@article{ASNSP_1998_4_27_3-4_379_0, author = {Watanabe, Humihiko}, title = {Birational canonical transformations and classical solutions of the sixth {Painlev\'e} equation}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {379--425}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 27}, number = {3-4}, year = {1998}, mrnumber = {1678014}, zbl = {0933.34095}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1998_4_27_3-4_379_0/} }
TY - JOUR AU - Watanabe, Humihiko TI - Birational canonical transformations and classical solutions of the sixth Painlevé equation JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1998 SP - 379 EP - 425 VL - 27 IS - 3-4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1998_4_27_3-4_379_0/ LA - en ID - ASNSP_1998_4_27_3-4_379_0 ER -
%0 Journal Article %A Watanabe, Humihiko %T Birational canonical transformations and classical solutions of the sixth Painlevé equation %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1998 %P 379-425 %V 27 %N 3-4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1998_4_27_3-4_379_0/ %G en %F ASNSP_1998_4_27_3-4_379_0
Watanabe, Humihiko. Birational canonical transformations and classical solutions of the sixth Painlevé equation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 27 (1998) no. 3-4, pp. 379-425. http://archive.numdam.org/item/ASNSP_1998_4_27_3-4_379_0/
[1] "Groupes et algèbres de Lie", Chapitres 4, 5, et 6, Masson, Paris, 1981. | MR | Zbl
,[2] Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, Japan. J. Math. 5 (1979), 1-79. | MR | Zbl
,[3] Isomonodromic deformation and Painlevé equations, and the Garnier system, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 575-618. | MR | Zbl
,[4] Studies on the Painlevé equations I, Sixth Painlevé equation PVI, Ann. Mat. Pura Appl. 146 (1987), 337-381. | MR | Zbl
,[5] Sur les équations différentielles du second ordre à points critiques fixes, C. R. Acad. Sci. Paris 143 (1906), 1111-1117. | JFM
,[6] On some Hamiltonian structures of Painlevé systems, I, Funkcial. Ekvac. 40 (1997), 271-291. | MR | Zbl
- ,[7] Birational automorphism groups and differential equations, Nagoya Math. J. 119 (1990), 1-80. | MR | Zbl
,[8] On the irreducibility of the first differential equation of Painlevé, In: "Algebraic Geometry and Commutative Algebra in Honor of Masayoshi NAGATA", Kinokuniya, Tokyo, 1987, pp. 771-789. | MR | Zbl
,[9] Second proof of the irreducibility of first differential equation of Painlevé, Nagoya Math. J. 117 (1990), 125-171. | MR | Zbl
,[10] Solutions of the second and fourth Painlevé equations I, Nagoya Math. J. 148 (1997), 151-198. | MR | Zbl
- ,[11] Solutions of the third Painlevé equation I, Nagoya Math. J. 151 (1998), 1-24. | MR | Zbl
- ,[12] Solutions of the fifth Painlevé equation I, Hokkaido Math. J. 24 (1995), 231-267. | MR | Zbl
,[13] On the defining variety and birational canonical transformations of the fourth Painlevé equation, to appear in Funkcial. Ekvac. | MR | Zbl
,[14] Defining variety and birational canonical transformations of the fifth Painlevé equation, to appear in Analysis. | MR | Zbl
,[15] On the root system of type D4 and thefour-dimensional regular trisoctahedron, preprint.
,