Semistable quotients
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 26 (1998) no. 2, pp. 233-248.
@article{ASNSP_1998_4_26_2_233_0,
     author = {Heinzner, Peter and Migliorini, Luca and Polito, Marzia},
     title = {Semistable quotients},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {233--248},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 26},
     number = {2},
     year = {1998},
     mrnumber = {1631577},
     zbl = {0922.32017},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1998_4_26_2_233_0/}
}
TY  - JOUR
AU  - Heinzner, Peter
AU  - Migliorini, Luca
AU  - Polito, Marzia
TI  - Semistable quotients
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1998
SP  - 233
EP  - 248
VL  - 26
IS  - 2
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1998_4_26_2_233_0/
LA  - en
ID  - ASNSP_1998_4_26_2_233_0
ER  - 
%0 Journal Article
%A Heinzner, Peter
%A Migliorini, Luca
%A Polito, Marzia
%T Semistable quotients
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1998
%P 233-248
%V 26
%N 2
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1998_4_26_2_233_0/
%G en
%F ASNSP_1998_4_26_2_233_0
Heinzner, Peter; Migliorini, Luca; Polito, Marzia. Semistable quotients. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 26 (1998) no. 2, pp. 233-248. http://archive.numdam.org/item/ASNSP_1998_4_26_2_233_0/

[BB-S1] A. Bialynicki-Birula - J.A. Swiecicka, A reduction theorem for existence of good quotients, Amer. J. Math. 113 (1990), 189-201. | Zbl

[BB-S2] A. Bialynicki-Birula - J.A. Swiecicka, Three theorems on existence of good quotients, preprint 1995,1-11.

[B-M] E. Bierstone - P.D. Millman, Semianalytic and subanalytic sets, Publ. Math. IHES 67 (1988), 5-42. | Numdam | MR | Zbl

[H] P. Heinzner, Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), 631-662. | MR | Zbl

[H-H-K] P. Heinzner - A.T. Huckleberry - F. Kutzschebauch, Abels' Theorem in the real analytic case and applications to complexifications, In: Complex Analysis and Geometry, Lecture Notes in Pure and Applied Mathematics, Marcel Decker, 1995, 229-273. | MR | Zbl

[H-L] P. Heinzner - F. Loose, Reduction of complex Hamiltonian G-spaces, Geom. Funct. Anal. 4 (1994), 288-297. | MR | Zbl

[H-M] P. Heinzner - L. Migliorini, Projectivity of moment map quotients, preprint 1996. | MR

[Hi] H. Hironaka, Subanalytic sets, In: Number Theory, Algebraic Geometry and Commutative Algebra in honor of Y. Akizuki, Kinokunuya, Tokyo, 1973, p. 453-493. | MR | Zbl

[Ho] G. Hochschild, The Structure of Lie groups, San Francisco, London, Amsterdam: Holden-Day, 1965. | MR | Zbl

[Hol] H. Holmann, Quotienten komplexer Räume, Math. Ann. 142 (1961), 407-440. | EuDML | MR | Zbl

[I] K. Iwasawa, On some types of topological groups, Ann. Math. 50 (1949), 507-558. | MR | Zbl

[K] M. Koras, Linearization of reductive group actions, In: Group actions and vector fields. Lecture Notes in Mathematics 956. Springer-Verlag, Berlin, Heidelberg, New York, 1982, p. 92-98. | MR | Zbl

[M-M] Y. Matsushima - A. Morimoto, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France 88 (1960), 137-155. | EuDML | Numdam | MR | Zbl

[Mu] D. Mumford - J. Fogarty, Geometric Invariant Theory, Ergeb. Math. 34, Springer-Verlag, Berlin, Heidelberg, New York, 1982. | MR | Zbl

[P] R.S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. Math. 73 (1961), 295-323. | MR | Zbl

[R] M. Roberts, A note on coherent G-sheaves, Math. Ann. 275 (1986), 573-582. | EuDML | MR | Zbl

[Ro] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401-443. | MR | Zbl

[S] R. Sjamaar, Holomorphic slices, symplectic reduction and multiplicities of representations, Ann. Math. 141 (1995), 87-129. | MR | Zbl

[Sn] D.M. Snow, Reductive group actions on Stein Spaces, Math. Ann. 259 (1982), 79-97. | EuDML | MR | Zbl