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p. 27-4

Unique Continuation in Abstract
Pseudoconcave CR Manifolds

LAURA DE CARLI - MAURO NACINOVICH

Abstract. We prove a Carleman-type estimate for the aM-operator on functions
on an abstract pseudoconcave C R manifold of arbitrary C R codimension. From
this we deduce a weak unique continuation theorem for functions satisfying a
differential inequality related to the tangential Cauchy-Riemann system. This

implies the weak unique continuation for C R functions, as well as for C R sections
of a C R line bundle.

Mathematics Subject Classification (1991): 35N10, 32F25, 53C56.

Introduction

Unique continuation for C R functions defined on a locally embeddable C R
manifold is quite well understood from an extrinsic point of view. For a C R
manifold which is minimal in the sense of Tumanov [Tu], the possibility of
uniquely extending a C R function to a wedge in the ambient complex manifold
implies the weak continuation property: namely, a C R function defined on a
connected open subset Q of a minimal embedded C R manifold M and vanishing
on a nonempty open c Q is identically zero in Q.

If M is a locally embedded strictly pseudoconcave C R manifold, then

every C R function f defined on an open subset Q of M uniquely extends to a
holomorphic function f on an open complex neighborhood S2 of Q and hence
we have the strong unique continuation principle: if f vanishes of infinite order
at a point x E Q, it also vanishes on the connected component of x in Q. The

assumption of strict pseudoconcavity can also be weakened by the use of the
type function (cf. [DH]).

The situation is less clear for abstract C R manifolds, i.e. for those which

are not known to be locally embeddable. Note that in particular there are several
examples of strictly pseudoconcave C R manifolds which are not locally embed-
dable (cf. [H], [JT 1 ], [JT2], [JT3] for the hypersurface type case and [HN2] for
the higher codimensional case). The non embeddability being due to a lack of
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independent C R functions, we expect that the uniqueness results remain valid
in the general abstract case. However, in this setting the technology of analytic
disks is not available, making the extension of the results above nontrivial.

In this paper we take up the problem of unique continuation for abstract C R
manifolds. We prove that the weak unique continuation property holds for C R-
functions defined on abstract strictly pseudoconcave C R manifolds M. We
note that the weak unique continuation principle is not valid, in general, for
abstract pseudoconvex C R manifolds of the hypersurface type, as shown by a
recent beautiful example of J.P. Rosay [R]. Besides the fact that we are dealing
with possibly nonembedded C R manifolds, our results are new also because
they apply more generally to solutions of a differential inequality related to the
tangential Cauchy-Riemann system and moreover we only need a finite amount
of regularity (related to the C R codimension k of M) on the C R structure.

In this way our work relates to the classical paper [AKS] and to various
uniqueness results for solutions of differential inequalities, for which we refer
to [Ho2] and to [Ho 1 for a general survey. In our case we are far from an ellip-
tic or hyperbolic setting, although the pseudoconcavity assumption implies that
the Cauchy-Riemann equations define a ( 1 /2)-subelliptic system (see [HN 1 ]).

Our method is very classically based upon the proof of a Carleman type
estimate. This can be obtained for weight functions whose differential is non-
characteristic for the tangential Cauchy-Riemann system: some geometrical con-
siderations (see Section 2) allow to reduce the proof to this simpler case.

Some difficulty stems also from the need to understand the geometrical
meaning of the analog of the complex Hessian that appears in the Carleman
estimates. From [MN] it follows that this object has no intrinsic meaning for
real functions on the manifold and maybe this also explains why the method
of weighted estimates has not been up to now completely satisfactory in its

applications to nonelliptic overdetermined complexes of partial differential oper-
ators (see [N]). Here we solved this question by an appropriate choice of local
coordinates, so that the terms coming out in the estimates assume a geometrical
meaning.

We feel that the study of the unique continuation property for abstract C R
manifolds will provide an interesting example to pursue the same question in
the case of general overdetermined system of linear partial differential operators.

1. - Preliminaries

Let M be a smooth real manifold of dimension m = 2n+k. A CR-structure
of type (n, k) and class C4. with 2 ~ /~  oo, on M can be defined by the
datum of an n-dimensional distribution of complex valued vector fields
of class C" on M with the properties:
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A smooth differentiable manifold M with a C R-structure of type (n, k) and of
class CA is called a CR-manifold of type (n, k), of class C".

