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The Dynamics of Piecewise Monotonic Maps
under Small Perturbations

PETER RAITH

Abstract

Let T : X - R be a piecewise monotonic map, where X is a finite union of closed intervals,
and define R (T) = In this paper the influence of small perturbations of T on the
dynamical system (R(T), T) is investigated. Although the topological entropy, the topological
pressure, and the Hausdorff dimension are lower semi-continuous, and upper bounds for the jumps
up can be given, the decomposition of the nonwandering set into maximal topologically transitive
subsets behaves very unstably. However, it is shown that a maximal topologically transitive
subset with positive entropy cannot be completely destroyed by arbitrary small perturbations.
Furthermore results concerning maximal topologically transitive subsets of small perturbations
of T are obtained.

Introduction

Let X be a finite union of closed intervals, and consider a piecewise
monotonic map T : X - R, that means there exists a finite partition Z of X into
pairwise disjoint open intervals with such that T ~ Z is bounded,
strictly monotone and continuous for all Z E Z. Set R (T ) _ This
can be considered as the set, where T n is defined for all n E N. Note that
if T : [0, 1] -~ [0, 1] is a piecewise monotonic map, then R (T) = [0, 1]. We
consider the dynamical system (R (T ), T), and we are interested in the influence
of small perturbations of T on this dynamical system.

A function f : X - R is called piecewise continuous with respect to the
finite partition Z of X, if can be extended to a continuous function on Z
for all Z E Z. We suppose Z = f Z1, Z2,..., with Zl  Z2  ...  ZK.
Let X be a finite union of closed intervals, let 5l be a finite partition of X
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into disjoint open intervals with UZEz Z = X, and let f : jl - R be piecewise
continuous with respect to 2. Then (/, is said to be close to ( f, Z), if

Z = 121, Z2,..., with Z1  Z2  ...  ZK, and if for j E { 1, 2,..., K }
the graph of is contained in a small neighbourhood of the graph of 
considered as a subset of R 2. If is n-times differentiable for all Z E Z,
and if f 12 is n-times differentiable for all Z E 2, then ( f , Z) is said to be
close to ( f, Z) in the Rn-topology, if ( f ~~~, Z) is close to ( f ~~~, Z) in the sense
defined above for all j E No n.

Fix a piecewise monotonic map T : X 2013~ R with respect to the fi-
nite partition Z of X. It is shown in Theorem 5 of [8], that the topo-
logical entropy is lower semi-continuous at (T, .) with respect to the Ro-
topology. In Theorem 9 of [15] and Theorem 1 of [12] it is shown that

p(R(f), f, j) &#x3E; p(R(T), T, f), if f : X - R is piece-
wise continuous with respect to Z and a condition generalizing p(R(T), T, f ) &#x3E;

sup,,,x f (x) is satisfied, where (t, /, 2) - (T, f, Z) means (7B 2) - (T, Z)
and ( f , 2) - ( f, Z) in the Ro-topology. A piecewise monotonic map T : X - R
is called expanding, if there exists an n E N, such that infxExn I &#x3E; 1,
where Xn = nj- For an expanding piecewise monotonic map T : 
it is shown in Theorem 3 of [12] that the Hausdorff dimension is

lower semi-continuous at (T, ,Z) with respect to the Rl-topology. Also upper
bounds for the jumps up for a given (T, .~) (respectively (T, Z) and ( f, Z)
in the case of pressure) with respect to the Ro-topology (respectively the Rl-
topology in the case of Hausdorff dimension) are known. These upper bounds
are given in Theorem 1 of [6] and Theorem 2 of [7] for the entropy, in The-
orem 2 of [12] for the pressure, and in Theorem 3 of [12] for the Hausdorff
dimension. The results of this paper will imply the results mentioned above.

In [2], [3], [4], [5] and [10] a structure theorem for the nonwandering set
of a piecewise monotonic map T : X - R is shown. It says that

where I is at most countable, J is at most finite, the intersection of two different
sets in this decomposition is at most finite, the sets Li are closed, T-invariant,
topologically transitive, and the periodic points of Li are dense in Li, the sets

Nj are closed, T-invariant, minimal with entropy zero and no periodic points,
and they are maximal topologically transitive, the set P is closed, T-invariant,
and consists of periodic points, which are contained in nontrivial intervals K,
which are mapped into K by T n for an n E N, and the elements of W are not
contained in Q(Q(R(T), T), T). Furthermore the sets L 1 are either a single
periodic orbit, or they are maximal topologically transitive subsets with positive
entropy. Hence the most interesting part of the dynamics takes place on the
at most countable many maximal topologically transitive subsets with positive
entropy.
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It is shown in Theorem 1 of this paper, that the number of maximal

topologically transitive subsets with positive entropy is not stable. More exactly,
there is given an example of a piecewise monotonic map T : [0, 1] ] -~ [0, 1]
with n maximal topologically transitive subsets with positive entropy, such that
arbitrary close to (T, .~) in the R°°-topology there exists a piecewise monotonic
map T : [0, 1] - [0, 1] with only one maximal topologically transitive subset
with positive entropy. In this example entropy and pressure are continuous at
(T, Z). If we take a maximal topologically transitive subset L with positive
entropy, where T : X -+ R is a piecewise monotonic map, then Theorem 2
says, that if (T, Z) is sufficiently close to (T, Z) in the R°-topology, then there
exists a topologically transitive subset L of (R(f), T ) (which in general is not
maximal topologically transitive), such that L is close to L in the Hausdorff

metric, and the entropy of L is close to the entropy of L. Furthermore, if

/ : X 2013~ R is piecewise continuous with respect to Z and p (L , T , f ) &#x3E;

lim,,Oo 1 SUPxc=R(T) Ej=O then, if ( f , Z) is sufficiently close to ( f, Z)(&#x3E;

in the Ro-topology, the set L can be chosen, such that also p(L, T, /) is close to
p (L , T, f). If T is additionally expanding, then it is shown in Theorem 3 that, if
(7B Z) is sufficiently close to (T, Z) in the R 1-topology, then L can be chosen,
such that the Hausdorff dimension of L is close to the Hausdorff dimension
of L. In [13] an other stability problem is studied. The results of [13] say, that
"big" maximal topologically transitive subsets of a sufficiently small perturbation
(in the sense of [13]) of T are "dominated" by a topologically transitive subset
of T. Using a technique developped in [14] similar results for the situation
considered in this paper are shown. A "big" maximal topologically transitive
subset of a sufficiently small perturbation of T is "dominated" by a topologically
transitive subset of T (which in general is not maximal topologically transitive)
or by an irreducible subgraph of a certain graph (~, -~ ), which was introduced
in [12]. This result is obtained in Corollary 4.1, Theorem 4 and Theorem 5,
if "big" is meant in the sense of topological entropy, respectively topological
pressure, respectively Hausdorff dimension.

