neumann spectrum are likewise simple real
eigenvalues, one in (-oo, and one in each of the intervals [À2n-l, ~2n~~ n =
1,2,...

2) If m &#x3E; 0, the pattern of 1) is simply reflected in À = 0.

In the case when m changes sign the picture is slightly different:

THEOREM 2. If m E C(R) of period 1 changes sign, there are two simple
periodic ground states À6 &#x3E; 0, Àü  0, and À6 is followed, Àü preceded by
alternately anti-periodic and periodic pairs

of simple or double eigenvalues accumulating at oo and -oo respectively. There

is precisely one simple eigenvalue of the Dirichlet spectrum in each interval of the
form [~.2 _ 1, or [~’2n ~ 1, 2,... and no others. All elements of
the Neumann spectrum are likewise simple real eigenvalues, one in (0, A.~], one in
[Àü, 0), and one in each of the intervals ~2 ]~ [À2n’ = 1, 2, ...

Information about the Dirichlet spectrum of ( 1 ) is already provided in [ 11 ] .
The present paper gives the complete spectral picture in the case when q is

non-negative. Such information is not available in the literature, cf. [2] and the
references therein.

2. Equation ( 1 ) has two solutions and y2(~~) determined by
the conditions = 1, ~(0,~) = 0; y2(0,~) = 0, y2 (o, ~,) = 1. These

normalized solutions are defined for all values of x e R.
The spectral problem is to determine the values of À for which ( 1 ) has a

nontrivial periodic solution of period 1 (y(0) = y ( 1 ) and y’ 0) = y’ ( 1 ) ) - this
is the periodic spectrum - and the values of À for which it has a nontrivial

anti-periodic solution (y(0) = -y ( 1 ) and y’(0) = -y’ ( 1 ) ) - this is the anti-

periodic spectrum. The Dirichlet spectrum is determined by solving ( 1 ) with the
boundary conditions y(0) = y ( 1 ) = 0; it comprises the roots of y2(l~) = 0.
The Neumann spectrum is determined by solving with y’ (o) - y’ ( 1 ) = 0; it

comprises the roots of yl ( 1, À) = 0.
The discriminant of ( 1 ) is

FLOQUET’S THEOREM [8]. Equation (1) has a nontrivial periodic solution of
period 1 if and only if ~ (~,) = 1, and a nontrivial anti-periodic solution if and only
if 0 (~,) - -1 (double roots corresponding to double eigenvalues). I i= 1,
then (1) has two linearly independent solutions fl, f2 such that fl (x + 1) = afl (x)
andf2(x+l) E Rwitha = ð(À)~V ~2(À) - 1. E (-1, 1),
then a E C - R and all solutions of (1) are bounded; I &#x3E; 1, then a E R and
every nontrivial solution is unbounded.
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Observe that the periodic, anti-periodic, Dirichlet and Neumann spectra are
all real.

Indeed, let h E C be an eigenvalue and let y be the corresponding eigen-
function, y = f + i g with f, g : R - llg. Multiplying (1) by y = f - i g, we
obtain after integration

(integration by parts helps). Since q &#x3E; 0 and 0, we see that the left-hand
side of the above equality is not zero. This proves that À E R.

LEMMA 1. There is a neighborhood of À = 0 disjoint from the periodic, anti-
periodic, Dirichlet and Neumann spectrum. Moreover, if m &#x3E; 0, then the periodic,
anti-periodic, Dirichlet and Neumann spectra lie in (-oo, 0), while if m  0 they
lie in (0, oo).

PROOF. No element of the periodic, anti-periodic, Dirichlet and Neumann
spectrum can satisfy

This can be seen multiplying the differential equation for the eigenfunction y
by y itself and then integrating by parts. D

Applying Picard’s iterative method to (1), we can easily prove:
LEMMA 2. The functions 0 (~,), Y2 (1, À) and yl ( 1, À) are entire analytic func-

tions of the complex variable À.