We denote by H M the subbundle of the real tangent bundle T M of M
defined by 

- -

It is called the analytic tangent bundle of M and its annihilator bundle H° (M) C
T*M is called the characteristic bundle of M.

We note that condition ( 1.1 ) implies that for every x E M and every
X E Hx M there is a unique Y E Hx M such that X + lY = Lx for
some L E In this way we obtain a vector bundle automorphism
J : HM - HM by associating to the tangent vector X the corresponding
tangent vector Y. It satisfies J2 = - IdH M and therefore defines a complex
structure on each fiber Hx M. This is called the partial complex structure of M.
An equivalent definition of C R manifolds can be given in terms of the analytic
tangent space and the partial complex structure (cf. [HN1]).

We use the characteristic bundle H°M to parametrize the Levi form of M:
if x E M, (o E H°M, X E Hx M, we choose L E with X and
an H° M-valued 1-form i-o of class C~, with Wx = c~, to set

The equality of the last two terms shows that the Levi form X) actually
depends on (o and X and not on the choice of L and ~.

For each E /~(~, -) is a Hermitian quadratic form on HxM for
the complex structure defined by Jx.

We say that M is strictly pseudoconcave at x E M if the Levi form ,C (c~, ~ )
has at least one negative eigenvalue for every choice of c~ E H°M B 101.

The C R manifold M is strictly pseudoconcave if it is such at every point.
Fix p E M and let U be an open neighborhood of p in M. We denote by

F(p, U) the set of points q of U such that there exist finitely many C2 integral
curves sj : [0, 1] -~ U, 1  N, such that

When tt = oo, the set F(p, U) is the Sussmann leaf through p of H M in U
and is a smooth submanifold of U (cf. [Su]).

The C R manifold M is said to be minimal at p if for every open neigh-
borhood U of p the set F(p, U) is still a neighborhood of p in M. We say
that M is minimal if it is minimal at every point.

Assume that M is a C R manifold of class CIL. Let D-i 1 denote the distribu-
tion of CIL sections of HM. We define by recurrence Dp for -1 &#x3E; p &#x3E; -It to
be the distribution of real vector fields generated by D1+ p -E- [Dl+p, D_ 1 ],
for -2 &#x3E; p &#x3E; We say that M is of finite type p (or kind p) if D_~, is

the distribution of all C~ 1 real vector fields on M.
We note that strictly pseudoconcave C R manifolds are of the second kind.
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Every C R manifold of finite type is minimal.
In order to clarify the definitions above, we give a short description of

embedded C R manifolds, although in the paper we will be especially concerned
with the abstract case.

Let X be a complex manifold of complex dimension N &#x3E; n with com-

plex structure J. Given a real m-dimensional differentiable submanifold M of
class C4+1 1 of X such that its analytic tangent space

has real dimension 2n at each point x E M, we set

Then M becomes a CR-manifold of type (n, m - 2n) by setting

In this case we say that M is an embedded CR-manifold of class C4.
For a C R manifold M of type (n, k), embedded in a complex manifold X of

complex dimension n + k (generic embedding), the characteristic bundle H°M
can be canonically identified to the conormal bundle N*M of M. Via this

identification, the Levi form is described in local coordinates z 1, ... , zn+k at

dp (x), for a real valued C2 function p vanishing on M, by the restriction
to Hx M of the Hermitian quadratic form defined by the matrix

In this way we recover the classical definition in the case M is the boundary
of a domain in X.

Let us go back to the general case.
A complex valued C 1 function f defined on an open subset Q of a C R

manifold M is called a CR-function if it satisfies the Cauchy-Riemann equations:

It is convenient to give a more invariant formulation of (1.4), inserting it into
a complex of linear partial differential operators on M. To avoid the use of

densely defined operators and restrictions, we assume below that M is C°
smooth.

Let J(M) denote the ideal in the algebra £*(M) of complex valued exterior
forms on M generated by the differentials which annihilate the vector fields
in The integrability condition (1.2) can be expressed by
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Thus we obtain from the de Rham complex a quotient complex

defined by the commutative diagram:

that is called the Cauchy-Riemann complex on M (see [HN 1 ] ). The graduation
of E*(M) induces a natural graduation on the quotient 

we have SO(M) = C’(M, C) and smooth C R functions are just the
kernel of 

The elements of Qo,j (M) are for each 0  j  n the smooth sections of

a smooth complex vector bundle of rank 16’l) .
Note that, in case we repeat this construction for a C R manifold of class CA,

with 2  p  oo, turns out to be a complex vector bundle of class CA.