1. - Piecewise monotonic maps and topologies on piecewise monotonic maps

Suppose that X is a finite union of closed intervals. We call .~ a finite
partition of X, if .~ consists of pairwise disjoint open intervals with UZEZ Z =
X. A function f : X - R is called piecewise continuous with respect to the
finite partition Z( f) of X, if can be extended to a continuous function
on the closure of Z for all Z E Z (f ). For every x E X at least one of the
numbers f (x+) := limy-+x+ f (y) and f (x-) := limy,x- f (y) exist, and we

always assume, that f (x ) = f (x + ) or f (x ) = f (x - ) .
We call a piecewise continuous map T : X - R piecewise monotone with

respect to the finite partition Z of X, if T Z is strictly monotone and continuous
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for all Z E Z. Now we define

A piecewise monotonic map T : X - R is called piecewise monotone of class
Rn, where n E oo~, if there exists a finite partition Z of X, such that T
is piecewise monotone with respect to Z, and for every j E N, j  n the map

is j times differentiable and &#x3E; can be extended to a continuous
function on the closure of Z for all Z E Z. Note that if T is of class Rn and

k  n, then T is of class Rk. We call a piecewise monotonic map T, which
is at least of class R 1, an expanding piecewise monotonic map, if there exists
a j &#x3E; 1, such that (Tj)’ is (more exactly: can be extended to) a piecewise
continuous function T-lX and [ &#x3E; 1.

Now we shall define topologies for piecewise nionotonic maps and piece-
wise continuous functions (cf. [7] and [12]). Let s &#x3E; 0. We say that two

continuous functions f : (a, b) ~ R and / : (a, b) - I1~ are s-close, if

Observe that, if E is small enough, then (1) gives that (a, b) n (a, b) =1= ø.
Suppose that X and X are finite unions of closed intervals. Let f : X 2013~ R

be piecewise continuous with respect to the finite partition Z of X, and let

f : k - I1~ be piecewise continuous with respect to the finite partition Z
of X. Suppose that Z = IZI, Z2,..., with Zl  Z2  ...  ZK and
2 = { Z1, Z2,..., with ZI  Z2  ...  2 g . Then ( f, Z) and ( f , Z) are
said to be s-close in the Ro-topology, if
(1) card = card,
(2) and f ~ Z~ are s-close in the sense defined above for j = 1, 2,..., K.

Let n E N U {0, oo}, let T : X - R be piecewise monotone of class Rn
with respect to the finite partition Z of X, and let 1 : be piecewise
monotone of class Rn with respect to the finite partition Z of X. Then (T, Z)
and (F, Z) are said to be s-close in the Rn -topology, if (T(i), Z) and (i~(i), 2)
are s-close in the R°-topology for every j E No with j  n.

As in [12] we modify (X, T) in order to get a topological dynamical system.
We shortly describe this construction. Let T : X ~ R be a piecewise monotonic
map with respect to the finite partition Z of X, let f : X - R be a piecewise
continuous function with respect to Z, and let Y be a finite partition of X,
which refines Z. Set E(T) := {infZ, sup Z : Z E Ei(r) := E(T) B (R B X)
and E := {inf Y, sup Y : Y E y} B (Il~ B X). An x E R is called an inner
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endpoint of Z, if x E El (T). We have that E(T) is the set of endpoints of
elements of Z, is the set of all elements of E(T), which are inner
points of X (this motivates the definition of inner endpoints), and E is the set
of all inner endpoints of y. Now define W := B (1I~ B X ). Set

RN := (M B W) U {x - , x + : x E W}, and define y  x -  x +  z, if y  x  z

holds in R. This means, that we have doubled all inner endpoints of Y, and
we have also doubled all inverse images of doubled points. For x E JRy define

:= y, where y E R satisfies either x = y or y E W and x E {y-, y+}.
We have that x, y E 7rN(x)  7ry (y) implies x  y. As in [12] we can
define a metric dy on such that the topology generated by dy is exactly
the order topology on RN.

For a perfect subset A c R denote by A the closure of A B W in RN.

can be extended to a unique continuous piecewise monotonic

map Ty : X y -~ We have that Ry = Let fy : X y --~ R be
the unique continuous function, which coincides with f on X B (W U E(T)).

2. - The structure of piecewise monotonic maps

In this section we describe a well known result on the structure of the

nonwandering set of a piecewise monotonic map.
A topological dynamical system (X, T) is a continuous map T of a compact

metric space X into itself. &#x3E; 0 and n e N, then we call a set E c X
(n, s )-separated, if for every y E E there exists a j E {o, 1, ... , n - 1}
with &#x3E; s. For a continuous function f : X - R the topological
pressure p(X, T, f) is defined by

where the supremum is taken over all (n, s)-separated subsets E of X. Define
the topological entropy htop (X, T ) by

The nonwandering set S2 (X, T) of (X, T) is defined by

for every open U with x E U there

exists an n E N with Tnu n 0}.
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The nonwandering set is always a closed, T-invariant subset of X. If f : X -+ R
is a continuous function, then a well known result (see e.g. Corollary 9.10.1
in [16]) says that

This result implies (let f = 0) that htop(X, T) = htop (Q (X, T), T S2 (X, T)). If

x E X, then the w-limit set of x, denoted by w(x), is defined as the set of all
limit points of the sequence that means

there exists a strictly increasing
sequence with lim = y}.

For every x E X the set w(x) is a nonempty, closed and T-invariant subset of
X, and w(x) C Q (X, T). A subset R of X is called topologically transitive, if

there exists an x E R with w (x) = R. Note that every topologically transitive
subset of X is closed and T-invariant. We call a topologically transitive subset
R of X maximal topologically transitive, if every R’ with R C R’ C X is not
topologically transitive. Finally a subset R c X is called minimal, if w (x) = R
for every x E R.

Let (X, d) be a metric space. For a nonempty subset A C X set diam A :=
Let YCX. If t &#x3E; 0 and E &#x3E; 0, then set

(diam A)t : ,A is an at most countable cover of Y

with diam

Then define the Hausdorff dimension HD(Y) of Y by

If X is a finite union of closed intervals, T : X -~ R is a piecewise
monotonic map with respect to the finite partition Z of X, f : X - R is a
piecewise continuous function with respect to Z, and if Y is a finite partition
of X, which refines Z, then (Ry, Ty) is a topological dynamical system and
fy : RN - R is a continuous function. Define

As in (1.2) of [12] we define
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Furthermore, for n E N, we define as in formula (1.3) of [12]

Observe that p(R(T), T, f ) and Sn(R(T), f ) do not depend on Y (see [ 12]).
The next result shows that in the case of an expanding piecewise monotonic map
T not only the topological pressure and the topological entropy are concentrated
on the nonwandering set, but also the Hausdorff dimension.