3. Assume that m has no zeros and is of class C2. Then the Liouville
substitution

where

transforms (1) into

with the upper/lower sign according as m is negative or positive.
The Liouville transformation is not applicable unless m is differentiable, at

least in the sense that d22 is bounded and continuous almost everywhere [8],dt
but the methods from [8] regarding problem (2) can be easily adapted to (1)
to obtain some information about the periodic spectrum:
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PROPOSITION. Assume that m  0 is continuous of period 1. Then there is
a simple periodic ground state ~,o &#x3E; 0 followed by alternately anti-periodic and
periodic pairs

of simple or double eigenvalues accumulating at 00.

When m changes sign or has zeros, the methods developped in [3], [6],
[7], [8] for (2) cannot be adapted to ( 1 ).

LEMMA 3. Suppose m # 0 is continuous of period 1. Then the Dirichlet

spectrum has infinitely many elements with no finite accumulation point. If m  0,
it forms a sequence of stricly positive numbers accumulating at 00; if m &#x3E; 0, it forms
a sequence of strictly negative numbers accumulating at -o00; and if m changes sign,
it accumulates both to -oo and to oo.

PROOF. The operator [- ax -~- q (x ) ] acting on the space { f E H2 [o, 1 ] ; f (o)
= f ( 1 ) = 01 with values in L 2 [o, 1 ], is invertible with bounded, symmetric,
positive compact inverse G (this can be easily seen by using Green’s function
for ( 1 ) and the fact that q &#x3E; 0).

G has a positive square root A, cf. [ 10] : it is a bounded positive linear
operator and it is compact since G is compact (see [9]).

We know by Lemma 1 that if J1 is an element of the Dirichlet spectrum,
then J1 =1= 0 and y2 ( 1, 9 It) = 0. We write ( 1 ) in the form

with = Y2 (X, A) for x E R. Let q5 E L~[0,1] be such that A o = 1/1.
Applying A to both sides of (3) we get

Conversely, one can see that if h # 0 is an eigenvalue of Am A, then J1 = -f
is in the Dirichlet spectrum.

It is an easy exercise to show that AmA is a self-adjoint, compact bounded
linear operator on L 2 [o, 1]. If m &#x3E; 0, then Am A is positive and if m  0, then
-AmA is positive: indeed,

where (.,.) stands for the inner product in L 2 [o, 1 ] .
Write now the Schur Representation of the operator Am A on L2 [o, 1]

(see [10])
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where kk are the eigenvalues and ek the corresponding orthonormal eigenvectors.
Let us show that we cannot have a finite number of eigenvalues.
If this would be true, then

for some n &#x3E; 1 - the operator Am A being compact, all eigenspaces correspond-
ing to nonzero eigenvalues are finite dimensional.

Let [a, b] C [0, 1] be such that m(x) &#x3E; 0 or m (x)  0 on [a, b] and choose
01, - - - , E 1] so that 0 on [0, 1] - [a, b] for j = 1, ... , n -f-1,
and A~1, ... , are linearly independent in L~[0, 1] (this is possible since
the functions f E C°°[0, 1] with f (0) = f ( 1 ) = 0 belong to the range of A).
The system

has a solution (a I , ... , (0, ... , 0). Define
Then 0 on [0, 1 ],

and (Acp)(x) = 0 a.e. on [a, b], which is impossible by construction.
We proved that Am A has infinitely many eigenvalues 1 with hn 7~ 0

for n &#x3E; 1. Am A being compact, we have = 0 and since À i= 0 is an
eigenvalue of Am A if and only is in the Dirichlet spectrum of (1),
this proves Lemma 3 if m does not change sign (then clearly all eigenvalues
of AmA have the sign of m).

In order to complete the proof, we have to show that if m changes sign
we have infinitely many eigenvalues of Am A on both sides of zero.

Suppose m changes sign and Am A has no negative eigenvalues. Let

[a, b] c [0, 1] be such that m(x)  0 on [a, b] and let 0 E L2 [o, 1] ] be such
that Ao n 0 on [0, 1] - [a, b] but 0 on [0, 1] ] (take Aq5 of class C°°).
Then

since we do not have negative eigenvalues, but

and so, since m(x)  0 on [a, b], we must have 0 a.e. on [a, b]
which is likewise impossible by construction.
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If Am A would have only a finite number of negative eigenvalues then there
are ~,1, ... , hn negative eigenvalues and corresponding orthonormal eigenvectors
e 1, ... , en with

We choose ~1, ... , E L~[0, 1] ] with 0 on [0, 1] - [a, b] for j =
1,..., n -~-1, and A ~ 1, ... , A ’On + I linearly independent in L~[0, 1]. If (a 1, ... ,

(0,..., 0) is a solution of the system

then will satisfy

and, since m(x)  0 on [a, b], (A4»(x) = 0 a.e. on [a, b] which is impossible
by construction.

