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New Estimates for Div-Curl Products and

Very Weak Solutions of PDEs

CARLO SBORDONE

In memory of my teacher Ennio De Giorgi

1. - Introduction

I am pleased to acknowledge the influence of Ennio De Giorgi on my
mathematical carreer. His pioneering ideas on elliptic PDEs and r-convergence
in the Calculus of Variations have shaped my own work from the very beginning.

It seems appropriate to begin this survey by introducing the general elliptic
operator n n / n 1

In particular, the theory of G-convergence, initiated in the late sixties by
De Giorgi and Spagnolo [S], [DS] has enjoyed extensive developments.

Central to the theory of such operators is the energy functional

where a (x ) = denotes a measurable positive definite coefficient matrix.
A fruitful idea in studying such functionals is to view them as integrals of

a product of two vector fields:

where E = Vu and B = Thus

in the sense of distributions.
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This is the view which we shall adopt and develop in this article. The

question immediately arises as to whether the div-curl products enjoy a higher
degree of regularity than the generic products of arbitrary vector fields. The
first result in this direction can be traced back to the familiar div-curl lemma
of F. Murat and L. Tartar [Mu], [T] and the subsequent theory of compensated
compactness, with applications to G-convergence.

LEMMA I , I (Div-Curl). Suppose the vector fields Bk, Ek E L 2(Q, JRn) verify
div Bk = curl Ek = 0 and converge weakly in L 2(Q , to B and E respectively,
then

in the sense of Schwartz distributions D’(0).
In other words, the lack of compactness of the product of two general

vector fields in L 2 (Q , JRn) is compensated by the assumption that div B and
curl E vanish.

This remarkable observation has many generalizations. The interested reader
is referred to [CLMS]. Among them is the following celebrated result.

THEOREM 1.1 ([CLMS]). The div-curl product B, E) of vector fields B E
L2(JRn, R" ) and E E L2(JRn, R") with div B = curl E = 0 belongs to the Hardy
space HI 

In this connection we should also recognize the earlier work of S. Muller [Ml]
and H. Wente [W].

Unfortunately we will not be able to mention many other contributions

here, though we include some of them in the references. The points we wish
to make are concerned with integration of div-curl quantities under minimal
degree of integrability of the vector fields B and E.

This idea, which has been developed in a series of joint papers with
T. Iwaniec, not only extended earlier results about div-curl expressions [ISl]
but also initiated the study of so-called very weak solutions of nonlinear elliptic
PDEs [IS2].

It is our goal here to present these new techniques in some detail. However
for the sake of brevity, we shall need to rephrase some results in lesser generality.

2. - Estimates below the natural exponent

We begin with a simple consequence of Holder’s inequality. For vector
and E E 1  p, q  oo and test function

w E we have
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In order to exploit certain cancellations in the above integral we now assume
that

(2.2) div B = 0 and curl E = 0

in the sense of distributions.
Unless otherwise stated, this assumption will remain valid throughout this

article. The following basic estimates bring us quickly to the substance of our
approach.

THEOREM 2. l. Let 1  p, q  oo be a Hölder conjugate paiY -1 -q - 1, andp q

let 1  r, s  oo be a Sobolev conjugate - n . Then there exists a
constant Cn = cn(P, s) such that for each test function (p E Co (S2) we have

whenever 0  2E  min ( p-1, and div B = curl E = 0.
P R r s

The key tool used in establishing this estimate is the stability of the Hodge
decomposition theorem under nonlinear perturbations of the vector fields, first
discovered by T. Iwaniec [11] and developed in [IS2].

LEMMA 2.1. Let X be a vector field of class Rn) with 1  p  00

and -oo  2E  1 - p 1. Consider the Hodge decomposition of I X -E X

where B E L p (R, with div ,l3 = 0 and £: E L p (R n, with curl £ = 0.
Then the following estimates hold:

Of course, the L p -theory of Hodge decomposition has been well known
since the work of C. B. Morrey [Mo]. This approach yields the following
estimate in either case

The innovation in Lemma 2.1 lies in the presence of the factor I e I which can
be as small as we want. The subject is linked with the rather abstract theory
of nonlinear commutators and interpolation.

