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Lindstedt Series, Ultraviolet Divergences
and Moser’s Theorem

FEDERICO BONETTO - GIOVANNI GALLAVOTTI -

GUIDO GENTILE - VIERI MASTROPIETRO

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI (1998), pp. 545-593

Abstract. Moser’s invariant tori for a class of nonanalytic quasi integrable even
Hamiltonian systems are shown to be analytic in the perturbation parameter. We
do so by exhibiting a summation rule for the divergent series ("Lindstedt series")
that formally define them. We find additional cancellations taking place in the
formal series, besides the ones already known and necessary in the analytic case
(i.e. to prove convergence of Lindtsedt algorithm for Kolmogorov’s invariant tori).
The method is interpreted in terms of a non renormalizable quantum field theory,
considerably more singular than the one we pointed out in the analytic case.

Mathematics Subject Classification (1991): 34C27, 58F05, 58F27, 58A05.

1. - Introduction

HAMILTONIAN. TORI AND FUNCTIONAL EQUATIONS 1.1. We consider a model

("Thirring model") with Hamiltonian:

which can be interpreted as a model for .e interacting rotators if A E lR£, a E ~~
are the angular momenta and angular positions of the rotators and J is a positive
"inertia moments" matrix.

Let wo == J-lAo be a rotation vector satisfying a diophantine condition.
Kolmogorov’s theorem, [K], states, for 8 small, the existence of a one parameter
family 8 -~ T of tori with parametric equations:

If is an analytic function it is known that H and h are analytic functions
of s; this consequence of Kolmogorov’s theorem was proved in this form by

Pervenuto alla Redazione il 4 marzo 1997.
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Moser, [M3], and, recently, by Eliasson, [E], by showing the convergence of
the Lindstedt series. Our aim is to study the analitycity in 8 of H and h if
f E C(p) Clrl) for some p large enough. We have from other Moser’s works,
[Ml], [M2], (see also [M4], [M5]), the existence of H and h, (Moser’s theorem),
but no results seem to be known about the analyticity in s: this is probably
because the classical Moser’s works rely on implicit functions theorems and
other tools, which are essentially real analysis tools.

The problem is equivalent, see [G2], to studying the following functional
equation:

where an denotes derivative with respect to the argument.

A SIMPLER EQUATION 1.2. We start by considering the easier problem of
solving the functional equation:

which is equivalent to "ignore" the small divisors problem. Moreover the ex-
istence of an analytic solution of (1.4) is a (somewhat non trivial, from our
expansions viewpoint, at least if f &#x3E; 1 and) interesting problem by itself.

PERTURBATION CLASSES 1.3. Our results concern functions f in the class
which we define to be the functions f (a) that can be written as

in (1.1) with fo = 0 and for lvl = 

for some N &#x3E; 0. Note that all such functions have an even Fourier transform:
a property that will be heavily used. See the remarks at the end of Section 2,
and in Section 7. The quantity I v I will be always distinguished from llvll.

For the purpose of comparison with more general cases we denote 
the functions that can be written as in (1.5) with Ivl-n replaced by 
with un a unit vector.

The main results can be easily extended to functions somewhat more general
than the above, see concluding remarks in Section 7, and in their simplest form
are summarized in the following two theorems, (here C«q) means C(q’) for all
q~  q).

THEOREM 1.4. The equation (1.4) with f E admits a C~‘p-2~ solution
analytic in 8 for 1£ I small enough if p &#x3E; 2.

Note that for f = 1 (1.4) with f’ E and (1.3) with f E 
are very closely related (although, strictly speaking, not equivalent because of
the nonlinearity).
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THEOREM 1.5. Suppose that ""0 verifies a diophantine condition: 1""0’ v[ g
for some Co, T &#x3E; 0 and for v E Zl, v =1= 0. Then the equation ( 1. 3)

with f E ê(p) CJrl) admi ts a C(O) CJrl) solution analytic in 8 for 181 small enough if
p &#x3E; 3 + 6r. In fact the regularity of the solution is p &#x3E; 3 + 6T.

In both theorems the functions h are odd in 1/J and divisible by 8. Theo-
rem 1.4 is likely to be optimal (as discussed at the end of Section 4, and in
spite of the weaker implication it yields when applied to the example in Sec-
tion 2), while Theorem 1.5 is considerably weaker than the best known results
on Moser’s theorem, see [H], [M2], in comparable classes of regularity for f ;
but we have not attempted at finding the best results that our technique permits,
see comments in Section 7.

In this paper we shall assume that (fixed once and for all) verifies
the diophantine condition in Theorem 1.5: but to avoid carrying around too
many constants we define cv = and redefine f to denote so that the

dipohantine condition can be written:

and (1.3) can be written in the same form with w replacing Loo (with the new
meaning of f ).

ACKNOWLEDGEMENTS. We are indebted to L. H. Eliasson and J. Moser for

very helpful and enlightening discussions. This work is part of the research

program of the European Network on: "Stability and Universality in Classical
Mechanics", # ERBCHRXCT940460.

2. - Examples

The functional equation (1.4) admits for c small a C(O) solution if f E C (2)
even or not even, because the map h 2013~ is a "contraction"
in C(o): i In fact if

f E C (P) then the map is a contraction in for  1. Therefore

if f E C ~p~, p &#x3E; 2, then h exists for 8 small and it is of class C ~p-2~ . Here

one can replace with C(P-’) and (p - I)th derivatives verifying a Lipshitz
condition, a space that can be denoted If f is even then the solution
h is odd because in this case the space of the odd functions is invariant under

the above map.
In this section we give two examples in which i = 1 and the functional

equation:
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(a = can be explicitly solved.

ODD PERTURBATIONS 2.1. The simplest case corresponds to an odd f:

as a periodic function of period 27r and zero average. This function belongs to
C(2~ (~l ) (and to LiP2(1fl)) and, with the notations in Section 1.3, to 
because its Fourier trasform fv is proportional to~[(2013l)~2013l]~~, ~ ~ 0, and
fo = 0. The first step of an iterative method to solve (2.1 ) gives, as approximate
solution, s 8 f ( p + s 8 f ( ~/r ) ) = ~(~ ~/r~ -~ ~(~ 1/r~ ~ - 2 ) ~ - 2 ), which for 1/1 = 0 reduces

l)7r/2, which is therefore non analytic in s. Moreover it is easy to
see that the exact solution of (2.1 ) can be written as:

where X (P) is the characteristic function of the set of points satisfying the
condition P. (hence h E C(O) if one considers only integer
derivatives), but it is not analytic in 8 for E small.

EVEN PERTURBATIONS 2.2. Consider now the function (with derivative pro-
portional to (2.2)):

viewed as a periodic function of period 27T and zero average; this function

belongs to (and to and its Fourier trasform fv is 0 for

v = 0 and it is proportional to [ ( -1 )" - 1 ] v -4 for 0; so that f E 
Note that:

which is analytic in 8 for Isl  1 because = sign(p 
forevery 1*1 I and I £’ I  

To solve the full equation h (*) = E (* + h (*)) [ I * + h (*) I - 7r ], we consider
the two possible cases:
(1)~+~&#x3E;0: there are two solutions of the second order equation for h, but
only one which is O(s) for E - 0; so we fix:
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Note that 1/1 for 1/1 &#x3E; 0.

(2) ~ ~- h  0: like in the previous case there are two solutions but only the
one with the plus sign is O(s) for - - 0; so we fix:

One has 1fr +  0 for *  0. 
’

It follows that the solution which is uniformly of order O (s) can be written
as:

which is analytic in 8 for E small enough, because h _ (o) = h+ (0), and both h _
and h+ are analytic. One checks that h E 2 becomes 1,
i.e. h E C~1~, if one insists on integer order derivatives).

REMARKS 2.3. One checks that, in general, if f is odd and 0
then the equation (2.1 ) does not admit a solution which is analytic in E for small
8. Nevertheless we have seen (by the contraction principle at the beginning of
this section applied to the space C~p~, forgetting the parity properties) that if

f E e(p) then (2.1) admits a C(p-2) solution for E small enough.
Therefore we see that the analyticity in 8 is linked in a non trivial way

to the regularity of f. The functions in 4~(P), i.e. verifying (1.5), have very
special properties (being the kernels of homogeneous pseudodifferential operators
on 1r~): namely they are regular (real analytic) for 0 such that 0,
(see, for instance, [SW] p. 256, which yields C(’) regularity for 0 0 0 and

I  7r; while analyticity can be seen, for instance, as a consequence of
Theorem 1.4, see Section 7.4 below).

More generally we can conjecture that analyticity arises if a f vanishes
at the singularities of f, when f is differentiable enough. In this sense the

parity condition, together with (1.5), is a simple and rather general way of
characterizing functions with the latter property. It is not difficult to set up

assumptions under which this statement can be made precise and proved in

an elementary way at least for i = 1. Such an approach could not be easily
extended to the general case of (1.3) or even to the case of (1.4) with i &#x3E; 1:
hence in Section 3, Section 4 we prove Theorem 1.4 with a technique that admits
a "straightforward extension", see Section 5, to the proof of Theorem 1.5.

As we shall see in the coming sections the property of f of being even
and verifying (1.5) (hence such that a f vanishes at the singularities of f ) is
the root of the new cancellation mechanism that will permit us to deduce our
results.
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3. - Formal solutions: LNP series.

We study now the equations (1.3) or (1.4) with f, = (with b large
enough) so that f E It will appear from the following proof that
everything works quite more generally, and in particular for all f E 6(P) (with
p large enough). We prove that h is analytic in 8, for E small, if b is large
enough.

By an argument analogous to [E], [G2], [GM 1 ], we see that one can solve
formally the equation, by writing the Fourier coefficients h,, V E Z~, of h( 1/1)
as a power series in E :

(Lindstedt-Newcomb-Poincaré series, or LNP series, or Lindstedt series).
The rules to construct the expansion for the case (1.4) are identical to those

discussed in [G2] for the equation (1.3), except that the squared small divisors
(i w ~ v) -2 are replaced by 1, and J by -1.

The expansion is purely formal: this is so in [E], [G2] only because of the
"small divisors" problem. Here it is formal also because it involves computing
arbitrarily high derivatives of f (while f is only supposed to possess few

derivatives).
For completeness we recall, briefly, the algorithm rules for the expansion:

the generalization to (1.4) is a trivial adaptation of the algorithm leading to the
Lindstedt series, amply described in the literature, see for instance Appendix R
in [G2] and [GM3]. Hence we just describe it without comments.

THE GRAPH REPRESENTATION (polynomial case) 3.1. We begin by supposing
that f is a trigonometric polynomial. It is necessary to recall, first, the notion
of rooted graph as used here. We lay down one after the other, on a plane, k
pairwise distinct unit segments oriented from one extreme to the other: respec-
tively the initial point and the endpoint of the oriented segment. The oriented
segment will also be called arrow, branch or line. The segments are supposed
to be numbered from 1 to k.