LEMMA 1. Let T : X ---&#x3E; R be an expanding piecewise monotonic map with
respect to the finite partition Z of X. Suppose that Y is a finite partition of X refining
Z. Then

PROOF. By Theorem 2 and Lemma 9 of [11] we have that HD (R (T)) equals
the unique zero of t H p ( R ( T ) , T , - t log IT’I). The proof of Theorem 2 in [ 11 ]
also shows, that HD(QY) equals the unique zero of t H T, -t log IT’ 1).
Now (2.2) implies the desired result. 0

Before we recall the structure theorem for the nonwandering set, we in-
troduce our main tool for the investigation of piecewise monotonic maps, the
Markov diagram (see e.g. [4]). Let T : X - R be a piecewise monotonic map
with respect to the finite partition Z of X, where X is a finite union of closed
intervals, and suppose that y is a finite partition of X, which refines Z. Let

Yo E y and let D be a perfect subinterval of Yo. A nonempty C c X y is called
successor of D, if there exists a Y E y with C = Ty D n Y, and we write
D - C. We get that every successor C of D is again a perfect subinterval of
an element of y. Let D be the smallest set with y c D and such that D E D
and D - C imply C E D. Then (D, --~ ) is called the Markov diagram of T
with respect to y. The set D is at most countable and its elements are perfect
subintervals of elements of y.

Set Do : - y, and for r E N set Dr := Dr-I 1 U f D E D : 3 C E

Dr-I 1 with C - D}. Then we have Do c Di c D2 c ... and D = U °’° o Dr .
Let (H, ) be an oriented graph. For n E N we call co ci --  -a cn

a path of length n in H, if Cj E ?-l for j E {0, 1, ... , n } and cj-l 1 -+ cj for

j E { 1, 2,..., n } . Furthermore we call Co ~~ c 1 - c2 -~ ~ ~ ~ an infinite path
in 7, if Cj E ?~ for all j E No and cj-i I - cj for all j E N. The oriented

graph ’H is called irreducible, if for every c, d E H there exists a finite path
Co - c 1 -~ ~ ~ ~ 2013~ cn in 7 with co = c and c, = d. If is irreducible and

finite, then 7~C is called finite irreducible. An irreducible subset C of H is called
maximal irreducible in H, if every C’ with C 5 C’ c H is not irreducible.

We shall also need the notion of variants of the Markov diagram of T
with respect to y as introduced in [12]. For the definition of this concept
see pp. 107-108 of [12]. We describe shortly its most important properties.
If (A, ~ ) is a variant of the Markov diagram of T with respect to Y, then
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there exists a function A : ,,4 -~ D with c - d in A implies A (c) - A(d)
in D. Furthermore, if c E A, D E D, and A (c) - D in D, then there exists
a d E ,,4 with c - d in A and A (d ) = D. We can write A = 
with A2 C ... and A(Ar) = Dr. We say that an infinite path
co ~ ci -~ c2 -~ ~ ~ ~ in A represents x E Ry, if Tyi x E A(cj) for all j E No.

Now we present a result, to which we shall refer as the Structure Theorem.
It describes the structure of the nonwandering set of a piecewise monotonic map,
and it is proved in [2], [3], [4], [5] and [10].

Let T : X - R be a piecewise monotonic map with respect to the finite
partition Z of X, where X is a finite union of closed intervals, and suppose
that Y is a finite partition of X, which refines Z. Then we have

where r is the at most countable set of maximal irreducible subsets of the
Markov diagram (D, 2013~)ofT with respect to Y, J is an at most finite index

set, and the intersection of two different sets in the decomposition is at most

finite. Furthermore we have:

(1) For every C E r the set L(C) is a topologically transitive subset of Ry, and
the periodic points of (L(C), Ty) are dense in L(C). Furthermore either

L (C) consists only of one single periodic orbit (in this case for every C E C
there exists exactly one D E C with C - D), or L (C) is an uncountable,
maximal topologically transitive subset of Ry with htop(L(C), Ty) &#x3E; 0 (in
this case there exists at least one C E C, which has more than one successor
in C). In the second case we have that every x E L (C) can be represented
by an infinite path in C, and every infinite path in C represents an x E L (C).

(2) For every j E J the set Nj is an uncountable, minimal subset of Ry, which
contains no periodic points. Furthermore we have that htop(Nj, Ty ) =
0, there exist only finitely many ergodic, Ty-invariant Borel probability
measures on Ty), and Nj is maximal topologically transitive.

(3) The set P is closed and Ty-invariant, and consists of periodic points, which
are contained in nontrivial intervals K with the property, that Tyn maps K
monotonically into K for an n E N.

(4) The set W consists of nonperiodic points, which are isolated in and
therefore are not contained in Ty ) .
Observe that this result implies that the decomposition into maximal topo-

logically transitive subsets, which are not a single periodic orbit, does not

depend on the partition y. More exactly, if Y and y’ are two finite partitions
refining Z, then there exists a bijective map w from the set of uncountable
maximal topologically transitive subsets of SZy (note that every at most count-
able maximal topologically transitive subset is a single periodic orbit) to the
set of uncountable maximal topologically transitive subsets of such that

1ry(R) = 1ry,(cp(R»). Therefore we shall speak throughout this paper of un-
countable maximal topologically transitive subsets of R(T), rather than those
of Ry.
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The most interesting part of the dynamics takes place on the at most

countable union of maximal topologically transitive subsets with positive entropy.
In the next sections we shall investigate the influence of small perturbations of T
on these sets. Set

is a maximal topologically transitive
subset of R ( T ) with htop (L , T ) &#x3E; 0},

and define

Hence N(T) E N U {O, oo}. It follows from Corollary 2.18 of [ 1 ], from the
proof of Theorem 2 in [ 11 ] (see also p. 111 in [12]), from (2.2) and Lemma 1
that for every piecewise monotonic map T : X - R with htop(R(T), T) &#x3E; 0

and for every piecewise continuous function f : X R with

and if T is additionally expanding and

We conclude this section with three observations concerning the Structure
Theorem for expanding piecewise monotonic maps T. At first observe, that for
every expanding T we have always P = 0. Secondly for every C E r the set
L(C) consists of exactly those points, which are represented by an infinite path
in C. Our third observation is, that for expanding piecewise monotonic maps
T : [0, 1] ] ~ [0, 1] ] we have N (T ) &#x3E; 1. But note that for expanding piecewise
monotonic maps T : X - R it may occur that N(T) = 0, even if R(T) is
uncountable.