2. - A remark on minimal C R manifolds

Let M be a differentiable manifold of class C2. Denote by .7r : T*M - M
the projection onto M of the cotangent bundle T*M of M. Let F be a closed
subset of M. The set Ne (F) of the exterior normals to F consists of all

w E T*M such that w ~ E F, and there exists a C2 real valued

function X : M 2013~ R satisfying:

The main properties of the exterior normal set are collected in the following:
THEOREM 2.1. Let F be any closed subset of M. Then

(i) n (Ne (F)) C a F and is dense in a F;
. (i i ) If X is a Lipschitz continuous real vector field on M such that

then F contains all integral curves of X that contain a point of F.
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For the proof, see Proposition 8.5.8 and Theorem 8.5.11 in [Ho 1 ] .
From this theorem and the discussion of minimality in Section 1, we obtain:

THEOREM 2.2. Let M be a connected CR manifold of type (n, k). If M is
minimal and F is a nonempty closed subset of M with Ne (F) C H°M, then F = M.

PROOF. Indeed, by (i i ) of the previous theorem, F contains the Sussmann
leaf F(p, M) of each of its points p E F. By the minimality assumption,
F ( p, M) is a neighborhood of p. Hence F is a neighborhood of each of its
points and thus open. Being open, closed and nonempty, it coincides with M
because M is connected.

3. - Local description of the Cauchy-Riemann distribution

Let M be an abstract Cauchy-Riemann manifold of type (n, k). Its par-
tial complex structure J defines, for each point p E M, a complex struc-

ture on the analytic tangent space HpM. Hence we can choose coordinates

(y 1, ...  y2n , t I ... tk ) at p in such a way that ( aa 1 )p, ... , ( a 2n )p are a
y y

basis of Hp M and

Introducing complex coordinates

a basis for the Cauchy-Riemann distribution on a neighborhood of p
will be given by homogeneous partial differential operators of the form:

Such a system of coordinates will be called CR-adapted at p. Note that for

every coordinate patch at p we can obtain one which is CR-adapted at p by
composition with a linear change of coordinates in R"’.

The integrability conditions (1.2) give for the complex vector fields of the
basis (3.1):
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The complex vector fields L 1, ... , Ln, L 1, ... , Ln, aal , ... , a~ are a basis of
the complex vector fields on a neighborhood U of p. Hence we have in U:

we have:

The Levi form of M at p is given, in the coordinates ~ E Cn of associated

to the basis given by (3.1) and the coordinates 17 E of Hg M associated to
the basis (dt 1)p, ..., (dtk)p, by

In [MN] the complex Hessian was defined on abstract C R manifolds for
real transversal 1-jets. These objects, after introducing a CR-gauge on M,
are described by a pair (0, Rw) where q5 is a smooth real valued function
and a smooth section of H°M. We give here an alternate and nonintrinsic
discussion, substituting to the real transversal 1-jet a smooth complex valued
function 1/1 and choosing a CR-adapted coordinate system in such a way that,
at p, 0 corresponds to the real part and is related to the imaginary part of 1/1.

In order to compute the complex Hessian at p of a smooth function defined
on a neighborhood of p, starting from a CR-adapted coordinate system (y, t),
we modify it by a suitable change of coordinates in Cn x R k that involves
second degree polynomials. From (2.2) we obtain:

Denote by and the sum of the homogeneous terms of the first

order in the Taylor expansions with respect to the (y, t) variables of cjs and aj"
respectively. Then by the integrability conditions above we can find homoge-
neous polynomials of the second degree cs and ii’ such that
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for 1  s, j  n and 1  a  k. The new coordinates:

are still C R-adapted, but now Lj (3 h) vanishes to the first order at p and ta is
the real part of the function ta - aa which also has the property that 
vanishes to the first order at p. This means that we have a basis for in
a neighborhood of p of the form:

We note that if M is C°°, we can find actually smooth functions. and 0’ such
that and vanish of infinite order at p and d~i(p) = dzj (p),

= for 1 h  n and 1  a  k. However, our computation
is still valid if we only assume that M is of class C2 and suffices for our

purposes.
Coordinates (~, t) for which (3.8) is valid will be said to be CR-adapted

of the second order at p. A basis of To,’ M near p satisfying (3.8) will be
called C2 canonical at p.

