Some theoretical results concerning non newtonian fluids of the Oldroyd kind
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 26 (1998) no. 1, pp. 1-29.
@article{ASNSP_1998_4_26_1_1_0,
     author = {Fern\'andez-Cara, Enrique and Guill\'en, Francisco and Ortega, Rubens R.},
     title = {Some theoretical results concerning non newtonian fluids of the {Oldroyd} kind},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {1--29},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 26},
     number = {1},
     year = {1998},
     zbl = {0914.76006},
     mrnumber = {1633055},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1998_4_26_1_1_0/}
}
TY  - JOUR
AU  - Fernández-Cara, Enrique
AU  - Guillén, Francisco
AU  - Ortega, Rubens R.
TI  - Some theoretical results concerning non newtonian fluids of the Oldroyd kind
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1998
DA  - 1998///
SP  - 1
EP  - 29
VL  - Ser. 4, 26
IS  - 1
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1998_4_26_1_1_0/
UR  - https://zbmath.org/?q=an%3A0914.76006
UR  - https://www.ams.org/mathscinet-getitem?mr=1633055
LA  - en
ID  - ASNSP_1998_4_26_1_1_0
ER  - 
%0 Journal Article
%A Fernández-Cara, Enrique
%A Guillén, Francisco
%A Ortega, Rubens R.
%T Some theoretical results concerning non newtonian fluids of the Oldroyd kind
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1998
%P 1-29
%V Ser. 4, 26
%N 1
%I Scuola normale superiore
%G en
%F ASNSP_1998_4_26_1_1_0
Fernández-Cara, Enrique; Guillén, Francisco; Ortega, Rubens R. Some theoretical results concerning non newtonian fluids of the Oldroyd kind. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 26 (1998) no. 1, pp. 1-29. http://archive.numdam.org/item/ASNSP_1998_4_26_1_1_0/

[1] G. Astarita - G. Marrucci, "Principles of Non-Newtonian Fluid Mechanics", McGraw Hill, New York, 1974.

[2] J. Baranger - D. Sandri, Finite element approximation of viscoelastic fluid flow: Existence of approximate solutions and error bounds, Numer. Math. 63 (1992), 13-27. | EuDML | MR | Zbl

[3] M.J. Crochet - A.R. Davies - K. Walters, "Numerical Simulation of Non-Newtonian Flow", Elsevier, Amsterdam, 1985. | MR | Zbl

[4] R. Diperna - P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), 511-547. | EuDML | MR | Zbl

[5] E. Fernández-Cara - F. Guillén - R.R. Ortega, Existence et unicité de solution forte locale en temps pour des fluides non newtoniens de type Oldroyd (version LS - Lr), C. R. Acad. Sci. Paris. Sér. I Math. 319 (1994), 411-416. | MR | Zbl

[6] A. Friedman, "Partial Differential Equations", Holt- Rinehart-Winston, New York, 1976. | MR | Zbl

[7] H. Giesekus, A unified approach to a variety of constitutive models for polymer fluids based on the concept of configuration dependent molecular mobility, Rheol. Acta 21 (1982), 366-375. | Zbl

[8] Y. Giga - H. Sohr, Abstract LP estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal. 102 (1991), 72-94. | MR | Zbl

[9] C. Guillopé - J.-C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal. Vol. 15, No. 9, (1990), 849-869. | MR | Zbl

[10] C. Guillopé - J.-C. Saut, Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type, Math. Mod. Numer. Anal. Vol. 24, No. 3, (1990), 369-401. | Numdam | MR | Zbl

[11] O.A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow", Gordon and Breach, New York, 1969. | MR | Zbl

[12] R.G. Larson, A critical comparison of constitutive equations for polymer melts, J. Non-Newtonian Fluid Mech. 23 (1987), 249-269.

[13] J. Leray, Sur le mouvement d'une liquide visqueux emplissant l'espace, Acta Math. 63 (1934), 193-248. | JFM

[14] J.L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires ", Dunod, Gauthier-Villars, Paris, 1969. | MR | Zbl

[15] J.G. Oldroyd, On the formulation of rheological equations of state, Proc. Roy. Soc. London Ser. A 200 (1950), 523-541. | MR | Zbl

[16] J.G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids, Proc. Roy. Soc. London Ser. A 245 (1958), 278-297. | MR | Zbl

[17] R.R. Ortega, Thesis, University of Seville (Spain), 1995.

[18] N. Phan Thien - R.I. Tanner, A new constitutive equation derived from network theory, J. Non-Newtonian Fluid Mech. 2 (1977), 353-365. | Zbl

[19] M Renardy, Existence of slow flows of viscoelastic fluids with differential constitutive equations, Z. Angew. Math. Mech. 65 (1985), 449-451. | MR | Zbl

[20] M. Renardy - W.J. Hrusa - J.A. Nohel, "Mathematical Problems in Viscoelasticity", Longman, London, 1987. | MR | Zbl

[21] D. Sandri, Approximation par éléments finis d'écoulements de fluides viscoélastiques: Existence de solutions approchées et majoration d'erreur II. Contraintes continues, C. R. Acad. Paris Sér. I Math. 313 (1991), 111-114. | MR | Zbl

[22] R. Témam, "Navier-Stokes Equations, Theory and Numerical Analysis", North-Holland, Amsterdam, 1977. | MR | Zbl

[23] A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), 607-647. | Numdam | MR | Zbl

[24] A. Valli, Navier-Stokes equations for compressible fluids: global estimates and periodic solutions, Proc. Sympos Pure Math. 45 (1986), 467-478. | MR | Zbl

[25] K. WALTERS (ed.), "Rheometry: Industrial Applications", J. Wiley and Sons, 1980.