@article{ASNSP_1997_4_24_4_767_0, author = {Constantin, Adrian}, title = {A general-weighted Sturm-Liouville problem}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {767--782}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 24}, number = {4}, year = {1997}, zbl = {0913.34022}, mrnumber = {1627318}, language = {en}, url = {archive.numdam.org/item/ASNSP_1997_4_24_4_767_0/} }
Constantin, Adrian. A general-weighted Sturm-Liouville problem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 24 (1997) no. 4, pp. 767-782. http://archive.numdam.org/item/ASNSP_1997_4_24_4_767_0/
[1] The geometry of peaked solutions of a class of integrable PDE's, Lett. Math. Phys. 32 (1994), 37-151. | MR 1296383 | Zbl 0808.35124
- - - ,[2] Asymptotics of the number of zeros and of the eigenvalues of general-weighted Sturm-Liouville problems, J. Reine Angew. Math. 375/376 (1987), 380-393. | MR 882305 | Zbl 0599.34026
- ,[3] Ordinary Differential Equations, J. Wiley & Sons, New York, 1989. | MR 972977
- ,[4] An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661-1664. | MR 1234453 | Zbl 0972.35521
- ,[5] A new integrable shallow water equation, Adv. Appl. Mech. 31 (1994), 1-33. | Zbl 0808.76011
- - ,[6] Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. | MR 69338 | Zbl 0064.33002
- ,[7] Ordinary Differential Equations, Birkhäuser Verlag, Basel, 1982. | MR 658490
,[8] Hill's Equation, Interscience Publ., New York, 1966. | MR 197830 | Zbl 0158.09604
- ,[9] Methods of Modem Mathematical Physics, Vol. I, Academic Press, New York, 1972. | MR 493419 | Zbl 0242.46001
- ,[10] Hilbert Space: Compact Operators and the Trace Theorem, London Math. Soc. Monographs, Cambridge University Press Cambridge, 1993. | MR 1237405 | Zbl 0783.47031
,[11] Contributions to the study of oscillation properties of the solutions of linear differential equations of the second order, Amer. J. Math. 60 (1918), 283-316. | JFM 46.0698.03 | MR 1506360
,[12] Functional Analysis, Ungar, New York, 1955. | MR 71727
- ,