Similarly we prove that it is impossible for Am A to have only finitely
many positive eigenvalues and the proof of Lemma 3 is completed. D

REMARK. Statements analogous to Lemma 3 hold also for the periodic and
anti-periodic spectra.

Let us now consider the differential equation

One can easily see that the associated and y2 ( 1, ~, , y ) will be analytic
functions of h and y.

For fixed X E R, (4) is a standard Hill equation, and so we have (see [8])
that for any X E R the roots of =+ 1 can be ordered like that: there
is a simple real root yo(X) of y ) = 1 followed by alternately (simple or
double) real roots of _ -1 and respectively y) = 1:

accumulating at oo. It is easy to check that, at k = 0, all eigenvalues of (4)
-periodic, anti-periodic, Dirichlet and Neumann- are strictly positive.

Since the periodic and anti-periodic spectra are formed by the roots of
= 1, respectively A(h, y ) _ -1, we deduce by Hurwitz’s theorem that

the curves ~~, , y2k (~, ) ) and (Â, are continuous for all k -&#x3E; 0. The
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elements of the periodic and anti-periodic spectrum of (1) are the h’s corre-
sponding to the intersection of these curves with the h-axis in the (À, y)-plane.
Between any two curves (À, Y2k- I (,k)) and (À, (with k &#x3E; 1) lies the

continuous deformation (À, of an element of the Dirichlet spectrum and
the continuous deformation (À, YkN (À») of an element of the Neumann spectrum.
There is also a continuous curve (À, below (X, representing the
continuous deformation of the first Neumann eigenvalue for (4) with k E R
fixed.

LEMMA 4. The functions X H yk (~.), k &#x3E; 0, are differentiable on R. If
simple periodic or anti-periodic eigenvalue (k &#x3E; 0), then the function

h H yk (h) is differentiable in a small neighborhood of À = ~,*. Moreover, if f is
any of those functions and if k* :A 0 is a simple eigenvalue which is also a root of
f, then ~~ (X*)  0 if À * &#x3E; 0 (À *) &#x3E; 0 if À *  0.

PROOF. Let us prove the differentiability of the function X H Yk(À) near
h = k*, where is a simple periodic eigenvalue. Let s, 3 &#x3E; 0 be small

enough so that y) 0 1 for IÀ-À*I I  3 and y E C, = 0 
8  2~c }. Then, for h E (À * - 8, À * + 3), we have

so (À) exists for h E (,k* - 8, X* + 8) (we can differentiate with respect to
À under the integral; recall the analyticity of y) in both variables).

Assume now that f(h*) = 0 where À* =I 0 is a simple periodic or anti-
periodic eigenvalue or an element of the Neumann spectrum (thus again simple)
and let yp be the eigenfunction corresponding to for h very close to h*

(in order for f(h) to be again a simple eigenvalue).
Differentiating with respect to X in

we find

Multiplying by yp and adding this to the differential equation satisfied by
yp multiplied on its turn we obtain

if we evaluate at h = X*.
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Integrating on [0, 1 ], we find

The identity

completes the proof. El

Let =I 0 be a zero of y2 (x, X). This moves continuously with À and
since it can never become a double zero (otherwise Y2(X, À) n 0 on R) we
deduce that the zeros of y2 (x, À) cannot coalesce and then disappear.

LEMMA 5. The zeros of Y2(X, À) on (0, (0) move to the left (remaining on
(0, oo)) for À &#x3E; 0 increasing and for ~,  0 decreasing. The zeros Of Y2 (X, À) on
(-oo, 0) move to the right (remaining on (-oo, 0)) for À &#x3E; 0 increasing and for
À  0 decreasing.