The rule is that after laying down the first segment, the root branch, with
the endpoint at the origin and otherwise arbitrarily, the others are laid down
one after the other by attaching an endpoint of a new branch to an initial point
of an old one and by leaving free the new branch initial point. The set of
initial points of the object thus constructed will be called the set of the graph
nodes or vertices. A graph of order k is therefore a partially ordered set of
k nodes with top point the endpoint of the root branch, also called the root

(which is not a node); there will be several "bottom nodes", unless the graph is
a succession of lines each attached to the previous one (the latter case, linear
graph, although trivial will be a very important one). Therefore the graphs are
"trees" in the sense of graph theory. If we take into account also the numbers

labeling the branches, we have "numbered graphs".
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It is perhaps worth commenting explicitly that with the above conventions
the root of the graph is at the top while the bottom points are at the bottom
in the sense of the partial order on the graph generated by the arrows directions:
this may be sometimes confusing as it is contrary to the intuition if one thinks
of drawing the graph as a real life tree looks like. On the other hand this is
a natural convention if one thinks that the arrows that constitute the branches,
and define the partial order on the graph, point towards the root. We denote
by  the ordering relation, and say that two nodes v. w are "comparable" if
vw or w  v.

With each graph node v we associate an external momentum or mode which
is simply an integer component vector 0; with the root of the graph (which
is not regarded as a node) we associate a label j = 1,... , i. The labels attached
to the graphs (the numbers being included) will be referred as decorations.

For each node v, we denote by v’ the node immediately following v and
by kv - v’v the branch connecting v to v’, ( v will be the initial point and v’
the endpoint of ~,v). If v is the node immediately preceding the root r (highest
node) then we shall write v’ - r, for uniformity of notation (recall that r is
not a node). We consider "comparable" two lines kwg if v, w are such.

Given a graph # let pv be the number of branches entering the node v:

then each of the pv branches can be thought as the root branch of a subgraph
having root at v: the subgraph is uniquely determined by v and one of the pv
nodes w immediately preceding v. Hence if w’ = v it can be denoted It
is useful also to consider graphs #0 bearing no momentum labels and we use
the notation # = (tJ°, {vx }); the subtrees with no momentum labels are denoted
by 

The angles at which the segments are attached will be irrelevant, i.e. the

operation of changing the angles between arrows emerging from the same node
(each arrow carrying along, unchanged, the subgraph of arrows possibly attached
to its initial point) generates a group of transformations, and two graphs that
can be overlapped by acting on them with a group element are regarded as
identical.

We can also introduce another group of transformations, which consist of
permuting the subgraphs entering into a node v, and we consider equivalent
graphs which can be overlapped by acting on them with a group element in
such a way that all the labels match. The number of (non equivalent numbered)
graphs with k branches is thus bounded by 4kk !, 9 [HP].

With each branch we associate another integer component vector, the
branch momentum "flowing through the branch", defined by = vw .

Then, given a positive matrix J and a trigonometric polynomial f (~) -
1/J, fv = f-,, we consider from now on only graphs

with k branches, "decorated" by node labels vv such that VÀ =1= 0 for all À, and
associate with each decorated graph the value
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Fig. 1. A graph 0 with Pvo = 2, p, = 2, PV2 = 3, PV3 = 2, PV4 = 2 and k = 12, Il = 2 . 6,
and some decorations. The line numbers, distinguishing the lines, and the arrows, pointing at
the root, are not shown. The lines length should be 1 but it is drawn of arbitrary size.

where v’ is the node immediately following v in here wr denotes the unit
vector in the j th direction, vr = ej, j = 1, ... , f, and X = 0, - J = 1 for (1.4)
or X = 2 for (1.3). When X - 2, [iw - will be called the divisor
of the line hv. To stress the (deep) analogy with quantum field theory (QFT,
see Section 7), in which our graphs play the role of Feynman graphs, (see
Section 7), we shall sometimes also call g~, - vÀ]-2 the propagator of the
line ~..

The momentum flowing through the root will be denoted also 
The Lindstedt-Newcomb-Poincaré ("LNP") polynomial h (k) (0) is defined by

with:

Hence, in the case of a trigonometric polynomial f, the only difference be-
tween the formal solutions to (1.3) and (1.4), besides the value of J, is that in
the second case X = 0 so that no (small) divisors appear in the solution to (1.4).

Kolmogorov’s theorem yields that, if w verifies the Diophantine condi-
tion (1.6) for some T &#x3E; 0 and f is a trigonometric polynomial, then:

THEOREM 3. 2. Given the Hamiltonians system ( 1.1 ), where f (cr) is a trigono-
metric polynomial in the angle variables, i.e. v E Z~ with I v I  N for some integer
N, then the Lindstedt series defined through (3.1 ) is convergent for 8 small enough.
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The theorem still holds under weaker assumptions on the perturbation, (see
Section 3.3), and it is a consequence of Kolmogorov’s theorem, (see [M3]);
it has been recently proved with new techniques by Eliasson, (see [E]). The
corresponding statement for (1.4) is also correct (and trivially so).

THE DIFFERENTIABLE CASE. ABEL’S SUMMATION 3.3. The new techniques are,
in fact not restricted neither to polynomial f (analytic is sufficient) nor to even
f. If f is analytic in cx the above algorithms still make sense: the sums over
the incoming momenta are simply no longer restricted to have a bounded size.
This implies that the sum in (3.4) is now a genuine infinite sum, which however
is trivially absolutely convergent in the case of (1.4). In fact the coefficients

f, decay exponentially as v ~ - oo.
In the case of (1.3) the convergence (still at k fixed) is also trivial because

of the supposed Diophantine condition enjoyed by the rotation vector w.
In both cases also the convergence of the sum over k with weight 6~ can

be established (see for instance [E], [CF], [G2], [GM2], [GM3]).
But the situation is remarkably different in the case of differentiable f,

e.g. when f E ê(p) (1rl): to proceed we need, therefore, a summation rule for
the formal series that arise in the Lindstedt algorithm.

For each node v E ~, we can write where K should
be zero. The summation rule is that the parameter K (ultraviolet cut off) should
be taken K &#x3E; 0: after computing the coefficients one will perform the limit
as K - 0 which will define The summation rule could be called Abel’s
summation of the Lindstedt series coefficients.

The next section is devoted to the proof that, in the case of (1.4), the latter
limit exists and defines the Fourier coefficients of a function h which has class,
at least, C(O) and such that the series (3.1) converges in the norm of C ~°~ if

f E with p large. In fact we prove that

for a suitable constant Co, if f E with p &#x3E; 2, so that h turns out
to be analytic in s I  Co 1 --_ So.

4. - Multi-scale analysis for the model ( 1.4). Ultraviolet divergences

For simplicity we suppose that fv = the extension to the more

general (1.5) is straightforward.
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DIVERGENCES 4.1. Given a graph # with = v we can define the scale

h v of the node v to be the integer h v &#x3E; 1 such that 2~’~ ~ Ivv I  2hv. We
say that the labels and {hx } are compatible if ~ lvvl E [2 hv-12hv) for all
v E 0. The compatibility relationship between and {hx } will be denoted

iv,, I comp 

Then we can write the second sum in (3.4)

and the resulting terms, in which every node has a definite "scale", are the

addends of the multiscale decomposition of the original graph 0. The labels

{hx } will be called ultraviolet scale labels (to contrast them with the "infrared
scale" labels of Section 5).

Given a graph 00, a bound on the values Val(OO, can be found

immediately, from (3.3) and from the scaling properties of the fvv’ to give, if

where 2k TIv Ivv I and B is a suitable constant. It is important
to note that the assignments of the labels {hx } in 4.2 allow us to say that few
is bounded by 

We call this kind of bounds dimensional bounds or power counting bounds,
as customary in quantum field theory, see [G 1], [BG].

Setting b = 2 + s + t + p, i.e. taking f E with JL &#x3E; 0, and

exploiting (as usual in such "field theory arguments", see [G 1 ) ) the (trivial)
identity:

(recall that we denote v’ the node immediately following v), one obtains
from (4.2):

The sum over the ultraviolet labels {hx } in (4.4) can be bounded only if suitable
relations are imposed on the scale labels, e.g. if Vv E 0; but this is
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not always the case, and we refer to the phenomenon as ultraviolet divergences:
one has therefore to look for some cancellation mechanism between the values
of different graphs which are source of the above divergences.

THE PARITY CANCELLATIONS AND INTERPOLATION 4.2. Consider first the rep-
resentation of by graphs without scale labels.

The cancellations will take place between values of graphs (#°, ivl) with
the same 60 and different external momenta assignments. In order to recognize
which terms must be collected together to exhibit the cancellations, given a
set of momenta and fixed a node v E we define the change of variables
L~ : 7~~ ~-Z~, where w E ,~v = the set of the p- nodes immediately preceding
v, by fixing a sign o-w = ±1 and defining = (wg) as:

The change of variables is one to one and, when it is not the identity (i.e.
when or,, = -1), by acting on the external momentum labels it changes the
graph # = ( ~ ° , { vx } ) to a graph (#0, (wg )) such that all the momenta
that flow through the corresponding lines of the two graphs are either the same
(if the line follows hi or is not comparable to hi) or change sign (otherwise).
The momentum flowing through the root branch remains always the same. And
all the scalar products of neighboring nodes external momenta are the same
in the two graphs except the product relative to the pairs of nodes v w or v’v
(where v’ &#x3E; v is the node immediately following v, see Section 3.1), which
change from vv - vw + and, respectively, from vv, - vv to

(vv + 
Note that the changes of variables 1 and commute.

Therefore we can consider, given (#0, fvxl) and fixed a node w E s

w’ = v, the sum:

and, more generally for any choice of the subset of nodes immediately
preceding v, we can consider the sum:

The key remark is that the sum over the signs in (4.7) can be evaluated by
an interpolation formula involving auxiliary interpolation variables
tw E [0, 1 ], w E because, as one can check after working out a few simple
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examples, the sum over the generates a composition of increments of
Val (~°, f vx ~). We express this as follows:

where:

(i) Val’ is a tensor containing all the other value factors relative to nodes v’s
different from v .

(ii) The free indices of the tensor vv (tv)av (which is of order 1 + pv) are

contracted (by performing the 2:a-) with the ones that appear in the tensorv

Val’. And av is a t dimensional positive integer components vector (with
I denoting the sum of the components) and, given a vector b, we set

ba - ... bae ; furthermore tU = (tw l , ... , if are the

nodes in and ... , . ,) V-(t-) is defined as:nodes in ,131 v , and == v v is defined as :

where vv (tv ) = vv if Bii 0.
The cancellations are expressed by the fact that the are no "initial " terms (corre-

1 in the integrals) in the interpolation formula (4.8) because
the } leads to a sum of increments: we call "new" such cancellations, in
order to distinguish between them and the "old" cancellations which have to
be exploited in the proof of the KAM theorem in the analytic case; the "old"
cancellations will be discussed again in Section 5 below.
In the value of a graph the external momentum Vi) of a node v appears in

fw and as a factor in which it is raised to its (pv + 1)th power: each of the

pv entering lines contributes one power and one more power comes from the
exiting line, see (3.3).