3. - Merging maximal topologically transitive subsets

In this section we give an example of an expanding piecewise monotonic
map T on the interval with N (T ) = n, such that for every 8 &#x3E; 0 there exists

a map T, which is s-close to T in the R°°-topology, with N(T) = 1. The

map T is chosen such that = htop(T). For the convenience
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of the reader we give at first an example for n = 2, where we give detailed
arguments to show that N ( T ) = 2 and = 1. Then we give a more
elaborate example for general n. In this example the same arguments as in the
first one work (although the details become a bit more complicated) to show
N(T) = n and N(T) = 1.

Then define the map

Observe that given E &#x3E; 0, then (TS, ,) is s-close to (To, .) in the R°°-topology,
. C’

I and for n E N define

, _ - _

In the case s = 0 the Markov diagram

with the arrows Aj - Ak and Bj - Bk for j, k e {O, 1 }, M - Ao, M - Bo
and M - M. Hence the maximal irreducible subsets of (D, 2013~) are Ci :=
{ Ao, Ai}, C2 : := and { M } . Therefore the maximal topologically transi-
tive subsets of ([o, 1 ], To) are Li 1 := [0, ~] = L(Ci) and LZ := [4,1] - L (C2),
hence = {[0, 2 ~ , ~ 2 , 1] ) and N ( To ) = 2.

Now let N e N, and set s :_ ~~2. Then the Markov diagram (D, 2013~)
with the arrows

and M ~ M. Hence (D, -) is irreducible, and therefore the only maximal
topologically transitive subset of ([0, 1], Ts) is [0, 1]. This gives =

{[ 0, I]} and N (Ts) = 1.
Next we shall give an example of a piecewise monotonic map T with

N(T) = n, such that for every 8 &#x3E; 0 there is a piecewise monotonic map T,
which is 8-close to T in the R°°-topology, with N(T) = 1. The arguments
calculating the Markov diagram and the elements of A4(T) are completely
analogous to those in the previous example. Therefore it is left to the reader
to calculate the Markov diagrams for the maps considered below.
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We define a map

and such that x ) = 1 - TS x holds for every x E [0, 1]. Let Zs be the
partition, in which the elements

are replaced by

(note that 3+3ns ~ 3n )’ Then Ts is a piecewise monotonic map of class R°°
with respect to the finite partition Zs . Observe that given 8 &#x3E; 0, then (TS , Zs)
is s-close to (To, ,) in the R’-,topology, if s 

As in the first example we can calculate, that
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and hence N(T°) = n. Note that the images of the endpoints of elements of
.Z° _ . are the fixed points 0, 1 1, which are not contained in the setn’ n9 

...

of endpoints of Z intersected with (0, 1), and therefore the proof of Lemma 2
in [12] shows, that the assumption of (1) of Lemma 2 in [12] holds.

Clearly there exists a sequence with sN E ~0, ] for all N E N,

SN = 0, and (3 + 3nsN)NSN = -~-. Observing that for every s E [0, 3n ~
we have TS ( n ~x) - n ~ (3~-3ns)x whenever Ix I  and that I  3
implies I x I ~ 3n - we get by arguments analogous to those in the
previous example, that = ([0, 1]), and hence = 1.

Hence we have shown the following result.

THEOREM 1. Let n E N. Then there exists a continuous expanding piecewise
monotonic map T : [0, 1] ] - [0, 1] of class R°° with respect to a finite partition
Z of [0, 1], which satisfies N(T) = n, such that for every E &#x3E; 0 there exists a
continuous expanding piecewise monotonic map T, : [0, 1] - [0, 1 ] of class R °’°
with respect to a finite partition Ze of [0, 1], such that is s-close to (T, Z)
in the R°°-topology, and which satisfies N(T,) = 1.

REMARK. Our example also shows, that we can choose the map T in
Theorem 1, such that the assumption in (1) of Lemma 2 in [12] holds. Observe
that Corollary 2.1 in [12] implies that for every function f : [0, 1] ] - R,
which is piecewise continuous with respect to Z and satisfies p([O, 1], T, f) &#x3E;

n Sn(R(T), f) the pressure p([O, 1], f, 1) is continuous at (T, f) with

respect to the R°-topology (for T and /). In particular the topological entropy
is continuous at T with respect to the R°-topology.

This result shows, that the decomposition of the nonwandering set into max-
imal topologically transitive subsets with positive entropy behaves very unstably.
Therefore we cannot expect general stability results for the set M(T) (even the
number N(T) is unstable). However in the next section we shall show, that
there is a kind of stability result for the elements of .~l ( T ) . Roughly spoken,
this result will say, that for every L E M (T) and every 7B which is sufficiently
close to T, there exists a topologically transitive subset L (clearly we cannot
expect that L is maximal topologically transitive), which is "close" to L.

4. - Stability of maximal topologically transitive subsets with positive entropy

In this section we shall prove, that there is a kind of stability result for the
elements of A4 (T). This result will imply the well known lower semi-continuity
results for the topological entropy, the topological pressure and the Hausdorff
dimension in the R°-topology, respectively in the Rl-topology (see [8], [12]
and [15]).

In order to prove this result we need a result concerning the variants of the
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Markov diagram. Let T : X R be a piecewise monotonic map with respect
to the finite partition Z of X. A function f : X ~ R is called piecewise
constant with respect to the finite partition .~ ( f ) of X, if is constant

for all Z E Z(f). Suppose that f’ is piecewise constant and that y is a finite
partition of X refining both .~ and Z(f). Let (A, ~ ) be a variant of the Markov
diagram of T with respect to y. For c, d E ,A we define as in formula (2.6)
of [12]

if c ~ d and x E A (c),
otherwise.

then set Fc(f) := Then u ufc(f) is an 

operator and v H is an where both operators have
the same I and the same spectral radius (see [ 11 ] ).
Furthermore we have (see (2.8) and (2.9) in [12])

for every n e N ,

where the sum is taken over all paths of length n in C
with co = c and where , and

LEMMA 2. Let T : X -+ R be a piecewise monotonic map with respect to
the finite partition Z of X, and let f : X ~ R be a piecewise constant function
with respect to Z. Let (D, -+) be the Markov diagram of T with respect to Z.
Furthermore let C 5; D be irreducible, and suppose that

(1) For every variant (A, - ) of the Markov diagram of T with respect to Z there
exists an irreducible C’ C A wi th C = f A (c) : c E C’ ~, r (Fc, (f )) = r (Fc (f )),
and foralln E N.