But we cannot discuss this theory here, see [11], [12], [IS2].
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Having presented these preliminary results we can give a variant of (2.3)
corresponding to Q and w - 1. This reads as 

.

with div B = curl E = 0.
Let us decompose, according to Lemma 2.1, with X = E

and then with X = B

Since divergence free vector fields are ortogonal to the curl free vector fields,
the integral in question reduces to:

Using Holder inequality and (2.9), (2.10) we may estimate the latter integrals.
For example

Here we applied (2.7) to estimate X32 and (2.9) to estimate 81.
Similarly we handle the second integral, completing the proof of (2.8).
The general inequality (2.3) follows by combining (2.8) with Sobolev

imbedding inequalities. The routine but lenghty computations are presented
in [IS 1 ], [12].

One interesting inference from inequality (2.3) arises when E = 0:

where 1  s, r  oo and! + ! = 1 n - I
It is important to realize that, in spite of the absence of the p, q-norms,

inequality (2.11) still requires that II E lip  o~o and  oo for some Holder

conjugate pair (p,~).
Nevertheless, applying (2.11) we can give a meaning to (B, E) } as a

Schwartz distribution for arbitrary vector fields B E and E E 
with div B = 0 and curl E = 0.
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Indeed we may evaluate the distribution (B, E) at the test function cp E

by the rule 
-

where Bk, Ek are arbitrary smooth vector fields (div Bk = curl Ek = 0) converg-
ing to B and E respectively in and 

To see that the limit exists, just decompose:

and apply (2.11) to each of the terms.
The distribution (B, E) E D’(S2) is referred to as a weak div-curl product.

It is natural to ask whether the distribution (B, E) y is regular. Clearly, if the
distribution (B, E) is nonnegative, that is ( B, E ~ (~p) &#x3E; 0 for nonnegative test
functions, then it is of order one, and, therefore is represented by a Borel
measure. S. Muller [M2] showed that, if this measure has no singular part
with respect to Lebesgue measure, then it coincides with the pointwise product
( B (x ), E (x)), see the remark at the end of Section 3 for a converse.

We close this section with one more interesting result.
Let L log L ( K ) denote the Zygmund space over a set 0  ~ K  oo,

equipped with the norm

PROPOSITION 2. l. Suppose E in LP(Q, and Bj - B in Lq (Q, 
where, as usual, div Bj = curl Ej = 0.

If, in addition, (Ej, 0 a. e. for j = 1, 2, ..., then

for every compact K C Q.

It follows from [CLMS], see also Theorem 1.1, that (Bj, Ej) - (B, E)
in Then the convergence in L log L ( K ) is immediate from a general
fact concerning sequences of nonnegative functions in the Hardy space 
see [IV].

3. - The grand L q -spaces

Another consequence of inequality (2.3) arises by taking the supremum
with respect to the parameter E in a suitable interval of positive numbers. New
function spaces emerge [IS I], [G].
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Let Q be an open cube in R".

DEFINITION 3. l. For 1  p  oo the grand LP-space, denoted by 
consists of functions f E such that

where fn I h I, also denoted at times by I h In, is the integral mean of ( h I
over the cube Q.

Note that is a norm and is a Banach space containing LP (0).
The LP(Q) space is not dense in Its closure, denoted by 
consists of functions f E such that

Two well known function spaces are contained in First the Marcinkie-
wicz space consisting of functions f such that

for all t &#x3E; 0 where is a constant depending on f and p. We have

Second is the Zygmund space LP log-’ L of functions f for which the nonlinear
functional

is finite. This is a subspace of for which we also have the uniform
bound

With the above notation we can now formulate few corollaries of Theorem 2.1.
Assume that E E E Lq) (Q, with 1  p, q  oo Hölder

conjugate. Then

where = Cn (p, s) (II(? 1100+ I and 0  2E  
P q

in particular, the integrals in the left hand side of (3.7) stay bounded as E - 0,
though the product B , E ) need not be integrable.
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COROLLARY 3.1. Let E E LP 10g-1 L(Q, Rn) and B E Lq log-1 L(Q, with
1  p, q  oo Hölder conjugate exponents. Then, for 0  2E  min I -L, 11 we
have 

°

for each test function cp E Co (S2).
The Monotone Convergence Theorem yields
COROLLARY 3. 2. Under the above assumptions, if the product ( B, E) is non-

negative a. e., then it is locally integrable and

for each non negative test function qJ E Co (S2).
As a matter of fact since ,Cp ( S2 , Rn) contains LP log-1 L (Q, we can

also handle div-curl products which change sign (see [12]).

COROLLARY 3 . 3. For B E Lq log-1 L ( S2 , Rn) and E E LP log-1 L ( S2 , the
weak product ( B, E) can be defined equivalently without referring to any approxi-
mation by smooth vector fields as follows

The importance of this formula is attested to by its applications to the

degree theory of mappings with nonintegrable Jacobian [GISS], [I].
One more point of emphasis is that if (B, E) happens to be non negative,

it is locally integrable and as such represents a distribution which turns out to
be the weak product (B, E).