The external momenta correspond to derivatives of the, perturbation f:
hence one would say that in a graph in which there is a node with pv entering
lines one needs, to make sense of it in the limit in which the ultraviolet cut
off is removed, at least (pv - 1 )th differentiability of f.

REMARK. If one could shift each of the pv external momenta factors

corresponding to the pv incoming lines to the preceding nodes wl, ... , w pv
(with wi = v), then we would have in each node v at most 2 external momentum
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factors (or 1 only, in the case of the highest node): i.e. if one could replace
by Ivw.1 I then we would have in each node just 2, or 1, external

momentum factor. Hence we could hope to get away with f ’s with just 2
derivatives.

One can check on the simplest graphs (e.g. on the graph with just two
nodes) that the effect of the above interpolation is to redistribute the derivatives,
that act on the f’s, among the various f ’s corresponding to the nodes; thus
producing precisely the net effect of shifting down (along the graph lines) the
external momentum factors, so that formally one does not need more than 2
derivatives to make sense of the Lindstedt series coefficients when the ultraviolet
cut off tends to 0. We recommend this calculation as it is very enlightening
and it was in fact the key to our analysis.
(iii) The assumed form (1.5) of the fv allows us to think that f, is defined on
R~ rather than on Z~ and hence to give a meaning to the derivatives of 
(iv) The integration over the tv-variables may cause vv (tv ) to pass through
0 where f, is singular. In this case a convergence problem arises and we
must treat it before being able to really use the interpolation formula (4.8): see

comments after (4.21) below.

NODES OUT OF ORDER AND INTERPOLATION 4.3. From (3.4) we see that we
should study the sum I and by remembering that

denote the subgraphs with root v 1 = w’ and highest node w (see paragraph
preceding (3.3)), we can write as: .

where vl is the highest node, vÀw and is the set of p"

nodes that immediately precede v.

Fixed v and let be the scale of vvl v
i.e. vvl is such that I  2hvl. Given w with w’ = VI i we say that
w is out of order with respect to v if

where p, is the number of branches entering v. It will become clear that the

number 5 in (4.11) can be replaced with any integer o &#x3E; 5: the actual value

chosen for o only influences the size or the ease of the bounds. We denote

131 V, (v, C L3vi the nodes w E BVl which are out of order
with respect to The number of elements in Bi 1 will be denoted qv = 
The notion of w being out of order with respect to v 1 depends on 1

and v. 
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Given a set choices of aw = ±1 we define the transfor-
mation

and given a set C c we call U(C) the set of all transformations U such
that aw = 1 for w g C.

If [2 h-I 2h ) is a scale interval Ih, h = 1, 2,... we call the first quarter of
Ih the lower part [2h -1, 4 2h -1 ) of Ih , the fourth quarter of Ih the upper
part Ih = [22 h 2h ) of Ih and the remaining part the central part Ih .

We group the set of branch momenta into collections by pro-
ceeding iteratively in the way described below. The collections will be built so
that in each collection the cancellation discussed in Section 4.2 above can be
exhibited.

Fixed v and h choose 
I 

such that I E 1ft: such 
1

is called a representative. Given the representative we define:

(a) the branch momenta collection associated with it to be set of the 1

having the form

and

(b) the external momenta collection to be the set of momenta

Note that the elements of the above constructed external momenta collection
need not be necessarily contained in 1ft.

We consider then another "representative" 2 1 such that 1 E Ih
and not belonging to the branch momenta collection associated with 
if there are any left; and we consider the corresponding branch momenta and
external momenta collections as above. We proceed in this way until all the

representatives such that v"1 is in 1ft, for the given h, have been put into some
collection of branch momenta.

We then repeat the above construction with the interval Ih replacing the 1ft,
always being careful not to consider representatives that appeared
as members of previously constructed collections. It is worth pointing out that
not all the external momenta I U are in but

they are all in the corridor U Ih , by (4.11).
Finally we consider the interval (if h = 1 we simply skip this step).

The construction is repeated for such intervals.
Proceeding iteratively in this way starting from h = 1 and, after exhausting

all the h - 1 cases, continuing with the h = 2, 3... cases, we shall have



559

grouped the sets of branch momenta into collections obtainable from a repre-
sentative by applying the operations U to

it. Note that, in this way, when the interval Ih 1 is considered, all the remaining
representatives are such that all U E (v, 

REMARK. Note that the graphs with momenta in each collection are just
the graphs involved in the parity cancellation described in the previous section.
In fact if U is generated by the signs we have

where, given the sets and { v~, w }, denotes the external momentum in

corresponding to the node v and denotes the branch momentum
in {v~,w } corresponding to the branch Àw. Moreover the complexity of the
above construction is due to the necessity of avoiding overcountings. In fact it
is possible that, for some U E one has

because the scale of vu may be h - 1, while that of vvl may be h ; so that if

one considered, for instance, 1 before Ih overcountings would be possible,
and in fact they would occur.

A convenient way to rewrite (4.10) is the following:

where 
1 
means sum over the above defined representatives such that

vvl is compatible with hvl; and we abridge ,t31v1 (v, by Blvl in

conformity with the notations introduced after (4.11) 1 
is contained in 

The explicit sum over the scales hvi 1 is introduced to simplify the bounds

analysis that we perform later, see Section 4.5. Note that vv is, in general,
not compatible with hvl, i.e. we are grouping together also terms with different
scale label (but the difference in scale is at most one).

Noting that by the parity properties of /~:
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we have, still abridging 81 VI (v, by 81 vI’ from (4.17):

We can apply the interpolation in (4.8) to the node v and rewrite (4.19)
as:

where if Bl VI = 0 no interpolation is made; and we note that by (4.9), by the
definition of nodes out of order and by the iterative grouping of the represen-
tatives :

so that the interpolation formulae discussed in Section 4.2 can be used because
no singularity arises in performing the t,l -integrations. -

By the definition of v) in (3.4), and still abridging 
by we can write (4.20) as

where the sum over ] is a sum over the with =

VÀw’
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If we use (see (4.9)):

to compute differentiations with respect to we can write (4.20) as

where we recall that and the sum over [ f vx }x~.~,; v~,w ] again denotes
sum over the with = vÀw; here the factor (which,
computed for v = vvl (tV!)’ is identical to the inverse of I1wEBv! 1 Ivvl (tV!)1)
has been introduced so that a dimensional estimate of the factor in the second
line of (4.24) can be taken proportional to 

If W E we have, see (4.11), (4.21):

where is a matrix with 12, is defined as the
sum of the absolute values of the matrix elements. Hence in (4.24) we can
write

where XVI w (tvl) is a suitable vector depending on vÀw but not on the individual
terms v,, and such that [kvw I  1. The possibility of writing the absolute
value of VVI (tvI) as a sum of the values of the vz’s with vz-"independent"
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coefficients, i.e. the possibility of "linearizing" the absolute value (in the sense
of (4.26)), will be crucial in the following. It will allow us to treat symmetrically
the nodes out of order and the ones that are not out of order.

We obtain, see (4.10), with the above notations (and taking o = 5,
see (4.11 )) :

which we can rewrite by collecting the terms in the following way

where the tensor

depends also on v and (although this dependence is not shown, to
simplify the notation), and has to be contracted with the external momenta vZ,

The representation (4.28) for in (4.10) has a form well suited for a
repetition of the construction, which will now start from nodes lower than v 1.
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The repetition of the construction leads eventually to a representation of the
values v) as a summation over paths on ~°: the description of the path
representation is the content of the next subsection. The representation will take
into full account the cancellations and once achieved the bounds that we are

trying to establish will be trivial (in the same sense as the "failed" bounds, in
Section 4.1 above, were trivial dimensional bounds).

DEVELOPMENT OF THE INTERPOLATION; PATH EXPANSION 4.4. Developing the
sum 2vz in (4.28) SK(OO) is given by a sum of terms corresponding to a
collection of nodes lying on the paths w ) ) leading from v I to a node
z: the collection is defined by the "choices" of one particular addend 2wz in the
sum ¿z:::w with z = z(vl, w), w E Therefore, in general, we can think
that (4.28) corresponds to a sum over a collection of paths w ) ) for
the w E * The paths are regarded as totally ordered (and gap-less) sequences
of nodes on 60.

We can call ~1 the family of the possible collections of paths that arise
when expanding the sums F_zw in (4.28): each element PI of Pl can be
identified with one contribution to (4.28). And, by using the notation in (4.9)
tv = the result is the following more explicit interpolation formula
re-expressing the r.h.s. of (4.28):

where the interpolation is considered when (i.e. when it makes sense),
and the indices have to be contracted suitably, and we recall that 

The above formula can be rewritten as:
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where [P1 = U,,,,13,1 w))/(vi ) and 1Jv is equal to 1 if v = z(vi, w)
for some w E and 0 otherwise.

We are now in position to iterate the resummation done in the previous
section leading from (4.10) to (4.17) and "concerning" the highest node v 1.
For each v E  let h v = be the scale of vv, i.e.

vv = is such that 2~~’~ ~  Given an immediate

predecessor w of v we say that w is out of order with respect to v if

where p~ is the number of branches entering v . We denote - Bi - v
(vÀv’ Bv the nodes W E which are out of order with respect
to v.

Given a set for all choices of ~w = we define

and given a set C ~ Hi) we call U(C) the set of all transformations such that
for w¢C.

We group the set of branch momenta and the external momenta
into collections by proceeding, very closely following the preceding construction,
with vÀw playing the role of v, in the way described below.

Fixed and h we choose a such that IvJ I E Ih where vJ =

Then is called a representative. For such representative we define
the branch momenta collection, associated with it to be the set of the 

having the form and the external momenta collection to be the set

of momenta LWEBv 
Note again that the above constructed external momenta collection is not nec-

essarily contained in 1ft.. ~

We consider then another "representative" such that I E Ih and
does not belong to the just constructed branch momenta collection associated
with if there is any; and then we consider the branch momenta

collections and external momenta collections obtained from by the
corresponding U transformations. And, as previously done, we proceed in this
way until all the representatives such that Vi) is in Ih are in some external

momenta collections.
The construction is repeated for the interval Ih , always being careful not

to consider that have been already considered, and finally for the
interval 7~_~, see Section 4.3.

Proceeding iteratively in this way and considering the same sequence of h’s
as in the previous case (i.e. the natural h = 1, 2, ... ), at the end we shall have
grouped the set of branch momenta into collections obtainable from a "represen-
tative" by applying the operations U E 
to it.
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In other words the definition of the representatives identical to the
one for vi except that the collections are defined only by transformations changing
the branch momentum of the lines emerging from the nodes in Bi v but not in Pl.