PROOF. Assume that a &#x3E; 0 is a zero of Y2(X, À) for some À &#x3E; 0.

Differentiating ( 1 ) with respect to À we obtain

Multiplying this by (-y2) and adding it to the differential equation satisfied
by y2 multiplied by we get

Since integration on [0, a] produces

Multiplying (1) by y2 and integrating on [0, a], we get

whence

When h)  0, y2 (a, h) is decreasing while k is increasing and thus the
zero of Y2 (x, À) is moving to the left; if y2 (a, À) &#x3E; 0, y2 (a, À) is increasing
with h and thus the zero of y2 (x, À) is moving again to the left.

The other cases are handled in a similar way. D
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PROOF OF THEOREM 1. Assume that m  0.

By Lemma 3, the periodic, anti-periodic, Dirichlet and Neumann spectra
are formed by infinitely many positive elements accumulating at oo.

From Lemma 4 we know that the curves (À, &#x3E; 0, can intersect
the h-axis only in one point (crossing in the (À, y)-plane from the upper half-
plane to the lower half-plane). Since the curves (h, Y2k(À») and (À, y2k+1 (h))
are disjoint (on the first = 1 and on the second = - 1), it
follows from the fact that the curve (À, is below (À, yo(h)) and the

curve ~~, , yk (~,) ~ is between (À, Y2k-l (À») and (~-, Y2k(À») for k &#x3E; 1, that all

curves (À, with k &#x3E; 0 must intersect the h-axis in exactly one point.
Therefore, each curve 0, and &#x3E; 1, intersects at

least once the positive h-semiaxis.
We claim that they do this just once so proving the statement of Theorem 1

(the case m &#x3E; 0 is similar).
Observe that at each point J1k where the curve (À, &#x3E; 1, intersects

the h-axis, Y2(X, pk) has exactly (k + 1) zeros on [0, 1]: at x = 0, x = 1 and
(k - 1) times in (0, 1); this follows by continuous deformation from the case
of y2 (x, 0, Yk (0» (for the latter, see [8]). Now, by Lemma 5, it is impossible
to have more than one point of intersection.

Since (by Lemma 1 and Lemma 4) at any point k* with = 0 we

have Y-0 (À *)  0, we conclude that the curve (À, yo(X)) intersects the h-axis
in exactly one point.

Let us now consider the more delicate case of the curves (À, 1.

Fix k &#x3E; 1 and assume that we deal with the deformation of a periodic eigenvalue
(the anti-periodic case is similar). We know that the curve (À, has to
intersect the positive k-semiaxis. Let h* &#x3E; 0 be such that Yk(À *) = 0. If

a’N (~.*, 0) :A 0, we know by Lemma 4 that the curve (À, crosses the
h-axis from the upper half-plane to the lower half-plane.

If ~(~*, 0) = 0 then h* is a double eigenvalue of (1) and, in particular, it
is in the Dirichlet spectrum. If we prove that for h &#x3E; h* very close to À *, the
curve (À, is in the lower half-plane, we are done: in view of Lemma 4

and the fact that (À, (À)) crosses just at h* the h-axis, it can never cross
2

again.
Assume the contrary. Then, for h &#x3E; h* small, the curve (À, is

distinct from the curve (À, ()) so that we can find a sequence 11 
converging to h* with

and such that is a simple periodic eigenvalue for n &#x3E; 1 (going through
the first part of the proof of Lemma 4 we can see that the function X H 
is differentiable in a small neighborhood of Xn). For all n &#x3E; 1, let now yn
be a periodic eigenfunction of (4) corresponding to Oln, Since Yn =1= 0
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is periodic, we can normalize the family of functions 1 by imposing the
condition 

I" 1

Repeating the arguments from the last part of the proof of Lemma 4,
we find

and so

that is (taking into account the normalization),

Define now

and let us prove that K &#x3E; 0.