Assume that (3.8) is a C2 canonical basis for at p. For ~ E C’ we
denote by L~ the partial differential operator

Then we have for every complex valued smooth function 1/1, defined on a

neighborhood of p:

We call this expression the complex Hessian at p of the smooth function 1/1.
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4. - Uniqueness for solutions of a system of differential inequalities

We formulate the weak uniqueness result for the Cauchy-Riemann system
on functions:

THEOREM 4.1. Let M be a connected abstract strictly pseudoconcave C R
manifold of type (n, k) and of class C4 + 2  00. Let u E 

satisfy the following:

If u vanishes on a nonempty open subset of M, then u is identically zero on M.

Clearly this theorem implies the weak uniqueness property for the solutions
of the Cauchy-Riemann equations (1.2).

The proof of this theorem involves several steps and will be described in
the remaining sections of the paper.

Using Theorem 2.2 we reduce the proof to the uniqueness in the nonchar-
acteristic Cauchy problem for solutions of (4.1 ). Let indeed u be a solution
of (4.1 ) and consider the support F of u. If 0, then is not

contained in HO M. Assuming that u = 0 in an open subset S2 of M, in case F
was nonempty, we could find a real valued C2 function x on M such that, for
a point and F C { X ( p)  Thus Theorem 4.1

follows from:

THEOREM 4.2. Let U be an open domain in a strictly pseudoconcave C R
manifold M of type (n, k) and of class CIL + 2 :s 00. If U- is an open
subset of U such that au- f1 U is smooth and n 0, then every
u e Lfoc(U) which satisfies (4.1 ) and vanishes on U - is zero a. e. on a neighborhood
of U- in U.

5. - A Carleman type estimate

We introduce a smooth Riemannian metric on the C R manifold M and a

smooth Hermitian metric on the fibers of Q°, 1 (M); in this way the L2 norm
is well defined for functions and sections of QO’ 1 M on M. We shall

deduce Theorem 4.2 and hence Theorem 4.1 from the following Carleman type
estimate:

THEOREM 5.1. Let M be a strictly pseudoconcave CR manifold of type (n, k),
with k &#x3E; 1, and of class CIL -~- 2 ::S JL :s 00. be a real valued smooth
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function on M and p E M a point where do HO M. Then we can find r &#x3E; 0 ,
A &#x3E; 0, c &#x3E; 0, -ro &#x3E; 0 such that

where Br ( p) denotes the ball of radius r centered in p.

Note that the statement of this theorem is invariant with respect to the
choice of the Riemannian metric on M and the Hermitian metric on the fiber.

6. - Localization of the estimate

We fix a point p E M and coordinates (3, t) in an open neighborhood U
which are CR-adapted of the second order at p, so that (3.8) gives a basis for

on U. We can assume that the coordinate neighborhood is defined on
B1 = {1312 + I f I2  1 } and that the metric on M coincides with the Euclidean
metric in the coordinates (3, t). We denote by HBI, TO,l B1, HO B1, QO,l B1 1 the
bundles on B1 corresponding to those on the open U in M. We can assume
(by taking a smaller U) that they are all trivial. The projection of the trivial
bundle generated by d3 d"Jn over B1 1 is an isomorphism with 1 B1; we
consider on the fibers the pullback of the Hermitian metric for which these
differentials form an orthonormal basis.

We denote by f the principal bundle on B1 whose fiber at each point xo
consists of the orthogonal frames gxo : Cn x Rk -~ R"’ such that gxo (CCn x {O}) =
Hxo B1. We note that f is smooth and locally trivial. Hence we can fix a smooth
section g on a neighborhood Br of 0 in Bl such that go is the identity. We
can assume that r = 1. We shall use the section g to construct slowly varying
metrics in 1) (cf. [Hö1]).

Given a point xo = (30, to) E Bi, the coordinates (z, t) = xo) are

adapted C R-coordinates at (30, to). We call them g coordinates at xo = (30, to).
Note that for xo = 0 they coincide with our (3, t) at p and are CR-adapted of
the second order. We will write zxo(x) and txo(x) to indicate the dependence
of the g coordinates (z, t) of x at xo = (30, to).

