@article{ASNSP_1997_4_25_3-4_757_0, author = {Slodkowski, Zbigniew and Tomassini, Giuseppe}, title = {Evolution of subsets of $\mathbb {C}^2$ and parabolic problem for the {Levi} equation}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {757--784}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 25}, number = {3-4}, year = {1997}, mrnumber = {1655541}, zbl = {1009.32008}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1997_4_25_3-4_757_0/} }
TY - JOUR AU - Slodkowski, Zbigniew AU - Tomassini, Giuseppe TI - Evolution of subsets of $\mathbb {C}^2$ and parabolic problem for the Levi equation JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1997 SP - 757 EP - 784 VL - 25 IS - 3-4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1997_4_25_3-4_757_0/ LA - en ID - ASNSP_1997_4_25_3-4_757_0 ER -
%0 Journal Article %A Slodkowski, Zbigniew %A Tomassini, Giuseppe %T Evolution of subsets of $\mathbb {C}^2$ and parabolic problem for the Levi equation %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1997 %P 757-784 %V 25 %N 3-4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1997_4_25_3-4_757_0/ %G en %F ASNSP_1997_4_25_3-4_757_0
Slodkowski, Zbigniew; Tomassini, Giuseppe. Evolution of subsets of $\mathbb {C}^2$ and parabolic problem for the Levi equation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 3-4, pp. 757-784. http://archive.numdam.org/item/ASNSP_1997_4_25_3-4_757_0/
[AS] Level set approach to mean curvature flow in any codimension, J. Diff. Geom. 43 (1996), 693-737. | MR | Zbl
- ,[B] The motion of a surface by its mean curvature, Princeton Univ. Press, Princeton, NJ, 1978. | MR | Zbl
,[D] Cohomology of q-convex spaces in top degrees, Math. Zeit. 204 (1990), 283-295. | MR | Zbl
,[ES] Motion of level sets by mean curvature. I, J. Differential Geometry 33, n. 4 (1991), 635-681. | MR | Zbl
- ,[GS] Division et extension dans l'algèbre A∞(Ω) d'un ouvert pseudoconvexe à bord lisse de Cn, Math. Z. 189 (1985), 421-447. | Zbl
- ,[H] Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom. 20 (1984), 237-266. | MR | Zbl
,[LSU] Linear and quasilinear equations ofparabolic type, Amer. Math. Soc., Providence, RI, 1968.
- - ,[S] Some aspects of weakly pseudoconvex domains, "Several Complex Variables and Complex Geometry", Proc. of Symposia on Pure Math., 52, part I, 199-231. | MR | Zbl
,[Si] Every Stein subvariety has a Stein neighbourhood, Inv. Math. 38 (1977) 89-100. | Zbl
,[S1] Pseudoconvex classes of functions. II. Affine pseudoconvex classes on RN, Pac. J. Math. 141 (1990), 125-163. | MR | Zbl
,[ST1] Geometric properties of solutions of the Levi curvature equation in C2, J. Funct. Anal. 138 (1996), 188-212. | MR | Zbl
- ,[ST2] Levi equation and evolution of subsets of C2, Rend. Mat. Acc. Lincei s. 9, 7 (1996), 235-239. | MR | Zbl
- ,[W] Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18 (1968), 143-148. | MR | Zbl
,