This observation, also noted by L. Greco [G], provides a converse to a
result of S. Muller [M2].

4. - The grand Sobolev spaces

For q &#x3E; 1 and Q a bounded open set in R", the grand Sobolev space 
consists of all functions u such that
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This space, slightly larger than Wo’q was introduced in [IS I] in connection with
the regularity properties of the Jacobian.

In the case q = n, an imbedding theorem of Sobolev-Trudinger type was
established in [FLS].

To state this result we need a few definitions.
The Orlicz space EX Pa, a &#x3E; 0 is defined according to the norm

It is well known that L °° is not dense in In [CS] the following
formulas for the distance

were established. We will denote by exp~ the closure of Z~ in In the
same paper the following formula for the distance to L°° from Lq) was also
proven (see also [G])

We have the following imbedding results ([FLS])

THEOREM 4. l. Let Q be a bounded open set in R n. Then there exist cl = cl (n)
and C2 = c2 (n) such that for u E the estimate

holds.

THEOREM 4.2. If u E 1 (S2) satisfies for some a &#x3E; 0 the condition

then u e with a = n _ j +Q -
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REMARK 4.1. If satisfies for a or &#x3E; 0

then, has already mentioned in the case r = 1 in Section 3 (see [BFS], Lemma 3,
for a proof) 

-

From this and Theorem 4.2 we deduce that if U E I I and

then u E expcx’

REMARK 4.2. The exponent a cannot be improved. In fact, if

for ! I small, () &#x3E; , then while for any c &#x3E; 0,

REMARK 4.3. Let us point out that functions u E with Vu E
L need not belong to BM O or V M O when a &#x3E; 0. Recall the

definition of the BM O class of John and Nirenberg: a function h E 

belongs to B M O if

where the supremum is taken over all balls B c SZ.

Recall also the definition of the VMO class of Sarason: a function u E

belongs to V M O if

uniformly with respect to x, where Br = is the ball, with radius r,

centered at x.
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EXAMPLE 4.1. Let us consider the function h = h (x ) with support in the
unit ball B of R"

Let Xj be a sequence of points in an open set 0 C such that the balls

(xj) C 0, (rj = 2"~ ) are disjoint for j sufficiently large. Next we
define

where 1  ai ~ m and Moreover we set
so that f (x ) = hj (x) if

. - 

-j , ,,

We have 
-J J

so that f ~ B M O . On the other hand

Using we obtain

which implies

5. - Very weak solutions of PDEs

Consider the Leray-Lions operator
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in a regular domain Q c R", where the mapping

verifies (p &#x3E; 1, m &#x3E; 1) the conditions

The p-harmonic type operator (5.1 ), with

.4(~)=~)!~-~
and e verifies the above assumptions.

Consider the Dirichlet problem (-j; + ~ = 1)

This is the natural setting of the p-harmonic problems: for any such F there
is a unique solution u to (5.6). A nonlinear operator

is defined, which carries F into V u .
The uniform estimate

with a = mini I, p - 1} holds. In the particular case p - 2 it expresses the

Lipschitz continuity of ~-C.
The Lq space is the most natural domain of 7~ but having in mind to

study equations of the type

~ a Radon measure, it is also of interest to find other spaces to which H

eventually extends as a continuous operator.
In a joint paper with T. Iwaniec ([IS2]) the p-harmonic type equation

was examined for F E (E small).
Estimates for very weak solutions, which are a-priori in were

established: 
I I

Unfortunately, existence and uniqueness of such solutions remain unclear (unless
p = 2).

The case p - 2 was examined in [FS] where the following result was

proved
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THEOREM 5.1. There exists eo = Eo (m, n) such that if 0  E  EO, if F, G E
L2-E (Q, then each of the equations

has unique solution in and

In the linear case .4(J~) = a(x)~, it reduces to the classical Meyers’
theorem.

The proof in [FS] relies on the stability of Hodge decomposition.
In the general case p &#x3E; 1, we were able in [GIS] to prove the following

theorem dealing with the grand Sobolev space.
THEOREM 5.2. For each F E Lq), 1 + _L = 1 the p-harmonic type equationsp q

have exactly one solution in W6 1,P) and

where a = a ( p) E (0, 1 ).