Having fixed a real parameter i &#x3E; 1, we set, for each point xo E B (0, 1),

By further restricting the open neighborhood of p under consideration, we obtain
that

so that I 1 is slowly varying in B(0, 1), uniformly with respect to i &#x3E; 1.
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For each i &#x3E; 1 we obtain therefore a partition of in the neigh-
borhood B(0, 1 - 1 /fl) of 0 by smooth real valued functions with compact
support contained in balls {x E B (0,  1 } for a finite subset of

We note that these balls correspond to the cubes  1/,¡T, It  1/-rl
for the g-coordinates centered at xv. Moreover, for the functions of such a par-
tition of the unity, there are uniform bounds, independent of i &#x3E; 1, for the
maximum number C of intersecting supports.

There are also t-dependent bounds for their derivatives. In fact, if L is a
smooth vector field in B 1, then we obtain, for every t and v such that the
support of K 1:, v is contained in Bi ,

for a constant which only depends on the supremum of the modulus of coeffi-
cients of L and of their first derivatives.

It is therefore apparent that the Carleman estimate (5 .1 ) is valid if we are
able to prove:

LEMMA 6.1. There are eo &#x3E; 0, r &#x3E; 0 such that (5.1 ) is valid with the same
constant c &#x3E; 0 when 0  E  eo, t &#x3E; -co (,e) and the function f has support
contained in the intersection of Br ( po) with a cube (lzl I  I I  1 / (t E ) },
for g-coordinates C R-adapted at the center of the cube.

Indeed, we shall have, with tf¡ = §6 + 

(where C is a t-independent upper bound for the number of intersecting supports
of the functions of the partition of unity, and we assume that 6 - T &#x3E; 1) from
which (5.1) follows if we take E &#x3E; 0 sufficiently small.

Note that the restriction on the radius r &#x3E; 0 of the ball B,. (po) will be

determined by the condition that the coefficients in (3.3) be small. Since

the coordinates (3, t) were chosen adapted to the second order at po, they are
actually bounded, in the g-coordinates, by a constant times the radius r of the
ball for 0  r  1.
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7. - Microlocalization

We denote by r the positive cone of R k :

For a E GL(k, R), we set r a = a(r): it is a closed proper convex cone with
vertex at 0 and its intersection (J a with the unit sphere 1 } c R k
is called a geometrical (k - I)-simplex of 

Since we assumed that M is strictly pseudoconcave at po, for each q E Sk-I
the set of ~ E S2n-1 I C Cn such that

is nonempty. Thus there exists a triangulation of Sk-1 by geo-
metrical (k - I)-simplices such that for each 1  N the set E S2,-l that
satisfy (7.2) for all 77 e ai has a nonempty interior in By convexity (7.2)
for all 17 E is equivalent to

Denote by G i C the set of ~ for which (7.3) is valid.
Consider now the complex Hessian of the function * = 0 + A02 at po.

By our choice of coordinates, it is given by:

Since we assumed that H°M, the second summand is nonzero. Hence
the complex Hessian is positive for large A &#x3E; 0 in a cone VA of the form

I &#x3E; for some constant C &#x3E; 0. For A sufficiently large,
VA intersects each Gi i for 1 N. We pick for each 1 N a point
§i E VA n Gi. By taking A very large we can also assume that

By continuity we can find ro &#x3E; 0, which will be taken also  1/2, such
that (7.3) and (7.5) are still valid for points of Bro in the g-coordinates, when
we substitute Vf (z, 0) to Vf (z, t) ro.
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Finally, we introduce the pseudodifferential operators of order 0:

where

is the partial Fourier transform of a function V E We note that

and

by the Plancherel formula. This remains valid if we consider L2 functions
with support in Kr = ~, t ~ I  6r} and make Pi (D) into a properly
supported pseudodifferential operator Pi (t, D) of order 0 by multiplying it by
a real valued cutoff function of the t variables with values in [0, 1] and which
is 1 on a neighborhood of Kr.