Indeed, if K = 0, we can find a sequence nj -+ oo such that

Using Schwarz’s inequality, one can check that we would have

weakly in

Recalling the normalization, for every nj there is a point Xnj E [0, 1] with

1. Using now the mean-value theorem and Schwarz’s inequality,



777

the Arzela-Ascoli theorem yields the existence of a continuous function y :
[0, 1] - R and of a subsequence of denoted by again, such that

y,j -~ y uniformly on [0, 1]; in particular, 
~

strongly in

Viewing both convergences in the sense of distributions, we see that y’ - 0
a.e. on [0, 1 ] and therefore y has to be a constant: due to the normalization

Id = ~ for 1, we must have that the constant is either 1 or -1.

We now have

and on the other hand we must have

Since fo q (x)dx ~ 0, we obtained a contradiction.
We proved that K &#x3E; 0 but by (5) this is impossible since limn-+oo Yk(Àn) =

0. The proof is complete. v

PROOF OF THEOREM 2. Let m change sign. We repeat the arguments from
before proving that all curves (À, (À, and (À, 1
intersect the k-axis in the (.k, y)-plane exactly twice: once on the positive
semiaxis and once on the negative semiaxis. F-1

4. In this section we will study the oscillation properties of the solutions
of the differential equation ( 1 ).

THEOREM 3. Assume that m 0- 0 is continuous ofperiod 1.
1) If m  0, then for À  Ào all nontrivial solutions of (1) have only a finite

number of zeros on R &#x3E; Ào every solution of (1) has infinitely many zeros.
2) If m &#x3E; 0, then for ~. &#x3E; Ào all nontrivial solutions of (1) have only a finite

number of zeros on R  Ào every solution of ( 1 ) has infinitely many zeros.
3) If m changes sign, E 0 h) all nontrivial solutions of (1) have

only a finite number of zeros on R but for À &#x3E; h) and À  Ào every solution of (1)
has infinitely many zeros.

Let us interpret y, and Y2 as Cartesian coordinates in the plane and put
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and since the Wronskian yl y2 - Y’Y2 n 1 on R, we find

Observe is a strictly increasing function of x ; I -~ oo as

x -+ oo or jc -~ -oo, both Yl and y2 have infinitely many zeros, otherwise
both of them will have a finite number of zeros on R.

For fixed X E R, every solution of (1) will have infinitely many zeros
on R if a single nontrivial solution has this property (the zeros of two linearly
independent solutions of a second order linear differential equation separate each
other, cf. [7]).

LEMMA 6. If there is a solution of (1) which has a finite number of zeros on R,
then for all functions f E ofperiod 1 we have

PROOF. Let us first prove that if (1) has a solution with finitely many zeros
on R, there must be a non-vanishing solution y to (1) such that

for some a &#x3E; 0.

By Floquet’s theorem, there is a solution y satisfying (8) for some a E C.
If a E C - R, all solutions of (1) are bounded and formulas (6)-(7) show that
0 (x) -+ oo oo. Then Yl has infinitely many zeros on R and so does
any other solution of (1). Thus a E R and we can take y satisfying (8) to
be real too. In this case we must have a &#x3E; 0 since otherwise y would have

infinitely many changes of sign; moreover, y cannot vanish for some x = xo
because it would also vanish for x = xo + n with n &#x3E; 1.

Assume now that there is a solution of (1) with a finite number of zeros
on R and let f E C (R) be of period 1. Choose a solution y of (1) which is
strictly positive and satisfies (8) for some a &#x3E; 0.

Let P(jc) = In y(jc), x Then P E 

and therefore

Since P’ and f are of period 1, the proof is complete.
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PROOF OF THEOREM 3. Assume that m  0.
Let us first prove that the eigenfunction corresponding to the periodic eigen-

value ho has no zeros on R.
Recall the deformation argument from the previous section. Since yo (~.) is

not a Dirichlet eigenvalue, we can normalize the corresponding eigenfunction

Since the eigenfunction corresponding to the first periodic eigenvalue for Hill’s
equation has no zeros (see [8]), the functions yp(x, À, yo(~.)) have no zeros
for h E [0, Ào) and since the curve (À, yo(~,)) joins continuously (0, yo(0)) to

(~,o, 0), we find (knowing that we can have only simple zeros) that yp (x, ~,o, 0)
has no zeros on [0, 1] and thus no zeros on R, being periodic.