We repeat the above construction for all C E PI until all the v E Pi
are considered starting from the v with v’ - v and, after exhausting them,
continuing with v with ~’ = ~ and so on. We call the nodes w

immediately preceding v but which are not on the union of the paths P E PI, and
the nodes in which are out of order with respect to u; the set

of just described transformations will be denoted by 
Proceeding as we did for the highest node vi and by performing the ana-

logues of the transformations leading from (4.17) to (4.31), we construct for
each D E PI new paths P2 which, by construction, will not have common branches
with those in Pl ; call 7~2 the collection of the pairs P1, P2. The crucial point is
that the factors are the same for all the terms generated by the action
of U E Ll (,131 v (P1 ) ), by (4.26). We iterate then this procedure.

Eventually we end up by constructing a pavement P of the graph with
non-overlapping paths (and the union of the paths does cover the graph); note
that the paths are "ordered", (see Section 3.1), in the sense that they are formed
only by comparable lines.

We call ~ the collection of all such pavements; Bv (P), P E P, will be the
set of nodes w immediately preceding v and such that a path P (v, z (v, w)) E P
starting from v passes through w, and is the collection of nodes in

out of order with respect to v. Note that in general Bv (unless
v is the highest node vl, when Bvl (P) = L3v,).

The set of "path head" nodes v, i.e. the upper endnodes of paths in P,
will be denoted Mh (P) : hence if v rf. Mh (P) (i.e. if no path in P has v as path
head) then 0; likewise Me (P) will denote the set of "path end" nodes,
i.e. the nodes z such that P(v, z) is a path in P.

Then we see that (4.30) leads the following path expansion for 

(see (4.10)) summarizing our analysis:

where the sum over comes with the restriction, among others met in the
above derivation, that the external momentum configuration is compatible
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with the scales {hx ~; furthermore C~" is defined as:

with defined as

and we introduced a label qv associated with each node v, such that qv = 1 if
v E Me (P), and riv = 0 otherwise.

In the bounds we shall replace the sum over the by a sum over 
compatible with {hx } and forget that only "representatives" have to be counted.

The "paths" P (v, z) can be viewed as "pointers" indicating that an external
momentum vv has been "shifted" to a node z becoming vZ in the sense of the
remark following (4.9). Therefore it will not be surprising that the bounds
derived in Section 4.5 below give the result described in the remark. One
can see that the path representation is in some sense playing the role of an
integration by parts and "it shifts the derivatives" (i.e. the factors v’s, as we work
on Fourier representations) where they are less "dangerous". The cancellations
simply tell us that this feat can be achieved although no integration is performed
on our expressions.

BOUNDS 4.5. If we show that the sum in the l.h.s. of (4.34) is bounded

by for some Cl &#x3E; 0 then we shall have proved that h is analytic
for E  1 and of class because the sum over the graphs #° is
a sum of over ways of assigning the labels that distinguish for
each "shape" of #0 (recall that in Section 3 we defined the graphs to have

distinguishable branches and made the otherwise identical branches distinct by
attaching to them a label that played no role other than that of making the
combinatorics somewhat easier, see Section 3.1) the branches of #0 (and the
number of "shapes" is  4k). Recall also that there is an overall k, that has to
divide the I.h.s. of (4.34) to connect it with h , see (3.4). 

’

By the definition of i7v after (4.36), when we differentiate with respect
to the derivatives act on the product of fvv (tv) times

up to pv + 1 momentum factors, if v V Me (P), or up to pv -~- 2 factors if
v E Me (P). Hence we can choose the qv  pv factors to be differentiated in
 (pU+3)  2pv+3 ways.qu 

-

Furthermore the derivatives produce always the same "dimensional bound"
as far as the dependence on h v is concerned. One finds (see also (4.21) and
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the comments following it, and recall the definition of 17, following (4.36)):

for suitable constants Dj ; (4.37) takes into account also a factor arising
from the number of terms in the each of which has been
bounded in deriving (4.37) by the maximum over the a’s, and the combinatorial
factor from the derivatives. The factor is here generously bounded by
flv Ivv IS.

For the purpose of comparison with Section 4.1, (4.2) and (4.4), by us-
ing (4.37) we can bound the sum (4.34) by replacing the sum over {hx}, 
by a sum over {hx } and over the compatible with {hx } (i.e. such that hx
is the scale of and by writing

for suitable constants Bl &#x3E; B2, (we use that 1 and that there

are O(2hi!) momenta of scale h). Note that of all the restrictions that have to
be imposed on we only retain here that the scales of are the {hx },
i.e. (see Section 4.1).

Hence, by applying (4.2)-;.- (4.4), one finds that the sum (4.10), once re-
expressed as (4.34) and remembering that ~==2+~+~+/~, is bounded above
by:
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where the second equality is obtained expressing h, as the sum of the
scale variations along the branches of the path P (v, z) joining v to z. The

highest node v, is "privileged" (because of the "extra" 2-hvl factor) since it is
the only node for which we are sure that 1Jv = 0 because VI g Me (P).

Of course in deriving (4.39) one has to take into account also the cut off
factors e-’Ivvl appearing in the Fourier coefficients fvv’ which may be stricken
by differentiations: but their contribution is not worse than the terms that one
would obtain if they were absent. In fact they generate (when differentiated with
respect to the interpolation parameters) terms like 2- (hv -hz).
So we can think that their contributions are accounted for in (4.39) by an
appropriate choice of Bl and by the which may pop up also when

treating such terms (via Pv!2-Pvhv).
It is now clear that (4.39) is a much better bound than the "naive " bound

(4.4). In fact using that the number of pavement P in ~ is bounded by 2k, see
Appendix A2, we get:

for some B &#x3E; 0.

REMARK. Comparing (4.40) with (4.4) we see that what has been achieved
is to lose completely the favorable factors 2hv, -hv with hv,  hv, which however
had no influence on the convergence of (4.4), and to gain new factors 2- (hv,-hv)
compensating the unfavorable 2h v’ -h v , hv’ &#x3E; hv, which did ruin the convergence
of the naive bound (4.4). In the end we have no trace left neither of the
"bad" factors in (4.4) nor of the "good" ones: the estimates have become

completely marginal, as usual in the interesting problems, and convergence can
be decided simply by requiring enough differentiability on the perturbation f,
a mild condition on /t, i.e. on p ( p &#x3E; 2, see below). This explains also why
no resummations are performed- for the pairs of nodes (v, w), v = w’, both
belonging to the same path P E P: in fact in this way one would obtain more
than one factor 2hw -h v , , so that one of such factors would still cancel the factor

appearing in (4.4), but the other "extra" factors would be source of

problems for h w &#x3E; h v . 
,

The summability over the scale labels follows, for /t &#x3E; 0. The summability
over the orders k, weighed by follows (as remarked above) by taking into
account that the number of graphs with given pv’s (and without node labels)
is bounded by (Cayley’s formula, see [HP]). Hence Theorem 1.4 is
proved, and it follows that if f E p &#x3E; 0, s &#x3E; 0, then h exists
and is analytic in ~, for small s, and it is in 

Since the convergence is uniform in the ultraviolet cut off K (which does
not appear at all in (4.40)) and since the extra terms that arise in (4.39) due
to the presence of K have K as a factor, we see that in the limit K - 0 one
can simply disregard such terms. As a consequence of this uniformity the limit
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as K - 0 of the (4.39) is simply (4.39) itself without the terms depending on
K : this remark completes the description of the cancellations and provides a
concretd rule to compute the resummed series.

Thus if f = 1 we find that for Isl small h is analytic in E if p &#x3E; 2 and
h E But this result seems to give a regularity weaker than the one
found in the exact solution in the example in Section 2.2. However we have
checked that, in that particular example, there are other cancellations and that
the above argument performed for that special case would lead to the stronger
result (i.e. h E hence the condition on p in Theorem 1.4 may be (in
some sense) "best possible".

5. - Multiscale analysis for the Hamiltonians model

We come back to the model (1.3), and consider again (for simplicity) a
perturbation of the form fv = We also take J = 1, see ( 1.1 ).

INFRARED AND ULTRAVIOLET SCALES S.1. Let us define x (x) as the character-
istic function of the set f x E R : x ( E [1/2, 1 ) }, and x 1 (x ) as the characteristic
function of the set [X E R, x ~ I &#x3E; 1 } . Then, if g~, = · v~, ] -2 is the propagator
(or squared divisor), see (3.3), we can decompose:

i.e. we decompose g~, in infrared scale components and we introduce the ultra-
violet scale labels as in Section 4. ’

Inserting the above decompositions in the definition of the value of a graph
((3.3) with X = 2), we see that the value of each graph is decomposed into
various addends. We can identify the addends simply by attaching to each line
À a scale label 1, see (5.1).

CLUSTERS AND RESONANCES 5.2. Besides the new "ultraviolet" cancellations
exhibited in Section 4 we must take into account the old "infrared" cancellations

(that are sufficient to prove the existence of Kolmogorov’s tori, i.e. to solve the

problem in the analytic case). Hence we introduce, see [E], [G2], [GM 1 ], the
notion of clusters of a graph #.

Given a graph #, a cluster of scale n  1 is a maximal set of nodes
connected by lines of scale &#x3E; n. Sometimes we shall find it useful to think of
a cluster as the set of lines connecting the nodes of a cluster. A line h which
connects nodes both inside a cluster T is said to be "internal" to the cluster,
(À E T), while the lines which connect a node inside with a node outside the
cluster are called "external" to the cluster; we say that a line k intersects a

cluster T, (À n 0), if h is internal or external to T, i.e. if at least one
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extreme of ~, is inside T. A line is "outside" the cluster T if it is neither
internal nor external to it.

The nodes of a cluster V of scale n v may be linked to other nodes by lines
of lower (i.e. more negative) scale. Such lines are called "incoming" if they
point at a node in the cluster or "outgoing" otherwise (recall, see Section 3,
that the lines are "arrows", i.e. are oriented towards the root and establish a

partial ordering on the graph regarded as a tree graph). There may be several
incoming lines (or zero) but at most one outgoing line, because of the tree

structure of the graphs that we consider.
The key notion for the convergence proofs in the analytic case is the notion

of resonance, or resonant cluster, due to Eliasson, [E]. We use here a version
of it, inspired by [GM 1 ] .

DEFINITION (Resonance). We define a real resonance a cluster V such that:
(1) there is only one incoming line Àv and one outgoing line À~ and they carry
the same momentum;

(2) if nv is the scale of the cluster and nÀv is the scale of the line Àv, one
has +3.
Likewise we define a virtual resonance a cluster V such that (2) holds and ( 1 )
is replaced with: (1’) there is only one incoming line hv and one outgoing line
À~ and they carry opposite momentum.

It will appear that a resonance definition based on a scale difference nv -
with any integer o &#x3E; 2 would suffice in order to prove Theorem 1.5;

the important feature is that there must be a scale difference strictly bigger than
1, in order to allow us to bound the small divisors corresponding to the lines
internal to a resonance V with the values they would have by setting equal
to zero the momentum flowing through the incoming line, i.e. = 0, (see
below, Section 5.6 and Appendix Al). The actual value chosen for o may have
relevance only for the bounds size or ease.