Namely, we will set, for a smooth real valued function k, defined for t E R k
which is equal to 1 for It I  1 andis0for ltl&#x3E;2,

and define

We note that for each L E the commutator [L, Pi (t, D)] is of

order 0 and we have
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8. - Proof of the Carleman estimate

After the preparation of the previous sections, we turn now to the proof of
the Carleman estimate (5.1). We fix a point to) E Br, for some 0  r  ro
that will be made more precise later on and we assume that f, in the g-
coordinates (z, t) at (30, which are CR-adapted, has support contained in

-... , .... ,

With v = f . we have

for every ~ E en.
Then (5 .1 ) is equivalent to

In order to apply microlocalization, it is convenient to substitute the terms in
the left hand side with analogous terms in which the coefficient involving the
parameter r is independent of t. To this aim we note that:

Setting

we have

By Lemma 6.1 it suffices to show that, for some positive constant c:

For every ~ E we obtain by integration by parts:

where L* is the L2 formal adjoint of L~ .
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The first term on the right is nonnegative and will be discarded. The

inequality looked for comes essentially from the third term. The second term
is going to be an error term, after appropriate microlocalization.

We have [L¡, L~] = [L~ , L~ ] + G~ for a bounded function G~ . Thus we
can use formula (3.3) to estimate the second summand in the right hand side
of (8.7). We obtain, also using integration by parts:

Since we noted that the coefficients are bounded by a constant times r on
the ball B,. (po), we obtain: 

’

provided the support of v is also contained in the ball 

To deal with the term:

we use microlocalization.
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Let Then

where the constant is independent of T because the term containing the param-
eter T is independent of t.

Hence we obtain:

For this estimate we also used the fact that, for every index i,

Then the desired estimate follows because by (7.5) and (7.8)

while the terms are bounded from below by -constant e -r 11 V 112.
To prove this last fact, we choose ai E such that properly

contains the cone ai (r). Taking ai sufficiently close to ai, the functions:

are still positive. With new variables ¡I, ... , tk corresponding to the matrix ai ,
we obtain:

We estimate the integral in the right hand side of (8.13) using the partial Fourier
transform with respect to the t-variables. The cone r’ - iii is properly
contained in r and therefore we have, with 6 &#x3E; 0,
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Since 0 in r when fl = 1,..., k, we obtain, using the Young’s estimate
for convolution (i.e. the continuous inclusion L2 c L2):

for a constant C depending on the determinant of the matrix ai . Although the
estimate of the last integral above is standard, we give the complete argument to
show that it actually involves only the derivatives up to the order [ (k ~-1 ) /2] + 2
of the coefficients of the complex vector fields Li.

For a fixed E &#x3E; 0, we can restrict to r &#x3E; 1 /E, so that all have

support contained in a fixed compact set K. By multiplying the by a
smooth function with compact support which is equal to 1 on a neighborhood
of K, we can assume in the following argument that the are functions
with compact support. Then

We have:

We use the estimate:
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Note that the last integrals, by a classical theorem of Bernstein, can be estimated
using the 2 + 1 Sobolev norms of the and of K. From this we obtain that

uniformly with respect to z.
Hence we obtain the estimate

from which the Carleman estimate (5.1 ) follows.

9. - Proof of Theorem 4.2

The proof of the uniqueness in the noncharacteristic Cauchy problem for a M
follows in a standard way from the Carleman type estimate (5.1 ).

Fix a point po E and a defining function p for U - in a neigh-
borhood V c U of po :

Assuming that V is a coordinate patch, with coordinates X E vanishing at
po, we set

with C sufficiently large, so that 0 (p)  -1 outside a compact neighborhood
of po in V. By Theorem 5.1, there are r &#x3E; 0, A &#x3E; 0, c &#x3E; 0 and io &#x3E; 0 such
that (5.1) is valid for the weight function 0. Fix a function v : R --* R with:

Given a solution u e of (4.1) that vanishes in U-, for real
we consider the function

Its support is contained in
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and therefore is compact and contained in V n Br (po) if 3 &#x3E; 0 is sufficiently
small, say 3  80. The estimate (5.1) is valid for fs when 8  8o by Friedrichs
extension theorem (cf. [F]). For a fixed 0  8  80 and 1/1 = q5 + we

obtain

For X _ ~ -~ A82, we obtain:

This gives:

for all ro and hence u = 0 a.e. for 0 &#x3E; 3, showing that u vanishes on a
neighborhood of po.

The proof is complete.
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