(2) For every finite Co C C and for every s &#x3E; 0 there exists an r E N, such that

for every variant (A, --*) of the Markov diagram of T with respect to Z there
exists an irreducible C’ C Ar with Co C f A(c) : c E C’l c C and

PROOF. At first we prove (1). Analogous to the proofs of Theorem 7 and
Corollary 1 of Theorem 9 in [4] (cf. the proof of Lemma 6 in [ 11 ] ) we get
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for every variant (A, 2013~) of the Markov diagram of T with respect to Z and
for every r E N that

whenever C c A B Ar (this is also true, if C is not irreducible).
Fix an r e N, such that r 2 exp(limn-+oo f))  r Fc ( f ) ) . Let

(A, -~ ) be a variant of the Markov diagram of T with respect to Z. Define

Then the proof of Lemma 3 in [12] (see the remark after Lemma 3 in [12])
shows that - = r (Fc ( f )) . Hence by (4.4)
the set := CA n Ar is not empty. For C E CA define C(c) := [d E C A :
there exists a path co = c - cl -~ ~ ~ ~ - cn - d in CAI. The proof of
Lemma 3 in [12] gives that = and by (4.4) this implies
that C(c) for all C E CA. For c, d E JF define c ~ d, if there exists a
path co = c 2013~ c 1 ~ ... -~ Cn = d in C A. Clearly d1 1 ~ d2 and d2 » d3 imply
d 1 » d3. As C(c) for every c E ,~’, we get that for every c e 0 there
exists a d E .~’ with c » d. This and the finiteness of .~’ imply that there exists
a c e .~’ such that c » d implies d » c (in particular we have c =~ c). Define
C’ := C(c). The proof of Lemma 3 in [12] shows that = 

and r ~Fc~ ( f )~ - r ~Fc ( f )~ .
Now we show that C’ is irreducible. Let dl, d2 E C’. 0,

we get that there exists a path in ~,~ from dl to a d E T. As there is a path
in ~,~ from c to dl , we get c =~ d, and by the choice of c there is a path in
C~ from d to c. By the definition of C’ there is a path in CA from c to d2,
and therefore there exists a path in ~,~ from dl to d2, which proves (1).

Next we show (2). By the proof of (ii) of Lemma 6 in [11] ] there

exists a finite irreducible C, C C with Co C Cl and 

As Cl is finite irreducible, there exists an R E R
with  R  and  R for every
£ C Cl with Cl B ~ ~ 0. Now (1), the proof of (ii) of Lemma 6 in [ 11 ] and the

proof of Lemma 3 in [12] imply = =

where is as described on pp. 107-108 of [12]. Hence there exists
an r e N with &#x3E; eR . Let (A, -~ ) be a variant of the Markov
diagram of T with respect to Z. Then the proof of Lemma 3 in [12] gives

&#x3E; eR . As is a finite nonnega-
tive matrix with positive spectral radius there exists an irreducible ClAnAr
with r(Fc,(f)) = &#x3E; e R . Now the proof of Lemma 3 in [12]
implies r(Fc,(f))  were £ := {A(c) : c E C’}. By the choice of
R we get Co C Ci = E and  log r ~ Fc~ ( f ) ) . Using the proof
of Lemma 3 in [12] we get log r (Fc (f )), which finishes the
proof. D
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Now we are able to prove the following result.

THEOREM 2. Let T : X - R be a piecewise monotonic map with respect to
the finite partition Z of X, and let L be a maximal topologically transitive subset
of R (T) with htop (L, T) &#x3E; 0. Furthermore let and for j E { 1, 2, ... , k{
let fj : X -+ R be a piecewise continuous function with to Z satisfying
p (L, T, fj) &#x3E; n 1 Sn (L, fj). Then for every s &#x3E; 0 there exists a 8 &#x3E; 0, such

that the following properties hold. Assume that X is a finite union of closed intervals
and Z is a finite partition of X. Suppose that T : X ---&#x3E; R is a piecewise monotonic
map with respect to Z, and that fj : X ---&#x3E; R is a piecewise continuous function with

respect to Zfor j E [1, 2, ... , kl. If (T , Z) is 8-close to (T, Z) in the Ro-topology,
and if (h, Z) is 8-close to (fj, Z) in the R°-topology for j E {I, 2, ... , k}, then
there exists a topologically transitive subset L of R (T ), such that

Land L are s-close in the Hausdorff metric,

PROOF. Let s &#x3E; 0. Since (4.8) implies (4.7) (set fl = 0 and fl = 0), it
suffices to show (4.6) and (4.8). As for every q &#x3E; 0 and for every piecewise
continuous function f : Z 2013~ R there exists a piecewise continuous function fl :
X - R with respect to Z, such that = f I L and fq) 

f)+i7, we can assume that p(L, T, fj) &#x3E; f~)
for j E { 1, 2,..., Now we can assume that e is small enough to ensure

By the piecewise continuity of fj there exists a finite partition Y of X
refining Z, such that

Then 7j : X - R is a piecewise constant function with respect to y. By (4.10)
we have
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Let (D, 2013~) be the Markov diagram of T with respect to y. The Structure
Theorem implies, that there exists a maximal irreducible subset C C D with
L = L(C). As Y is finite there exists a finite subset with

Using the proof of Theorem 7 in [4] (cf. also the proof of Lemma 6 in [ 11 ] )
we get by (2) of Lemma 2 that there exists an r E N, such that for every
variant (A, 2013~) of the Markov diagram of T with respect to Y there exists an
irreducible C’ c with 0 c { A (c) : c E C’ } c C and

for j E f 1, 2,..., k}. Fix this r for the rest of this proof. By Lemma 6 of [12]
there exists a 3 E (0, ~), such that the conclusions of Lemma 6 of [12] hold
(we can assume that Properties (a)-(o) in the proof of Lemma 6 of [12] hold
with t7 == ~).

Let T : k - R be a piecewise monotonic map with respect to a finite

partition Z of X, such that (T, Z) is 8-close to (T, Z) in the RO -topology,
and for j E { 1, 2,..., kl let h : k - R be a piecewise continuous function
with respect to Z, such that is 6-close to in the R°-topology.
By Lemma 1 of [12], by (4.10) and by (4.11) there exists a finite partition
y = f Yl , Y2 , ~ ~ ~ , with Fi  f2  ...  YN of X refining Z, such that
corresponding endpoints of f, and Y, differ at most by 8 and

whenever j E { 1, 2, ...
a Y E y, then define

Then f. : k - R is a piecewise constant function with respect to Y, and weJ
have

and

for every closed, T-invariant subset R c R(T). Furthermore we have
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whenever j E { 1, 2,..., k}, l E { 1, 2,..., N}, x E fl and y E Yl . Let (A, -~ )
be the variant of the Markov diagram of T with respect to y, (A, -~ ) be the
variant of the Markov diagram of T with respect to y occuring in the conclusions
of Lemma 6 in [12], and let cp : Ãr be the function described in the
conclusions of Lemma 6 in [12].