Then the following result, which is an extension of a known bound due to
Siegel and Eliasson, see [S], [E], holds.

LEMMA (Siegel-Eliasson’s bound). If we consider only graphs with no real
resonances, then there is a constant C such that:

In the following the exponent 3 in (5.2) will be denoted 2 , as this will
be useful in Section 6 and in the concluding remarks. The proof of the above
lemma involves a simple extension of the ideas introduced in the well known
proofs by Siegel and Eliasson. In Appendix Al we adapt to our definitions the
proof in [E]. The exponent t7 = 6 might be not optimal.

SUPERFICIAL RENORMALIZATION 5.3. Consider a graph # and call ~ the

graph obtained by deleting the infrared scale labels and #° the graph
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obtained by deleting the scale and external momentum labels. Therefore # can
be written # = (~, I n;, 1), or (# 0, f n x 1, f v, 1).

Suppose that the set of scales is consistent with the existence of a
fixed family V 1 of maximal real resonances: i.e. of real resonances not contained
in any larger real resonance. If V E Vi 1 we call hv = the line incoming
into the real resonance and its scale; likewise h% is the outgoing
line. Here E V while vo , vi are out of it (and could be the root).
By definition it must be n~,v -I- 3  n v .

We consider the graph values at fixed set of scales for the lines not in any
V E Vi 1 (in particular the scale of the line entering the real resonance is held
fixed) and we say that such a set of scales is "compatible" with VI, denoting
this property by 

We introduce the momentum flowing on Àv E V intrinsic to the cluster V as
and define the resonance path Qv as the totally ordered

path of lines joining the line incoming into the resonance V and the outgoing
line and not including the latter two lines. Then the sum over of the

graph values Val(~, in~.1) at fixed 0. by the definition in (3.1) of the value of
a graph, can be written:

where a line h is defined to intersect a real resonance V E V 1 if it is internal
to V, or À E (i.e. À is not outside V in the sense of Section 5.2), and
the resonance value V is defined by:

where ax = 1 if ~, is on the resonance path Q v , (~. E Q v), else = 0.

REMARKS. (1) In writing (5.3) we take into account that one has X 2 (x ) =
X (x ), for all x E R. Then we can associate to the external lines Àv and h%
of a resonance V, the factors in square brackets in (5.3). Obviously the same
argument can be repeated each time two lines have the same momentum and
the same scale.
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(2) The notion of resonance path makes sense, and therefore will be introduced,
also for virtual resonances, although we shall consider it only in Section 5.7
below.

(3) The sum (5.3) is performed at fixed node momenta hence only one
term on both sides is not zero. It is nevertheless convenient to regard the scale
labels and the momentum labels as independent variables (as the use
of (5.1) implies) for combinatorial purposes and also, as pointed out below at
the end of Section 5.6, as a checking device.

Let X O , n~) (x ) denote the characteristic function of the set x ~ I E [2n-l, 2n’);
we see that the sum of all the scale values consistent with the maximal real
resonances V 1 yields as a result that (5.3) is identical with the expression in
which the values V are modified as follows:

having held fixed the scales of the lines outside the real resonances in V 1.
We now develop (5.5) in powers of ~ and consider the second order re-

mainder of the Taylor expansion around ~ = 0. This quantity is given, by using
an interpolation formula, by:

We consider, temporarily, the value X of the graph with the real resonance value
corresponding to V E Vi 1 simply replaced by the expression defined in (5.6);
this will be motivated in Section 5.7 below.

We can perform explicitly the derivatives in (5.6) and use that the character-
istic functions yield, by differentiation, functions proportional to delta functions
or their derivatives.

REMARK. Many terms cancel or just vanish. In particular various 3-

functions which end up being evaluated at zero cancel as one checks by suitably
integrating by parts the terms containing two derivatives acting on the charac-
teristic functions. Strictly speaking one needs also that 2n for all n E Z,

E Z~: but this condition is in fact not necessary at all if some ill defined
expressions, like products of characteristic functions times delta functions, are
discussed in detail: alternatively one can proceed as in [GG] in solving the
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similar problem that arose in [G2], where Kolmogorov’s theorem was discussed
under a somewhat stronger Diophantine condition.

And after some time the following expression for the auxiliary quantity
that we just called, following (5.6), X materializes:

where we adopt the notations + tv v~,v = VÀ (tv), and denote À2, z, tv)
the quantity p defined by:

where tt are the solutions to the equation I"". = 2-, if any (there
are at most 2 solutions). All the other (in principle) possible terms different
from (5.8) cancel exactly by integrating by parts, as it can be easily checked,
(being careful to take into account also the remark after (5.6)). The label z
denotes the number of derivatives acting on divisors.

We then suppose to re-decompose, in (5.7), (5.8), the characteristic functions
of the lines inside the real resonances into individual scales from n À y + 3 up,

by writing XCnÀy+3,00)(.) =~~(2-.)+~(.). 
,

We recall that 1 denotes that the set of scales are consistent
with the existence of the family of real resonances V 1 (see (5.3)). Then note
that if we could forget the first two orders of the Taylor expansions that we have
disregarded in (5.6) (by applying the renormalization procedure described above),
then the sum of the values of the graphs of order k with a given i.e. the l.h.s.
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of (5.3), would be given by a formula that can be immediately read from (5.7),
(5.8). Since we have forgotten the first two orders we get instead a quantity
that we can call Yl.

However to pursue the analysis it is very convenient to try to write the
result Yl in a form as close as possible to (5.3), or to the original (3.3). After
some meditation on the best way to express such complicated expressions as
those in (5.7), (5.8), the sum of the quantity X over the scales (nx) consistent
with Vi , i.e. Yi, is given by:

where t = and we set v~, (t) = v,,o + tvvÀv if À E Qv, and v~, (t) =

v~, if À ~ UVEVl Qv, and:

where ~~,1 ~~,2 = 1 - S~.1 ~ ~.2 . We call each addend in (5.9), with fixed # =

{n~, }) and {~,1 , À2 ’ z v, the value of the graph {n~, }) superficially
renormalized on the real resonances V 1, on the pairs of lines ~,2 and on the
choices z v . There may be choices of which are not compatible with the
existence of the family of real resonances Vi : in such cases the corresponding
addends have (of course) to be interpreted as 0.

The expression in (5.9), once the summation labels # and {Ài, Ài, z v, tv }
have been fixed, i.e. the value of the graph # superficially renormalized on

just defined, is clearly formally very close to the (3.3) we
started with.

Note that the cases zv = 0, 1 are special as they force nÀ 1 v = nkv + 31

(which yields also nÀ 2 v = nÀv +3, for zv = 0): we say that in this case there is
2
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no large scale jump between the scale entering the real resonance and the
resonance scale n v (in fact the jump is exactly 3). The characteristic function

-nv
X (2 i w . v y v (t)), in the definition of the terms in (5.9) that involve it, is not

necessary and it has been introduced to uniformize the notation (note that it
has necessarily value 1 if the delta function is considered).

The absence of a large scale jump (or more properly a scale jump of 3 units)
in the cases zv = 0, 1 implies that the ratio of divisors in the definition (5.10)
of dl¡À2 and is bounded above, respectively, by 2n’~ v +3 / 2n’‘V -1 - 24 and
(24 ) 2 . We see that although the cases ZV = 0, 1 do not give a factor (c"~ . vÀy)2
but only (see (5.8), z = 1), or just 1, (see (5.8), z = 0), the net result is

essentially the same (i.e. the same up to the factor 24(2-zV)) because w - and
w . (tv) have a bounded ratio, since the latter is fixed by the delta function
to be 2nÀy +2.

FULL RENORMALIZATION 5.4. Having dealt with the maximal real resonances
( first generation real resonances) we perform again the same operations: i.e. fixed

Vi, Ài, zv, tvlv,v, and the scales for À fj Uv,vl V, we identify
the second generation real resonances as the maximal real resonances inside
each V E Vi ; call V2 the set of the real resonances of the first and second

generations and proceed in a similar way to "renormalize" superficially the

newly considered real resonances W E V2/Vi .
This means that we fix the scale labels of the lines outside the two gen-

erations of real resonances, and sum over the other scale labels consistent
with the elements of V2 being the first and second generation resonances.

We obtain that the product in (5.9) of the terms coming from the lines
À E W E V2, W C V E Vi, can be written in a form very close to (5.5), or (3.3),
with the difference that the momenta flowing through the lines k E Q w n Q v
are: = 

w 
+ And nÀy + 3 is replaced by nÀw + 3 in the

characteristic functions. There are "just" a few extra labels, i.e. the summation

labels over V, z V and a few factors due to the dfB2 coefficients, V E V 1.
We proceed to do a Taylor expansion as above, in the variables Çw =

LO (0 + tvvÀy) if Qv or ~w - w ~ v°w otherwise. However this

time we modify the procedure according to the number of lines that
are in W: if W contains both lines we do nothing. If W contains one line we

do the Taylor expansion "stopping at first order", i.e. we write the first order

remainder; if W contains none among we proceed as above and write
the second order remainder.

We then perform the derivatives with respect to the new interpolation pa-
rameters tw, generated by the expression of the Taylor series remainders and
perform the cancellations of most of the terms involving the characteristic func-
tions derivatives of first and second order (when the latter is present). Finally
redevelop the characteristic functions and rearrange, along the lines that gener-
ated (5.9), the various terms to simplify the notation and to get an expression
very similar to (5.9), see below, for a quantity that we could call Y2.
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The latter Y2 can subsequently be used, in the same way as the Yl was
already used to start the second renormalizations, for the superficial renormal-
ization of the third generation of real resonances.

Then we iterate step by step the procedure until there are no more real
resonances inside the maximal real resonances found at the last step performed
and all the n~, have been fixed.

The final expression, that we can call Y, can still be written as (5.9) with V 1
replaced by V, which is the collection of all the real resonances selected along
the procedure and with some of the integrals over the interpolation variables
tv performed with weight (I - tv) and others with weight 1 (because some
interpolations have been done to construct the first order remainder rather than
the second order one), see Section 5.5 for details.

The (5.9) interpreted in this way (see below for a detailed description)
will be called the fully renormalized value of the graph n~. 1) and it can be
denoted as 

DETAILS ON FULL RENORMALIZATION 5.5. It is sufficient to state the result
of the iteration described above. Given # = (~, {n~, }) let V be the set of real
resonances and for V E V let be the lines exiting and entering the real
resonance, respectively.

We define, to abridge notations:

where t - are interpolation variables which eventually have to be

integrated with respect to some measure and is a suitable (to
be described later, see (5.13) below) linear combination of the external momenta
vw for w  v with coefficients that are products of the interpolation variables
tZ for the real resonances Z that contain À.