We prove now that for h &#x3E; ho every solution of (1) has infinitely many
zeros by showing that the inequality in Lemma 6 is violated by f := yp (x, ~,o).
Indeed,

since

and ho &#x3E; 0 by Theorem 1.
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To complete the proof in the case m - 0, we have to show that for h s ho
every nontrivial solution of (1) has finitely many zeros on R.

Assume that for some X  Ào there is a nontrivial solution of (1) with
infinitely many zeros on R. Then the solution y (x, À) of ( 1 ) with y (0, À) =

yp (0, Ào) = 1, y’(0, h) = Ào) has also infinitely many zeros. Let xo &#x3E; 0

be the smallest positive one. Multiplying the differential equation for y(x, À)
and adding it to the differential equation for yp(x, Ào) multiplied

by y(x, X), we find

and an integration on [0, xo] yields

Since y’(xo, À) S 0, À  Ào, m S 0 and 0 on [0, xo], we
would have yp (xo, Ào)  0. Since yp (0, Ào) = 1, yp (x, Ào) has a zero on (0, xo]
but this is impossible. The proof is complete if m  0; a similar argument
works in the case m &#x3E; 0.

Assume now that m changes sign.
The fact that all solutions of (1) have infinitely many zeros for h &#x3E; X+

and k  Àû can be proved as above (as well as the fact that the eigenfunctions
corresponding to X- and X+ have no zeros).

Assume that for some X E (Àû, Àt) there is a nontrivial solution of ( 1 )
with infinitely many zeros. Then y2 (x, À) will have infinitely many zeros on
R. This is not possible for h = 0. Assume that X &#x3E; 0. If Y2(X, À) has

infinitely many zeros on [0, oo), we deduce by Lemma 5 that y2 (x, Àt) will
have infinitely many zeros on [0,oo) and therefore also which is

impossible. If y2 (x, À) has infinitely many zeros on (-oo, 0], by Lemma 5 we
deduce that y2 (x, Àt) will have infinitely many zeros on (-oo, 0] and therefore
also yp(x, X+), which is likewise impossible. D

We know by Theorem 3 that all eigenfunctions corresponding to periodic
or anti-periodic eigenvalues different from the ground state (or states) have
infinitely many zeros on R. A more detailed description is provided by

THEOREM 4. Assume that m # 0 is continuous ofperiod 1. The eigenfunction
(or eigenfunctions) corresponding to Àn, ~.n or ~,n has exactly [ n 21 ] zeros on the
interval [0, 1 ].

PROOF. Let us assume that m changes sign. We proved that the eigenfunction
corresponding to X+ has no zeros on [0, 1]. We know that Y2(X, J1t) has exactly
two zeros on [0, 1]: at x = 0 and at x = 1 (here is the first positive Dirichlet
eigenvalue). Let be an eigenfunction corresponding to J1t.
Since yp(x, Àt) has infinitely many zeros on R, yp(x, Àt) has at least one zero
in [0, 1). If it has two zeros, Y2(X, Àt) has at least one zero on (0, 1) - the



781

zeros of two linearly independent solutions of a second order linear differential
equation separate each other, cf. [7]; by Lemma 5 Y2 (x, J1 t) has also at least
one zero on (0, 1), which we know is not the case.

Let now be an eigenfunction corresponding to ~,2 . Again, it must
have at least one zero on [0, 1); if it would have two we find that y2 (x, ~,2 )
has a zero on (0, 1) and thus at least three zeros on [0, 1] and therefore, by
Lemma 5, Y2(X, J1i) would have at least two zeros on (0, 1), which is not the
case.

The rest will be plain. D

5. To complete the spectral picture for (1), we note the following asymp-
totics for the Dirichlet eigenvalues (see [2]):

while if m changes sign,

where m+ and m- are the positive, respectively the negative parts of m.

COMMENT. The condition that q is non-negative is essential. Richardson [ 11 ]
shows that if we drop this condition the behaviour of the Dirichlet spectrum be-
comes very complicated (considering again the problem (4), we see that the curves
Y n D (~ ’))nll 1 intersect the ~,-axis in several points, the number of points of inter-
section depending on n &#x3E; 1 in a way that is even not monotonic); the beauty of the
whole picture is lost.
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