Now let C’ C Ar be the set, such that (4.13) holds. Set E := 

By (3) and (4) of Lemma 6 in [12] we have that E is an irreducible subset
of Ãr. Hence there exists a maximal irreducible E’ c Ã with £ C ’. Then

L(E’) := L({A(c) : c E is a maximal topologically transitive subset of

R ( T ) . Now set

L := {x E L(E’) : x is represented by a path in -El

The proof of Theorem 4 in [4] shows that L is topologically transitive.
At first we show that L and L are 8-close in the Hausdorff metric. Let

x E Z. Then there is aCE E with x E Ã(c). As E C by the
definitions of C’ and E, there exists a y E L with y e A(~*~(c)). Now (5)
and (6) of Lemma 6 in [12], Property (g) in the proof of Lemma 6 in [12],
and (4.10) imply - y)  §  ~ . On the other hand let x E L. By (4.12) we
get that there exists a Y E y and a c E C’ with A(c) C Y and x E Y. Since

~ is irreducible there exists a y E L with y E A ~~p (c) ~ . Again (5) and (6) of
Lemma 6 in [12], Property (g) in the proof of Lemma 6 in [12], and (4.10)
imply Ix - y[  3  s, and therefore (4.6) is shown.

Observe that proving (4.6) we did not need any of the considerations

concerning hand’ Hence (4.6) implies that our assumption (4.9) is justified.
The proof of Theorem 7 in [4] (cf. the proof of Lemma 6 in [ 11 ]) shows

that

Now we get by (4), (5) and (6) of Lemma 6 in [12], by (2.8) and (2.9) of [12],
and by (4.15)

Hence (4.11), (4.13), (4.14) and (4.16) imply

which finishes the proof.
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In order to get an analogous result concerning the Hausdorff dimensions
of L and L, we need the following result, which is proved in in [ 11 ] .

LEMMA 3. Let T : X - R be an expanding piecewise monotonic map with
respect to the finite partition Z of X, let (D, ~ ) be the Markov diagram with respect
to Z, and let C C D be irreducible. Then

exists and B &#x3E; 0. Set s := supzEz SUPX,YEZ I log log Define
L := {x x is represented by an infinite path in C}. Then the function t «
p (L, T, -t log ~ has a unique zero tL E [0, 1 ], and

where

PROOF. This follows from (i) of Lemma 1, Lemma 8, Theorem 1 and the

proof of Theorem 2 in [ 11 ] . El

Now we can show that for expanding T, and for f, which are sufficiently
close to T in the R 1-topology, the set L can be chosen such that also the
Hausdorff dimensions of L and L differ at most by s.

THEOREM 3. Let T : X -+ R be an expanding piecewise monotonic map with
respect to the finite partition Z of X, and let L be a maximal topologically transitive
subset of R(T) with htop (L, T) &#x3E; 0. Then for every s &#x3E; 0 there exists a 8 &#x3E; 0,
such that for every R, which is an expanding piecewise monotonic
map with respect to a finite partition Z of X, such that (f, .~) is 5 -close to (T, Z)
in the there exists a topologically transitive subset L of R (T ), which
satisfies (4.6), (4.7) and

PROOF. We may assume that c  HD(L). Choose &#x3E; 0 small enough to en-
and := (HD (L) - E) (I + !-’I)  HD ( L ), where B is as in Lemma 3.

As in the proof of Theorem 3 in [12] we get log  0

for all t &#x3E; 0. Since this is continuous in t, and since t H p (L , T, - t log 
is also continuous, it follows from Theorem 2, Lemma 3 and Lemma 9 in [II],
that there exists a t2  HD(L) -~ ~ with
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Furthermore we have peL, T, -2 log IT’I)  - B . The proof of Theorem 2
shows, that there exists a finite partition Y of X refining Z with

and there exists a 8 &#x3E; 0 17, such that for every T : k - which

is an expanding piecewise monotonic map with respect to .~, such that (T, Z)
is 8-close to (T, Z) in the R 1-topology, there exists a finite partition y, where
corresponding endpoints of y and Y differ at most by 8, and there exists a finite
irreducible subset of the Markov diagram of T with respect to y, such that
L := Jx is represented by an infinite path in ~} satisfies (4.6), (4.7),

pel, T, -2 log IT’I) this gives BL &#x3E; 4 . Now Lemma 3 implies
the desired result. D

Using (2.8), (2.9) and (2.10), Theorem 2 and Theorem 3 imply the well
known lower semi-continuity results for the topological entropy (cf. Theorem 5
of [8], note that lower semi-continuity is trivial, if htop(R(T), T) = 0), the

topological pressure, if p(R(T), T, f) &#x3E; f ) (cf. Theorem 9
of [15] and Theorem 1 of [12]), and the Hausdorff dimension (cf. Theorem 3
of [12], note that lower semi-continuity is trivial, if HD(R(T)) = 0, and this
is equivalent to htop(R(T), T) = 0 by Theorem 2 of [ 11 ] ) .

5. - Maximal topologically transitive subsets of the perturbed system

We have seen that there is a kind of stability result for the elements of
A4 (T) (Theorem 2 and Theorem 3). In this section we consider sufficiently "big"
elements of A~(r), where T is sufficiently close to T. The well known upper
bounds for the jumps up of the topological entropy, the topological pressure
and the Hausdorff dimension (see [7] and [12]) are implied by the results of
this section.

The example given in (4.17) and (4.18) of [12] shows that an element
of need not be "close" to an element of ./1~l ( T ) . In this example the
dynamics of T is related to a certain graph (g, -~ ) . We shall prove that this
is also true in the general case.
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To this end we define an oriented graph (~, -~ ), which was introduced
in [12] (cf. also [7]). Let T : X - R be a piecewise monotonic map with
respect to the finite partition Z of X, let f : X - R be a piecewise continuous
function with respect to Z, and let Y be a finite partition of X, which refines
Z. Recall that El (T) is the set of inner endpoints of Z. Set

For a, b E 9 we introduce an arrow a - b, if and only if b = Tya or

1ry(b) E El (T ) and 1ry(b) = 1ry(Tya). Observe that the graph (9, ~ ) does
not depend on y. For a, b E 9 we define as in formula (2.2) of [12]

If C c !9, then set Gc(/) := Then u « MGc(/) is an 

operator and v « is an where both operators have
the same norm II Ge (f) II and the same spectral radius r(Gc(f)) (see [ 12]).
Furthermore we have (see (2.4) and (2.5) in [12])

where the sum is taken over all paths bo -+ bl -~ ~ ~ ~ --~ bn of length n in C
with bo = a, and