As far as we are aware this is the only existence and uniqueness result for
p-harmonic type equations below the natural spaces. It seems a good motivation
for studying grand Sobolev spaces 1,P)

Let us conclude this section with two results for elliptic equations with
measures in the right hand side:

The linear case (p=2) was extensively treated by G. Stampacchia [St] who gave
appropriate definition of a solution by duality in term of the Green operator. It

turns out that there exists unique solution

In dimensions n &#x3E; 2 there are, however, weaker solutions than those introduced

by Stampacchia, whose uniqueness is not guaranted.
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In [IS3] we proved that if a E and /-t E that is
= 0 then the Dirichlet problem

admits a unique solution.
In the general case 2 - n  p s n the existence of a solution by approxi-

mation is due to Boccardo-Gallouet [BG] and it satisfies

Uniqueness was proved when p  n under extra conditions on u. ([Mu2])
Here we report on existence and uniqueness results in the case p = n.

([GIS], [FS])

THEOREM 5.3. For each Radon with finite mass on the regular open
set Q in JRn, there exists exactly one solution u E of the equation

and

This result shows that the proper space for studying n-harmonic equation
with a measure on the right hand side is the grand Sobolev space 

PROOF (of Theorem 5.3). Given it E M(2). First solve the auxiliary
equation

div F = /-t.

F is found from the formula

For , by Minkowski inequality

Now:
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so

Taking the supremum for s  we have established for solution F to

the estimate

Now we can apply Theorem 5.2 to the equation

write the estimate

and get the conclusion in the case p a general Radon measure with finite mass.
Moreover Lui »

To prove that in the special case

we actually have

that is Vu E closure of Ln with respect to the topology of L n), it is sufficient
to use the following simple lemma.

LEMMA. Let T : L 1 - W be a continuous operator such that T (L°’°) C Loo.
Then
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6. - Nonuniformly elliptic operators

We shall discuss briefly how estimates for div-curl expressions can be
applied to the equation

where a is a measurable function on Q with values in the space of symmetric
positive definite matrices. Precisely we assume that

and

(6.2)

for a.e. x E Q and every ~ E R", where 0  a(x) s  oo. By a

very weak solution to equation (6.1 ) we mean a function u E (Q) with
Ø(x) Vu ) E such that

for every w E In order to take the theory of such equation off the
ground one must first give a meaning to the energy integrals

for every weak solution u. Denote by E = VU E Ll loc and B = aou E Lloc. *
Thus

Let 1  r, s  oo be any Sobolev conjugate pair, that is ~ + ~ = 1 + n .
Assuming that

we may define the right hand side of (6.4) as (E, B) (cp ). However, we can do
better by exploiting the fact that (E, B~ &#x3E; 0 pointwise. For example if

then E, B E R") and therefore

for each compact G C Q.
We can deduce also the following result which implies a slightly higher

degree of regularity of the energy for local solutions of nonuniformly elliptic
equations
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THEOREM 6.1. Let # E L°° (S2) and 1 E EXP(Q). Suppose u E is a

very weak solution to equation (6.1) with fo (a (x) Vu, Vu)  oo. Then

for any G C C Q.

PROOF. First we note that under our assumptions there exists Ào &#x3E; 0 such
that

, - .. ,

for any u E This follows from generalized Holder inequality in Orlicz
spaces (see [GIM]).

Assume now that u is a very weak solution to (6.1 ) with finite energy
on Q. By (6.9) we deduce (6.6), since f3 is bounded. Then by previous remark
we get B, E E L210g-I(Q, 

Since it can be proved that nonnegative div-curl expressions (B, E) with
B, EEL 2 log -1 (Q, JRn) satisfy the following estimate

for G C C S2 (see [GIM], [Mo]), we deduce (6.8).
There is also an interesting analogy with the theory of quasiconformal

mappings, see [IS3]. We shall take a moment to put equation (6.1) in this
context.

A pair (D = (E, B) of vector fields E, B E with curlE =
divB = 0 is said to be of finite distortion if there is a measurable function
K : S2 ~ [ 1, oo) such that

where I I&#x3E; 2 = ( E 12 + B 2 and J (x , = (E(x), B(x)). If K is bounded,
say Ko  oo, then there exists p - p(n, Ko) &#x3E; 2 such that I&#x3E; E

x There is no higher integrability theory for O with dis-
tortion functions .K in the space EX P(Q). An unexpected twist is that if
K e for some y &#x3E; 1, that is
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then 4) E L ( G ) for all a &#x3E; 0 and any compact G c Q (see [MM]). For
the solution u E Wll’l of equation (6.1) the (E, B) has finite distortion

Assuming EXPy(Q), we then conclude with the inequality
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