For each V E V define a pair of lines c Q v, i.e. on the real
resonance path of V, with the "compatibility condition" that, if V is inside
some other real resonances Z, then must contain the lines of the set

that fall in V which, therefore, can be 0, 1 or 2 at most. In

the case the latter number is 1 we suppose that the lines have been labeled so
that this is so because of the second line ~,2 , (i.e. ~,2 E {Àf, ~,2 }). We call the
three cases (0), (1), (2), respectively:
~ if case (0) is realized for the pair Ài, ÀY we say that the lines Ài, ~,2 are

"new" and that the real resonance V is new,
~ in case (1) we say that the first line is new and the second "old" and that
the real resonance is "partially new", and
9 in the third case (2) both lines and the real resonance are old.
(The name is due to the order of appearance of the lines in the iteration

steps).
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Furthermore for each V we define a variable z v = 0, 1, 2 and, depending
on which case among (0), (1), (2) above is realized, the functions dZv v 

ï Å2

where t * are the solutions (at most 2) of the equation = 2nÀv +2 forv
tv.

We shall denote by A the function V - and the interpolation
measures will be:

~ 7rV (dtv) = (1 - tv)dtv if V is new,
~ = d tv if V is partially old, and
. = 8(tv - if V is old.

In (5.12) the interpolated momenta VÀ (t) are defined as follows. For each
line h = w’ w we consider all the real resonances W that contain it on the

respective resonance path Q w. We define t (w, t) to be the product of all the
interpolation variables tw of such real resonances and t(w, t) = 1 if there are
no such resonances. The interpolated momenta are then defined by:

where t (v, w ; t) = tw. Then we define:
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where, see (5.11):

and the * 
means that the two divisors have a different meaning from what has

been written unless the real resonance V is new. More precisely:
~ if the real resonance is new, then (w · v~ 1 (t) ) * = w · v~ i (t) and (w · v~2 (t) ) * =

, 

2

0 if the real resonance is partially old then (w · v 2 v (t) ) * (corresponding to the
"old" line ~.2 ) should be w VÀ V (t), and

if both lines are old then both (w and (w - · v ’2 v (t) ) * should be
1 2

LO - 

One checks that the result of the above described iteration is that the sum
over the scale labels Inxl } of the quantity in (5.14) coincides with the l.h.s.
of (5.3), with the new definition (5.5) of resonance value.

The number of terms thus generated is, at fixed V, bounded by the product
over V E V of 2 times the number of pairs that are in V/ UWCV,WEV W and
therefore it is bounded by if k(V) is the number of nodes in V
which are not in real resonances inside V. Hence this number is  (24)k . The
number of families of real resonances in ~ (hence at fixed lvxl) is also bounded
by 2k .

We must deal, to find a complete expression of the sum of the values in
the l.h.s. of (5.3), with the terms discarded in each Taylor expansion.

The key point is of course the following statement.

LEMMA. Only graphs with real resonances whose factors are modified by the R
operation have to be considered since the errors committed in so doing (due to having
‘ forgotten " the various terms of order 0 or 1 in the Taylor expansions retaining
only remainders), when all kth order graphs are summed together, including the
summation over the momenta, give a vanishing contribution.

See [GM 1 ], or [GM3], Section 6, Section 7, for the proof. This is essen-

tially the infrared cancellation remarked in [E]: its use here is slightly different
from the use made in [G2]. Hence (5.14) can be used as an exact expression
for the calculation of the sum of the graph values.

The present procedure, introduced in [GM 1 ], is conceptually different from
the one in [G2], although the latter is perhaps more natural and, in the poly-
nomial case, it seems to give better final estimates (this is due to the fact that
the notion of real resonance in [G2] is more restrictive, so that the procedure
we use here is "over-subtracting").

We say, interpreting the relevant features of the above discussion, that the
application of TZ is realized by adding at most 24k terms each obtained by first
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eliminating two out of the four identical divisors corresponding to the lines

entering and exiting the real resonances and then by "doubling" two divisors
(possibly identical) among those in the part Vo of each real resonance V formed
by the lines which are in V but not in inner real resonances, as prescribed by
the appropriate labels in (5.15), and finally "interpolating". There is, in some
sense, an exception: there are some special cases (i.e. V such that z v = 0, 1
above) in which either only one or no factor w . is really gained by the
renormalization (i.e. one could say that "one of the two divisors of the external
lines is left"), but in such cases there is no big variation of scale between the
line incoming the real resonance and the scale of the lines inside the resonance
(it is = 3).

One can also say that the 7Z operation "eliminates" two of the four equal
divisors corresponding to the lines entering and exiting a real resonance and
"transforms" the divisors of the two exiting lines into a pair of divisors for lines
inside the real resonance. This will be sufficient once we try to get bounds.

The reader familiar with [GM3] will wonder why we have not taken the
infrared decomposition in (5.1) as built with smooth functions as in [GM3]. This
would have been indeed possible and in fact the argument would have been
easier as no 6-functions due to derivatives of characteristic functions would
have ever arisen.

Although the amount of work would be somewhat reduced as one does not
have to deal with delta functions (some of which end. up being evaluated at 0
in the present approach and have to cancel) the use of characteristic functions
is, in our opinion, a more pure approach and checking it in detail is a check
of consistency. Furthermore the use of sharp characteristic functions in (5.1)
is extremely useful in the theory that has been developed in [GGM] and in
formulating the related conjectures; so we felt that it would be useful to have
the details explicitly written (they are only sketched in [GM3]).

INFRARED BOUND 5.6 The analysis of Section 5.4 allows us to find a bound
on the sum over n~, = 1, 0, -1, ... of the values of the various graphs after the
resonant factors have been modified by the action of the operations R, leading
to (5.14).

After applying the R operations, we see that the contribution to the new
"renormalized value" from the divisors in (5.9) will be bounded by the same
product appearing in the non renormalized values of the graphs deprived of
the divisors due to the lines exiting resonances times a factor, see (5.14), (5.11 )
and (5.15):

where we denote by Vo the set of nodes inside the real resonance V not

contained in the real resonances internal to V, and Vi 0 is the momentum (called
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above "intrinsic momentum") flowing through the line À E Vo, when v~, v is set

equal to zero; Cl 1 is a suitable positive constant. We have also used that the
scale jump between the scale of the lines incoming a real resonance and the
ones inside it is at least 3 as this permits us to replace w . VÀ (t) by w . wf in
the above chain of inequalities.

In fact if h E V but h is not inside any inner real resonance then VÀ (t) differs
from 0 by a vector corresponding to the (interpolated) branch momentum of the
line hv entering V which, because of the scale fixing characteristic functions,
has a scale n À v at least 3 units lower than the scale n of Vio + VÀ v (t) in the

unfavorable case, (when ~, E Q v ). In this case 1v.;’vÀ(t)1 ~ 
and lw 2nÀV +2 - hence I w - v~, (t) I ? 3 I cv~, ~ 

Therefore, coming back to the full expression (5.14), (5.15) and making use
of the above (5.16), we consider a contribution R Val(#, zv, tv}) of a
graph (I , {n~,}) to (5.14), with fixed scale labels {n~,} and fixed interpolation
labels We can again, see Section 5.5, identify in it real
resonances V E V of different generations. The set Vj of real resonances of the
jth generation, j &#x3E; 1, just consists of the real resonances which are contained
in ( j - 1 )th generation real resonances (of lower scale) but not in any ( j + 1 )th
generation real resonances.

If V is a real resonance in Vj with entering line and outgoing
line with momentum vxv we can construct a "V-contracted graph" by
replacing the cluster V together with the incoming and outgoing lines by the
single line i.e., by deleting the resonance V and replacing it by a line.
We can also construct the "V-cut graphs" by deleting everything but the lines
of the resonance V and its entering and outgoing lines and, furthermore, by
deleting the outgoing line as well as the node vv and attributing to the node
vi an external momentum equal to the momentum flowing into the entering
line in the original graph #: thus we get disconnected graphs (recall that

, 

a

pv is in fact the number of lines merging into a node).
We repeat the above two operations until we are left only with graphs #i,

i = 1, 2, ... without real resonances, all allowed in the sense of Section 3. It is

clear that the product TIÀEð(v.;,vÀ(t))-2 is the same as the r{i (cw ~ v~, (t))-2.
Then we imagine to delete as well the lines of the various #§ which were

generated by the old entering lines (not all ~i contain such lines, but some do)
and we call ~° the graphs so obtained. By doing so we change the momenta
flowing into the lines of the graphs #i by an amount which is either 0 or the
old momentum entering a real resonance V. Since by definition of real
resonance the latter has scale at least 3 units lower than the minimal scale of

the lines in ~i , we have seen that 1 v.; . v~, (t) ~ &#x3E; 3 ~c,~ ~ 0 if vf is the intrinsic

momentum of h (i.e. the momentum flowing through h in #9, a concept already
introduced above).

Therefore we see that the product bounded by
2k fl . factor equal to the product ~* (c,v ~ v~, (t))-2 of the
divisors corresponding to the lines exiting the real resonances (of any order).
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But the analysis of the properties of the.R operation shows that its effect is
just to replace the by (5.16). Hence we see that we can bound
each product of divisors vf)-2 intervening in the evaluation of the

i

graphs values after the R operations on the real resonances have been performed
by:

with q = 6, by using lemma in Section 5.2.
This means that, if there were no factors vv~ ~ wv associated with the lines

hv and contributing to the evaluation of the graph values, then we could bound
each addend in (5.14) (i.e. a term in (5.15)) by:

and if b &#x3E; i + qr we would have easily the absolute convergence of the
"renormalized series".

However the factors vv~ ~ vv are precisely those that cause the ultraviolet
divergences and, before really looking for good bounds, we must use the ideas
of Section 4 to overcome the problem.

ULTRAVIOLET CANCELLATIONS 5.7. Given a graph # we shall naturally denote
it as # = (00, {n~,{, fvl) where is the set of scales of the momenta flowing
in the branchesk of 00, due to the external momenta ivl. The graph 00 carries
no scales nor momentum labels.

Proceeding as in Section 4.3, we could define the notion of nodes out of
order, the sets see (4.11), (4.12), and the transformations U E 
see (4.12), and proceed to the path representation as in (4.4).

However it may happen that a pair of successive nodes vw, v &#x3E; w

has v w on the path of a real or virtual resonance V. In the case of a
real resonance, the change of variables U E constructs a graph

which the line incoming into the resonance
carries some momentum -v while the outgoing line carries a momentum v:
hence in the new graph the cluster V is no longer areal resonance; or, vice-versa,
it can happen that a virtual resonance becomes real.

To avoid this "interference between ultraviolet and infrared cancellations"
we must modify the ultraviolet interpolation procedure with respect to the one
followed in Section 4.

Namely if Q v is a "resonance path" (defined in Section 5.3: here a reso-

nance is either a real or a virtual resonance, see remark (1) after (5.4)) and if
we set Q = UVEVQV with V the set of all the resonances of # then we define
Bv as the set of nodes w preceding v but such that the line vw in not on the
resonance paths Q.
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Consider the renormalized value of a graph # = (Uo, fnxl, {vx }), i.e. the
value of the graph once the real resonance factors have been modified as de-
scribed in Section 5.320135.5 to remove the infrared divergences.