For n E N we define

where the supremum is taken over all paths bo - hI --* - - - ---&#x3E;. bn of length n
in Q. Obviously Gn+m ( f )  Gn ( f ) + Gm ( f ), and therefore !Gn(f)
exists and equals infn, ’Gn(f)-

LEMMA 4. Let T : X -~ R be a piecewise monotonic map with respect to
the finite partition Z of X, and let f : X -~ R be a piecewise continuous function
with respect to Z. Then for every s &#x3E; 0 there exist a 6 &#x3E; 0 and an r E N,
such that the following property holds. Suppose that T : : f( -&#x3E;. R is a piecewise
monotonic map with respect to a finite partition Z of X, and that f : X ---&#x3E;. R is a
piecewise continuous function with respect to Z. If (T, Z) is 3 -close to (T, Z) in
the Ro-topology, and if ( f , ,~) is 6-close to ( f, Z) in the Ro-topology, then

for all n &#x3E; r.
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PROOF. Set d := f ), limk_m k Gk ( f ) . We assume
that s S 1. Choose an so e N, such that

and

Set c : := supx E x I + 1. Now choose an S E N with s &#x3E; 2so and s &#x3E; 6C;o.
The piecewise continuity of f implies the existence of a finite partition y of
X refining Z with 

-

We assume that y = {Fi, Y2, ..., YN I with Yl  Y2  ~ ~ .  YN . If X E Y for
a Y E y, then define

By Lemma 6 of [12] there exists a 8 &#x3E; 0 with 6  6 , such that the conclusions
of Lemma 6 in [12] hold with r replaced by s. Now choose an r E N with

E 
_

Let T : X - R be piecewise monotone with respect to the finite partition
Z of k, and let / : X -~ R be piecewise continuous with respect to Z, such
that is 6-close to (T, Z) in the R°-topology and ( /, 2) is 3-close to

(f, Z) in the RO-topology. Hence c. By Lemma 1 of [12]
there exists a finite partition y = I fl, Y2,..., YN } with Yl  Y2  ...  YN
of X refining Z, such that corresponding endpoints of Y-j and Yj differ at most
by 8 and

if x E y E Yi and Q is y-close to where

if x E Y for a Y E y. Let (A, ~ ) and (,A, -) be the variants of the Markov
diagram of T, respectively T occuring in the conclusions of Lemma 6 in [12],
let Bo, ,t31 and ,t32 be the sets described in (1) of Lemma 6 in [12], and let X
be the function described in (7) of Lemma 6 in [12].

Choose an arbitrary n &#x3E; r. Then there exist k, I E No with 0  1  s, such
that n = ks + l. Therefore

By the choice of r this implies
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Now let x E Then there exists a path co ~ c 1 2013~ ’’ - - cs in As
with co E ,A.o, such that Tÿj x E for j E {O, 1, ... , Set / := min { j :
Cj E ~2} (set l : = s + 1, if c~ ~ ,132 for j E {0, 1, ... , s } ), and suppose that

- cl ~ ~ ~ ~ -~ cs ) = (do, dl , ... , ds). By (6) and (8) of Lemma 6 in [12]
and by (5.6) we obtain

and

Hence SS (
of s give

Now (5.5) and the choice

which implies the desired result by (5.7). D

This lemma gives an upper bound for the jumps up of limn--KX) f ).
Now we shall give an example, where limn--+oo f ) is not upper semi-
continuous.

The nonwandering set of T is 7 , i]. Now we define the continuous function
f : [0, 1] - R by
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Therefore p([0, 1 ) , T, f) = log 2 &#x3E; 1 ) , f ) = 0. For s E (0, 1 ) ]
define Ts : [o, 1 ] ~ [o, 1 ) by

Observe that given s &#x3E; 0, then (Ts, .~) is s-close to (T, .~) in the Roo -topology,
if s  s. Note that TS ~ 3+S ) = 3+S . Therefore the nonwandering set of Ts is

1 ~ Hence p([O, 1], Ts ~ f) = 10 = limn_x f).
REMARK. In the example above we have p([O, 1], T, f) &#x3E; limn,. n Sn

(R(T), f), but p([O, 1], Ts, f) = f).
THEOREM 4. Let T : X - R be a piecewise monotonic map with respect to

the finite partition Z of X. Furthermore let f : X - R be a piecewise continuous
function with respect to Z. Then for every E &#x3E; 0 and for every a &#x3E; 0 there exists
a 8 &#x3E; 0, such that the following properties hold. Assume that X is a finite union
of closed intervals and .~ is a finite partition of X. Suppose that T : X --* R is a
piecewise monotonic map with respect to and that f : X --* R is a piecewise
continuous function with respect to Z, such that (T , Z) is 6 -close to (T, Z) in the
Ro-topology and ( f , is 6-close to ( f, Z) in the Ro-topology. If L is a maximal
topologically transitive subset of (R (t), t) with

then at least one of the following two possibilities is true.

(1) There exists a topologically transitive subset L of (R(T), T), such that

for every x E L there is a y E L with Ix - y I  E and

(2) There exists an irreducible I C Q, such that

PROOF. Set d := max{lim,
ri E N with

Choose an
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Now choose an qj I with

Set

and choose an q2 with

The piecewise continuity of f implies, that there exists a finite partition y
of X refining Z with

and

We assume that Y = { Yl , Y2,..., YN } with Yl  Y2 ...  YN. By Lemma 4
there exist a 81 &#x3E; 0 and an r2 E N, such that the conclusions of Lemma 4 hold
with E replaced by 1]2, 8 replaced by 81 1 and r replaced by r2. We may assume
that r2 is large enough to ensure

Now set

Let (.J~t, -~ ) be the variant of the Markov diagram of T with respect to y
described on pp. 107-108 of [12]. There exists an q3 &#x3E; 0, such that n 
card Mr¡, A = (ai,j) and B = (bi,j) are n x n-matrices with maxi,j  C2,

C2 and  q3 imply Ir(A) - r(B)1 (  i7l (see
e.g. [9]).

Now choose an r3 &#x3E; max(ri , r2 } such that

By Lemma 6 in [12] there exists a 3 &#x3E; 0 with 8  such that the
conclusions of Lemma 6 in [12] hold with r replaced by ~1+~3+1.



807

Let X be a finite union of closed intervals, let ,~ be a finite partition of
X, let t k - R be a piecewise monotonic map with respect to .~, and let
f : k - R be a piecewise continuous function with respect to such that

is 3-close to (T, Z) in the Ro-topology and ( f , ,~) is 8-close to ( f, Z)
in the RO-topology.

