@article{ASNSP_1997_4_25_3-4_683_0, author = {Mosco, Umberto}, title = {Variational fractals}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {683--712}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 25}, number = {3-4}, year = {1997}, mrnumber = {1655537}, zbl = {1016.28010}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1997_4_25_3-4_683_0/} }
TY - JOUR AU - Mosco, Umberto TI - Variational fractals JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1997 SP - 683 EP - 712 VL - 25 IS - 3-4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1997_4_25_3-4_683_0/ LA - en ID - ASNSP_1997_4_25_3-4_683_0 ER -
Mosco, Umberto. Variational fractals. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 25 (1997) no. 3-4, pp. 683-712. http://archive.numdam.org/item/ASNSP_1997_4_25_3-4_683_0/
[1] Densities of states on fractals: "fractons", J. Physique Lett. 43 (1982) L-625.
- ,[2] The construction of Brownian motion on the Sierpinski carpet, Ann. Inst. Henri Poincaré 25, 3 (1989), 225-257. | Numdam | MR | Zbl
- ,[3] Brownian motion on the Sierpinski gasket, Prob. Theo. Rel. Fields 79 (1988), 543-624. | MR | Zbl
- ,[4] Formes de Dirichlet et estimations structurelles dans les milieux discontinus, C. R. Acad. Sci. Paris Série I, t. 313 (1991), 593-598. | MR | Zbl
- ,[5] A Saint-Venant type principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl. (IV) CLXX (1995), 125-181. | MR | Zbl
- ,[6] Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Rend. Mat. Acc. Lincei 9, 6 (1995), 37-44. | MR | Zbl
- ,[7] Sobolev inequalities for Dirichlet forms on homogeneous spaces, in: "Boundary value problems for partial differential equations and applications ", C. Baiocchi and J. L. Lions (eds.), Research Notes in Appl. Math., Masson, 1993; Sobolev inequalities on homogeneous spaces, Potential Anal. 4 (1995), 311-324. | MR | Zbl
- ,[8] Fractals and Disordered Systems, Springer-Verlag, Berlin-Heidelberg, 1991. | MR | Zbl
- ,[9] Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré 2 (1987), 245-287. | Numdam | MR | Zbl
- - ,[10] Analyse harmonique sur certaines éspaces homogenes, Lect. Notes in Math. 242, Springer V., Berlin- Heidelberg-New York, 1971. | MR | Zbl
- ,[11] Dirichlet forms, diffusion processes and spectral dimension for nested fractals, in "Ideas and Methods in Mathematical Analysis, Stochastics and Applications", S. Albeverio et al. eds., Cambridge Univ. Press, 1992, 151-161. | MR | Zbl
,[12] Dirichlet forms and Symmetric Markov Processes, Walter De Gruyter Co., 1995. | MR | Zbl
- - ,[13] On a spectral analysis for the Sierpinski gasket, Potential Anal. 1 (1992), 1-35. | MR | Zbl
- ,[14] Random walks and diffusions on fractals, in "Percolation theory and ergodic theory of infinite particle systems", Minneapolis, Minn. 1984-85, pp. 121-129, IMA Vol. Math. Appl. 8, Springer, New York-Berlin- Heidelberg, 1987. | MR | Zbl
,[15] Fractals and selfsimilarity, Indiana Univ. Math. J. 30 (1981), 713-747. | MR | Zbl
,[16] A harmonic calculus on the Sierpinski spaces, Japan J. Appl. Math. 6 (1989), 259-290. | MR | Zbl
,[17] Harmonization and homogenization on fractals, Commun. Math. Phys. 153 (1993), 159-339. | MR | Zbl
,[18] A diffusion process on a fractal, in "Probabilistic methods in Mathematical Physics", Proc. of Taniguchi Int. Symp., Katata and Kyoto, 1985, K. Ito and N. Ikeda eds., Kinokuniya, Tokio, 1987, pp. 251-274. | MR | Zbl
,[19] Diffusion processes in nested fractals, in "Statistical Mechanics and Fractals" , Lect. Notes in Math. 1567, Springer V., 1993. | Zbl
,[20] Dirichlet forms on fractals: Poincaré constant and resistance, Prob. Th. Rel. Fields 93 (1992) 169-196. | MR | Zbl
- ,[21] Brownian motion on nested fractals, Memoirs AMS, N.420, 83 (1990). | MR | Zbl
,[22] Composite media and asymptotic Dirichlet forms, J. Funct. Anal. 123, No.2 (1994), 368-421. | MR | Zbl
,[23] Variational metrics on self-similar fractals, C. R. Acad. Sci. Paris, t. 321, Série I (1995), 715-720. | MR | Zbl
,[24] Variations and Irregularities, in "Second Topological Analysis Workshop on Degree, Singularities and Variations: Developments of the last 25 Years", M. Matzeu and A. Vignoli eds., Progress in Nonlinear Differential Equations and Their Applications, Vol. 27, Birkhäuser, 1997. | MR | Zbl
,[25] Lagrangian metrics on fractals, Proc. Conf. on "Recent Advances in Partial Differential Equations" Marking the 70th Birthdays of Peter Lax and Louis Nirenberg, Venezia, 1996; Amer. Math. Soc., Proc. Symp. Appl. Math., Spigler R. and Venakides S. eds., 54 (1998), 301-323. | MR | Zbl
,[26] Homogeneous fractal spaces, Proc. Conf. on "Irregular variational problems", Como, 1994; Serapioni R. and Tomarelli F. eds, Progress in Nonlinear Differential Equations and Their Applications, Vol. 25, Birkhäuser, 1996. | MR | Zbl
- ,[27] Random walks on fractal structures and percolation clusters, J. Physique Lettres 44 (1983), L13-L22.
- ,[28] A note on Poincaré, Sobolev and Harnack inequalities, Intern. Math. Res. Notices (1992), 27-38. | MR | Zbl
,[29] Harmonic analysis, Princeton Univ. Series, 1994.
,[30] Sobolev inequalities on Lie groups and symmetric spaces, J. Funct. Anal. 86 (1989), 19-40. | MR | Zbl
,