By definition it is given by a term in (5.14), Ài, tv }),
with the scale labels and the interpolation labels fixed.

And define the collection PI of paths on ~ as in Section 4 but not performing
any interpolation if the node w is on a resonance (real or virtual) path.

Likewise one constructs the sets always refraining from performing
interpolations that would lead to paths P with the highest line on resonance
paths. One ends up with the family P of "partial" pavements and, for each

P E P, with the sets as in Section 4. The pavements are partial
because the union of the paths forming P can fail to cover the graph as it will
not cover the union Q of the resonance paths.

The consequence is that for all P G P the change of variables U 
change a graph (~°, {vx }) into a new graph (~°, Inxl, IIWEL31,(P) 
with the same resonant clusters (virtual or real). 

v

The ultraviolet cancellations are now performed by interpolation as in Sec-
tion 4. If one is careful in taking into account that the sum of the external
momenta entering the nodes of a resonance vanishes one can restrict the sum
in (4.5) to the z’s that are outside the resonances preceding w, thus getting less
terms: a property which could be useful when attempting at getting bounds.

REMARK. The above definitions imply that, given (~°, {n~, }, {vx }) and a
transformation U, associated with and a set of signs I (with
v E Mh (P) and w E Bv (P)), the product of the divisors:

is the same for (~°, {vx }) and (~°, in;,I, (simply
because the U-operations generate graphs with the same or opposite momenta
flowing through the branches) and the resonances are the same sets of lines.
The interpolation does not affect this property by the definition of the v~.(t).
The new definition of Bv (P) just fixes the cases when this would be false (of
course there will be soon or later a price to pay for this way out, see below).

We follow the notations of Section 4.4 but with the new meaning of the sets
P, Mh (P), Me (P) and Blv(P), v E Mh (P), consistent with the new definition of

and, hence, of Bv(P) (which cannot contain paths with highest line lying on
a resonance path, since one "gives up" trying to use the parity cancellations that
would correspond to such paths). By using also (5.16), we deduce a relation
very close to (4.34), following the same considerations. With the notations
in (4.34) this is, calling RVal(#) and defining 0,
as in (4.35) (this means that in (4.35), and only there, Bv (P) is the collection
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of all the nodes preceding v):

with q = 6, by the same arguments described in Section 4, see (4.34) and
by (5.18): here is the set of infrared scales of (wx) and {hx } is the set of
ultraviolet scales of the corresponding node momenta (uniquely determined
by the branch momenta Iv~.1). As in Section 4 the sum is a sum over
"representatives" but in the bounds we shall partially drop this constraint keeping
only that {hx } is the set of ultraviolet scales of the momenta (a property of
the representatives discussed in Section 4). It will also be true, as in Section 4,
that 2~ v -1  ~  and 2h U -2  ~ Ivv(tv)/ I  2h v , (see (4.21 )), so that we
can obtain dimensional bound by the same mechanism already discussed in
Section 4.

Note that not all the graphs involved by the ultraviolet cancellation have
the same external momenta, (see (4.14)). Nevertheless they have all the same or
opposite branch momenta (see the last remark), so that one can bound the small
divisors product by where the external momenta {vx} are the ones
of any graph among those between which there are the ultraviolet cancellations:
for instance one can and will choose the external momenta determined by the
representatives.

The constant Co in (5.20) contains a product of the various constants that we
built in Section 5.4, Section 5.5. Of course a trace remains of the cancellations:
it is accounted by the factor ek which, as mentioned above, contains an estimate
of the number, 2 , of families of resonances V, at fixed ivxl, see comments
following (5.15).

The algebra necessary to bound (5.20) is the same as that of Section 4:
there is however one obvious change: namely in the inequality corresponding
to (4.40) we shall be left with an extra product TIvwEQ This is so simply
because we have not performed the subtractions relative to the lines with upper
endnodes belonging to Q. Hence we deduce from the scaling properties of the
fw, from lemma in Section 5.2, that (for a suitable C3):
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Then, setting b = 2 + s + .~ -f- r~ t -~- ic,c, with /t &#x3E; 0, and exploiting an identity
like (4.3), one obtains a bound on (5.20):

for a suitable constant C. Thus everything is essentially identical to what was
done in Section 4 except that this time the set ,~v is smaller "than it should
be" since we have not performed the cancellations on the nodes on (real or
virtual) resonance paths so that we "miss" the factor that would compensate the
product , which will not allow us to perform the summations on
the scale labels (being very large if h v » 

However we see that there is at most one factor 2hv-hw per node v, (be-
cause the resonance paths are totally ordered and pairwise either disjoint or
one including the other): hence we can easily compensate the unfavorable extra
factors by requiring a slightly stronger condition on b, namely just one unit
bigger: ~=3+~+~+~r+/~, with p &#x3E; 0. With this assumption the p is

replaced by 1 + it and the extra factors compensate (when necessary) the
factors 2h v in (of course 2-h v’  1) that may lead to a divergence, so
that the sum over the scale labels can be performed.

Again there are graphs with given pv’s and fixed shape so that
the sum over the graph orders weighed by 6 can be performed if c is small

enough; in particular we obtain that h E C(s) Clrf), if f E ê(3+s+rrr+Jl) with

it &#x3E; 0. Thus the proof of Theorem 1.5 is complete.

6. - Siegel-Eliasson’s bound and further cancellations

The basic inequality (5.2) on products of the divisors in a graph, due to
Eliasson extending a result by Siegel, is difficult to improve. We have made
several attempts and we report here, without proofs, our results: we have not
used them in this paper since in the end they do not improve Theorem 1.5

beyond what already obtained. Nevertheless they may have some interest in
themselves, and they may stimulate work on clarifying which are the optimal
bounds.

The bound in (5.2) is, however, likely to be not optimal, e.g. in [E] there
is a statement that gives hopes that 6r can be reduced at least to 14 r.

A bound on the products of divisors which seems to indicate that qr might
be reduced is:
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for some B and for graphs which do not contain any connected subset Z of nodes
with = 0. We found for this inequality a simple proof.

Note that the above result (6.1) has some intrinsic interest: for instance in
the case of the Siegel problem, [P6], the v,’s have non negative components
and therefore the conditions under which (6.1) holds are automatically fulfilled.
The same can be said for the problem considered in [PV].

The inequality (6.1), at the beginning, gave us some hopes of allowing us
to prove that the coefficients of the Lindstedt series are well defined uniformly
in the ultraviolet cut off K &#x3E; 0 for f E ê(p) (yf) for values of p lower than the
ones discussed above. See Theorem 1.5 where this result is claimed, together
with the analyticity at 8 small, for p &#x3E; 6r + 3. This would be an important first
step towards an improvement of our results. But a closer analysis shows that
the situation is quite delicate.

In fact starting from the proof of (6.1 ), obtained with methods close but
not identical those of [S], [E], we have introduced the notion of weak resonance
as a cluster W of connected nodes with:

(1) total momentum vanishing = 0), and
(2) sw &#x3E; 1 incoming lines of scales which are sw -~- 2 units lower than the
cluster scale nw.

Note that the condition (2) implies that there is necessarily one outgoing
line. The notion of weak resonance that we give here is very different from the
notions referred to as "resonances" with various qualifiers, in [E], [CF], which
always refer to situations in which two lines have equal momentum (which is
not the case with the above weak resonances).

Then one can show, assuming (6.1) and following the ideas of the proof
in Appendix Al below, that a k-th order graph without resonances and without
weak resonances has a product of divisors that can be bounded above by:

for some b(k) (that we estimate as bigger than 
Furthermore the notion of weak resonance allows us to use the existence

of other cancellations, not used so far, among graphs containing clusters with
0 total momentum even when the clusters are not resonances in the sense of
Section 5.2, but just weak resonances. Such cancellations (that are easy to see
as they are due to the same mechanism discussed in [G2], [GM 1 ], [GM3] in
the case of the resonances) can be combined with an interpolation technique
essentially identical to that of Section 5 and produce the same net effect found in
Section 5, i.e. that the divisors of the lines outgoing from a weak resonance can
be "transfered" on lines inside the resonance, as in the case of the resonances,
see the interpretation of (5.15).

The factorials in the constants will certainly forbid getting a convergence
proof: but the bound (6.2) combined with the methods of Section 5 might allow
us to get finiteness to all orders of the Lindstedt series coefficients. Indeed it
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can be seen to give such result but, unfortunately, still under the condition that
p &#x3E; 6r + 3: in fact we get 4r from (6.2) and an extra 2r from the fact that
two divisors inside a weak resonance are counted once more in the product (as
in Section 5 with "ordinary resonances"), and a 3 for the same reasons as the 3
in Section 5. Hence "much ado about nothing": we work more without getting
a result better than Theorem 1.5.

Suppose that we insist, willing to forget convergence, in just trying to

improve the value of p that would at least guarantee that the sum rule for
the Lindstedt series coefficients gives coefficients uniformly bounded, in the
ultraviolet cut off K, order by order.

It appears that we would need a better bound on the product of the squares
of the divisors in (5.2) or, if we want to use the more sophisticated notion of
weak resonance and the extra cancellations mentioned, a better bound of the
squares of the divisors in a graph without weak resonances.

In fact if we could prove that the product of squares of divisors of a graph
without weak resonances is bounded above, for suitable k-dependent constants
rk, by:

(a bound that would considerably improve (6.2)), then, by the arguments in

this paper, we could deduce that the Lindstedt series coefficients are at least

finite, order by order, for p &#x3E; 4r + 3. But our attempts (whose details are not
discussed here, as the results have not been used) at extending of the Siegel-
Eliasson’s bound only gave IS (6.1 ), and (6.2) without the denominator in (6.3):
and this, we mentioned above, leads to no improvement on the results of this
paper. A good enough justification for not reporting our proofs of (6.1 ) and
of (6.2).

In any event (6.3), even if true, cannot be used for proving analyticity
unless one will also be able to replace rk by gk for some g (it "just" yields
existence of the formal Lindstedt series). Hence, although we are not aware of
counterexamples to (6.3), it is clear that the discussion cannot be based only on
the hope that one can improve the lemma in Section 5.2 or use the cancellations
that have not been taken into account.

7. - Concluding remarks

ON REGULARITY CONDITIONS 7.1. A restriction, besides the parity property,
with respect to the classical works [Ml], [M2], [H], is the regularity requested
on the function f, because the classical results only deal with the natural spaces
C(P)(T~). Here the use of the spaces seems essential for the above
methods.
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However it is clear that our method can be extended to rather more general
functions.

For instance we could add, to any f E an arbitrary even analytic
function. This means that we could replace the Ivl-n in (1.5) by any function
of v which differs from it by an even quantity approaching 0 exponentially fast
as v ~ oo.

And we could replace in (1.5) by with Pi (v) a ho-

mogeneous degree i ~ 0 even harmonic polynomial, see also [SW], p. 256,
282.