By Lemma 1 in [12] there exists a finite partition y = tyl, Y2, ... , YN }
of X refining .~ with Yl  Y2  ...  YN, such that  8,

I sup Yj - sup Yj I  8, infXEYj f (x ) + 2q2 and /(x) &#x3E;
x j J j 

for all j E {1,2,..., N). If x E Y for a Y E y, then
define f (x) infyEY f ( y ), and if x E Y for a Y E y, then define (x) :=

SupyEf /(y) .
Let (A, -) and (~4, -) be the variants of the Markov diagram of T,

respectively f with respect to y, respectively y occurring in the conclusions
of Lemma 6 in [12]. Furthermore let Bo, Z31 and ,~32 be the sets, and cp, 1/1 and
X be the functions described in the conclusions of Lemma 6 in [12].

Now let Z be a maximal topologically transitive subset of (R(f), t) with

By the Structure Theorem there exists a maximal irreducible C c Ã with
L = L ( f A (c) : c E it). Now Lemma 6 in [ 11 ] implies

Hence (4.4) and (5.15) imply and let

be the partition of the C x C-matrix Fj(f) according to the partition of C into
and Note that II QII s and N eCI. Using (5.15) we

obtain analogous to the proofs of Theorem 4 and Corollary 1 of Theorem 9
in [4]

for all n 

Therefore

and hence id -~,-1 S is invertible. Set
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Analogous to the proof of Corollary 1 of Theorem 9 in [4] we obtain r (E) _ ~.
By (4.1), (5.20), (5.23) and (5.24) we get c2. Furthermore this gives

that the modulus of the entries of E and E := P + Er3-1 ~, ~k+l~ QSk R are at
most C2, and using (5.21) the entries of E and t differ at most by 173. Therefore

is the partition of the matrix according to the partition of

then we obtain as above

this implies

Hence there exists an irreducible with

By (1) of Lemma 6 in [12] we have Z3o or C, C ,t31 or C, C 32. The
proof of Lemma 6 in [12] shows that for every c E 131 there are at most r2 + 1
paths co = c - ci ~ ~ ~ ~ - cr2 of length r2 in Bi . If ii C then (4.2),

(4.3), (5.19) and Lemma 4 imply e 3 . Using (5.22) and (5.26)
this contradicts the choice of Therefore we have either ii C L30 or 

At first we assume ii C ,130. Set Cl := c E C1 }. By (3) and (4)
of Lemma 6 in [12] we get that for c, d E Cl the property c -~ d in Ã is
equivalent to ~p-1 (c) - ~p-1 (d) in A. Hence C1 1 is irreducible. There exists a
maximal irreducible Co c A with C, c Co. Now define

x is represented by a path in Cl } .
The proof of Theorem 4 in [4] shows that L is topologically transitive. Choose
an x E L. Then there is a c e Cl with x E Furthermore there exists

a y E L with y E A (c) . Hence (5.18) gives 2ri2  c . Furthermore (6)
of Lemma 6 in [12], (4.2) and (4.3) imply ( f ) ) - log r ~ F~ 1 (_f ) ) I 
2172. By Lemma 6 in [ 11 ], (5.16), (5.18), (5.22), (5.~6) and (5.27) this gives
Ip(L, f ) - p(L, T, f) 1  s.

It remains to consider the case Ci c B2. Define I := {~(c) : c E 
Now (3) and (4) of Lemma 6 in [12] imply that I is irreducible. Choose an

a E I. Then there is a c E Ci with Vf (c) = a, and there is a y E L with
y E A (c) . Now (6) of Lemma 6 in [12] and (5.18) give 3 q2  ~ .
Furthermore (6) of Lemma 6 in [12], (5.2) and (5.3) imply 

+ 4r¡2. By (5.16), (5.18), (5.22), (5.26) and (5.27) this gives
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Setting f = 0 in Theorem 4 we get the following result concerning the
topological entropy of L and i.

COROLLARY 4.1. Let T : X -~ II~ be a piecewise monotonic map with respect
to the finite partition Z of X. Then for every E &#x3E; 0 and for every a &#x3E; 0 there exists
a 3 &#x3E; 0, such that the following properties hold. Suppose that T : fc --* R is a
piecewise monotonic map with respect to a finite partition Z of X, such that (T , Z)
is 3-close to (T, Z) in the Ro-topology. If L is a maximal topologically transitive

- -

then at least one of the following two possibilities is true.

(1) There exists a topologically transitive subset L of (R(T), T), such that (5.11)
holds and

(2) There exists an irreducible I C Q, such that (5.13) holds and

Finally we prove a similar result concerning the Hausdorff dimension of L
and L.

THEOREM 5. Let T : X --~ R be an expanding piecewise monotonic map with
respect to the finite partition Z of X, and suppose that there exists an n E l~ with
Gn ~- log ~  0. Then for every s &#x3E; 0 and for every a &#x3E; 0 there exists a

8 &#x3E; 0, such that the following properties hold. Assume that X is a finite union of
closed intervals and a finite partition of X . Suppose that f : fC --* R is a
piecewise monotonic map with respect to such that (f, jfi) is 8-close to (T, Z)
in the If L is a maximal topologically transitive subset of (R (t), t)
with

then at least one of the following two possibilities is true.
(1) There exists a topologically transitive subset L of (R (T ), T), such that (5.11 )

holds and

(2) There exists an irreducible I c Q, such that (5.13) holds and
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where tz is the unique nonnegative real number with

By Lemma 4 there exists a 81 &#x3E; 0 with

whenever is 3 1 -close to (T, Z) in the R 1-topology.
We may assume that -  1 }. Now choose an 17 &#x3E; 0 with

and

where B is as in Lemma 3. Therefore

for every T-invariant R c R(T),

for every C c g, and

for every t &#x3E; a.

By Theorem 4 there exists a 8 &#x3E; 0 with 6 s 61, such that the conclu-
sions of Theorem 4 hold with £’ and a replaced by 17, and f replaced by
- log I T’l. Let be 6 -close to (T,Z) in the R ’-topology, and let L be
a maximal topologically transitive subset of (R(T ), t) with HD(L) &#x3E; a. Us-

ing (5.33) we obtain by Lemma 3 and Theorem 2 in [11] that there exists a
to E with p(l,f,-tologlf’l) - -~. Using (5.36) the
proof of Theorem 4 shows, that there exists a topologically transitive L C R(T)
satisfying (5.11) and -2q   0 or there exists an irre-
ducible I c 9 satisfying (5.13) and -2r~  In the first
case (5.33), (5.34) and Lemma 3 imply (5.30), and in the second case (5.33)
and (5.35) give (5.31). D
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Using (2.8), (2.9), (2.10) and Lemma 4, Theorem 4 and Theorem 5 imply
the results on the upper bounds of the jumps up for the topological entropy
(cf. Theorem 2 of [7] and Theorem 1 of [6]), the topological pressure (cf. The-
orem 2 of [12]) and the Hausdorff dimension (cf. Theorem 3 of [12]).
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