Another trivial generalization is to think the functions in (1.5) as sums

of two functions of Iv I which are homogeneous on two disjoint sub-lattices

(the lattices of the even and odd v’s, i.e. the lattices of the V’s for which
= + 1 or = -1 ). The natural generalization is to consider a

regular pavement of Z~ by cells, translates of a fundamental cell centered at the
origin and reflection symmetric, and replace by times an arbitrary
function periodic in v with the period of the pavement and symmetric by
reflection.

ON THE PARITY CONDITION 7.2. The assumption that the Fourier transform
of f is even excludes interesting cases like fv - A different

point of view seems necessary to include such cases in the theory: but the

extension does not seem easy. By the remarks, and counterexamples, at the end
of Section 2 we see that we cannot expect a simple extension to such cases
and, in fact, we certainly do not expect, in general, analyticity in 8 near - = 0
(see Section 2). However the problem is reminiscent of situations met already
in quantum field theory (in the beta function theory, see [BG]) and it is not

unlikely that something can be done also in this case.

BEST RESULTS 7.3. Replacing, under appropriate conditions, the spaces
with wider subspaces of (in the even case) seems a harmonic

analysis problem for which the techniques may be already known. An example
of the conditions to which we think is that a f vanishes at the singularities
of f (to a large enough order). But it is likely that the method that we

follow cannot lead to the "best results": the reason seems to be related to

the exponent i7,r, with 1} = 6, in our extension of the Siegel-Eliasson’s bound
(lemma in Section 5.2) which is responsible for the in the final result.

Restricting ourselves to the class of functions in e(P)(T~) the discussion
in Section 6 shows that our condition on p (i.e. p &#x3E; 6r + 3) is quite far from
the best results on the Moser tori, see [H], [M2]: in particular it is far from

the classical result of Moser which yields the existence of invariant tori for 8
small under the condition p &#x3E; 2-r + 4, see [M2], last line, but not the analyticity
in 8. The results on analyticity might hold for p  6r + 3, possibly just for
p &#x3E; 2r+4: but the discussion in Section 6 shows that new ideas and techniques
might be necessary. Note, however, that such stronger statements may even fail
to be true. As discussed above, in the present work we only get finiteness at

all orders and, simultaneously, analyticity (i.e. convergence) for p &#x3E; 6t + 3.
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A COROLLARY 7.4. The sum is a periodic function on
1rf which is known to be ~- gs (~) with ys a suitable constant and gs
a CCoo) function for I  7r, see [SW], p.282. Theorem 1.4 implies that g
is in fact real analytic for 0 such that 9//(~) ~0,~=1,...,~. A property
that is not so easy to prove directly.

If one is willing to use the heavy proofs of this paper, this follows because
our proof of Theorem 1.4 can be adapted to the case in which the parameter
s in the functional equation (1.4) is replaced by a diagonal matrix (~ 1, ... , ~ ~ )
of independent parameters. Then h is analytic in Sj and hj is divisible by sj
(same proof of Theorem 1.4).

QUANTUM FIELD THEORY INTERPRETATION 7.5. Finally we can comment that
the field theoretic interpretation of the above constructions that we described in
several papers ([G3], [GGM]) on the analytic cases remains entirely valid: in
fact the latter interpretation has been for us a guide to the proof of the above
results, although one does not need it, and the field theory that it describes is

not (yet) treatable by independent methods.
The field theory that corresponds (in the sense of [G3], [GGM]) to Moser’s

theorem is even more singular than the, already nasty, one corresponding to the
analytic case: the action Lagrangian is in fact the same function of the fields
but this time it is only finitely many times differentiable. In the version in

[G3] the field theory is described by two complex vector fields F~ on 1rf, with
propagators given by:

and the Lagrangian is:

The connection with (1.3) is simply that h is the one-point Schwinger function:

where P (dF) denotes the (formal) Gaussian integration with propagator ("co-
variance") (7.1 ) and Z is a constant equal to the value of the functional integral
in (7.3) with F+ replaced by 1 ("normalization"). A more general field theo-
retic interpretation which can be extended to cases in which f is A-dependent,
together with attempts at taking advantage of field theoretic methods and ideas
to understand properties of the singularities of h in 8 ("tori breakdown") can
be found in [GGM] where it leads to some conjectures.

Hence the KAM theory has to be regarded as a technique to understand a
field theory that has never arisen in the Physics literature and that, if treated via
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the usual techniques would look "untreatable" (e.g. it is non renormalizable):
but a lot of progress in field theory has been achieved by discovering field
theories that, although apparently untreatable (because non renormalizable (like
gauge theories)) or even worse (e.g. conformal field theories), could be in fact
treated and even sometimes "exactly solved".

HOPE 7.6. Therefore one may hope for further applications on the field

theory side.

Appendix Al. Proof of Siegel-Eliasson’s bound.

We prove here the lemma in Section 5.2: it only requires minor additions
to the original argument by Eliasson. We call "product of divisors of a graph
0" the product TIÀEð lw - 

Consider a graph 0 without resonances in which there are two lines Ào &#x3E; À 1,
~o = vova, ~.1 = with the same momentum v of scale n. Two such lines
will be called "closest" if there is not a line between Ào and Àl I with scale

 n + 3 and if the subgraph W formed by the lines joining the 
which are not below v 1

(i) does not contain other pairs of comparable lines with equal momentum, or
(ii) if it does contain such pair then the pair has an intermediate line A. which
has scale  n’ + 3, if n’ is the scale of the pair of lines.

If there is no closest pair we deduce that for all comparable pairs there is
an intermediate line with scale not higher than 2 units that of the pair.

Given a closest pair (if existent), the lines of W different from kl 1 cannot
form a cluster of scale &#x3E; n + 3 as we suppose that 0 has no resonances. Then
W contains a line ~, not comparable with À1, of scale  n + 2, (all lines on
the path joining to Ào have scale &#x3E; n + 3).

We cut out of 0 two subgraphs: one is the already defined W and the
other is the graph ~ obtained from # by first deleting W and then joining
directly vo and v, by the line ho.

Break W into subgraphs by deleting the node va : if pva is the num-

ber of branches merging into va we obtain pva subgraphs that we denote

~l , ~2, ... , ~pva . The graph ðl is the one that still contains the line ~,1 and v 1

among the bottom nodes. We attribute to in as external momentum the
momentum v of the line ~,1 I in the original graph 0 (note that in general vv =,4 v
in ~9-). It is clear that the product of the divisors of the graphs ~, ~2, ... is
the same as that of the original graph #.

We now modify i 1 into a new graph by deleting the line Àl joining Vb
to vl. In ðl the divisors along the path that joins vb to the root of ðl change
with respect to what they were in from w . 0 + v) to w . vr. But since
the lines of the path have scale 3 units higher than that of v we know that:

~w~(v~~v)~ ~ 3~w’v (.
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If we consider the graph among ~1, ... , ~pva which contains the line
with divisor 8’ of scale  n + 1, where n is the scale of the divisor 6 of the
line ~,1, and mark it with a * 

we see that the original product of divisors is
bounded by the product of the divisors of ~, ðl, ... , ~~ , ... , provided in
the graph bearing the * label we square the divisor of the line with smallest

scale, and multiply it by 8.
The graphs ~1, ... , are graphs without closest pairs of lines in the

above sense. The graph ~ may have such pairs and we can repeat on it the
construction.

Thus we end up with a product of divisors associated with graphs that
we call yi, y2, ... that either have no pairs of comparable lines with equal
momenta or may have such pairs, of scale n, with a line in between with scale
 n + 2. Some of the graphs yi will be given a label * to tell us that, at their
mitosis from a larger graph, they "inherited" the divisor 6J of the line not

larger than g the smallest divisor of yi, that we call 8i . This means that in the

bound on the product of divisors the original product is not larger than g of the
product of divisors of the graphs yi in which the smallest divisor is squared.

The above discussion shows that we can restrict our attention to finding a
bound for the graphs without pairs of lines with equal momentum or with such
pairs separated along the graph by a line of scale at most 2 units higher.

A bound on the product of divisors of a graph without resonances is
therefore closely related to a bound on the product of divisors of graphs of the
latter type.

Eliasson has shown, see [E], Section III, Section IV, third lemma and related
comments, that the product of the divisors in such a graph y of order g can
be bounded by:

with A, B suitably chosen constants. Hence the product of divisors of the
graphs yi not marked by the * 

are bounded (generously) by replacing 2r by r
in the denominator in (A 1.1 ); the product of divisors for the starred graphs is
bounded more carefully by using (A 1.1 ) and by noting that the contribution of
the extra divisor can be bounded above by (LvEY compensated by the
denominator in (A 1.1 ) and still leaving a factor (LvEY in the denominator.

Hence the product of divisors of the original graph is :::: A(8B)k-l h g g h _ ( ) I&#x3E;z ,
which gives (5.2).
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Appendix A2. On the number of pavements by ordered paths

We suppose first the case that a pavement covers the entire graph #. The
case of a partial pavement (see Section 5.7) can be easily reduced to the first
case.

We call N(k) the maximum number of pavements of by disjoint ordered
paths that can be drawn on a graph with k branches and which have the highest
node in one path. We shall check that N (k)  2 k-I

We shall assume first that the graph has no bifurcation at the first node (so
that k &#x3E; 2). For k = 2 it is N (2) = 1. We can suppose that N (k)  2k-~ : then

by induction we consider a graph with k + 1 nodes and we see that either the
path containing the highest node vo ends at the node v 1 immediately preceding
it or it continues into one of the po &#x3E; 1 subgraphs ~1, ... , Op, that have v,
as root. Therefore, calling k, , ... , kpo the orders of the po subgraphs, in the
first case there are  -E- 1 ) possible paths because we can think that
the paths in the subgraphs Oj are in fact paths on a graph which has one extra
line preceding v 1 linking it to a new root auxiliary root rj.

Likewise in the second case there are + 1) possible paths
(because there are po possibilities to choose into which of the po subgraphs the
path containing vovl will enter: and once we know that it enters 0 i then it has to
be continued into a path among the N(kj) that are possible). Since Lj kj = k - 2
we see that A~ + 1) ~ 2k-l -+ x ) 2-1-x = 2k-2 .

In general a graph with k nodes does not have a highest node vo which
has no bifurcations: however we can add to a graph with k nodes an extra
node vo, higher than vo and turn it into a k + 1 nodes graph with a highest
node without bifurcations. The number of paths on such a graph, with one path
which starts at Do. is  2 k-I of course (by the above inductive argument).

Note that the number of paths that can be drawn on a k-th order linear
graph is exactly 2k-2: hence the above estimate is optimal for the graphs with
a highest node without bifurcations.

One easily sees that in fact the above inequality (for the special graphs
with a bifurcationless node before the root) implies that for a general graph
N (k)  2-po2Ck-l), , if po is the bifurcation of the node before the root. This

is a result that can also be equally easily (in fact by an essentially identical
argument) checked directly by induction. 

1)It is easy to see that there are graphs for which N(k) is exactly 2-po2-Ck-l)
so that the estimate is optimal.
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