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Stability of the Spectrum for Transfer Operators

GERHARD KELLER - CARLANGELO LIVERANI

Abstract. We prove stability of the isolated eigenvalues of transfer operators satis-
fying a Lasota-Yorke type inequality under a broad class of random and nonrandom
perturbations including Ulam-type discretizations. The results are formulated in
an abstract framework.
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dary).

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVIII (1999), pp. 141-152

1. - Introduction

Let (B, II - 11) be a Banach space which is equipped with a second norm
I ~ I ~ with respect to which B is typically non-complete. For any bounded
linear operator Q : B --+ B let

We consider a family of bounded linear operators on (B, 11.11) with
the following properties: There are Ci , M &#x3E; 0 such that for all E &#x3E; 0

there are C2, C3 &#x3E; 0 and a E (0, 1), a  M, such that for all E &#x3E; 0

also (but see Remarks 1,2,6 for alternative conditions),

then z is not in the residual spectrum of PE ;
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and there is a monotone upper-semicontinuous function t : [0, oo) ~ [0, oo)
such that tE &#x3E; 0 if E &#x3E; 0 and

For families of operators satisfying (2)-(5) we derive uniform bounds on
the resolvents with respect to the norm (1), 1 (z - when z is uniformly
bounded away from the spectrum of Po, and we show that for such z
the difference II I (z - P,) - I - (z - for a suitable 17 &#x3E; 0 (The-
orem 1). An immediate corollary to these estimates is the stability of isolated
eigenvalues h of Po with I &#x3E; a; stability in the sense that if 8 &#x3E; 0 is such
that n or (po) = then nolll = 0. Here denotes
the open unit ball of radius 3 around X and IIE := PE)-1 is

the total spectral projection of P, associated with (Corollary 1).
More precise statements and further corollaries are deferred to the next section.

REMARK 1.

a) If inequality (3) is satisfied for some no such that =: ao  1, then
it holds for all n with a replaced by ao.

b) It is a simple consequence of (3) that for C4 = C2 + C3 holds

c) In the mathematical literature there are many examples of single opera-
tors Po satisfying 2) and (3). In nearly all cases the two norms involved
have the additional property that

(7) the closed unit ball of (B, 11 - 11) is I - 1-compact,

and in all of these examples this property is the key to proving that the
essential spectral radius of P, is bounded by a which implies in particular
assumption (4), see also Remark 3.

In the rest of this introduction we discuss a number of situations where

assumptions (2), (3) and (7) are satisfied. This may serve to illustrate the broad
applicability of the results proved in this note.

The basic result for this setting is the theorem of Ionescu Tulcea and
Marinsecu [15]: If the constant M in (2) and (3) is equal to 1, then Po : B - B
has at most finitely many eigenvalues of modulus 1. All these eigenvalues have
finite multiplicity, and the rest of the spectrum is contained in a disk around
the origin of radius less than 1. In other words: Po is quasicompact.

The following more concrete setting historically motivated this theorem: B
is the space of complex-valued Lipschitz functions on a compact metric space,
II is the Lipschitz norm, and H I is the supremum norm. Po is a Markov tran-
sition operator of Doeblin-Fortet type, i.e.satisfying (3). For a while this model
played a prominent role in mathematical learning theory, see the monographs
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[16, Theorem 2.1.40] and [27, Theorem 3.2.1] ] for a comprehensive treatment
and further references. Later, the same analytic setting was used to study Ruelle
transfer operators for subshifts of finite type, see e.g. [28] for more information.

Independently of these developments another concrete setting in which the
three assumptions (2), (3) and (7) are met emerged in 1973, when Lasota and
Yorke [24] studied Perron-Frobenius operators Po of piecewise C2 and piecewise
expanding maps: Now B is the space of functions of bounded variation on an
interval, I is the variation norm, and I . I the usual L 1-norm. Inequalities (2)
and (3) with M = 1 were derived in [24], and the applicability of the theorem of
Ionecu Tulcea and Marinescu was noticed later in [18], [19], where [18] in fact
deals with an extension of the Lasota-Yorke result to piecewise expanding maps
of the unit square. Soon after, Rychlik [30] showed how to bypass the Ionescu
Tulcea-Marinescu theorem and proved quasicompactness of Po more directly,
an approach that was exploited in [20] to show that the constant a from (3) is
an upper bound for the essential spectral radius of Po. Later, in [12], it was
shown how to derive this estimate directly from the Ionescu Tulcea-Marinescu
theorem. A good reference for these and related results for Perron-Frobenius
operators of one-dimensional maps is the monograph [8]. Variants of this theory
for nonexpanding or higher-dimensional maps can be found in [23], [7], [22].

Passing from a single operator Po to a family satisfying condi-
tions (2)-(5) can have various interpretations. We mention the following ones: Po
is the Perron-Frobenius operator of a piecewise expanding map T as discussed
above.

a) The P, are Perron-Frobenius operators of maps T, which are "close" to T.
For maps of the interval I = [0, 1] ] a suitable notion of closeness is

In this case -r, = 12 d (T, see [21].
b) P, is the transition operator of the stochastically perturbed map T, where E

is the "size" of the perturbation, see [21], [4], [2], [5]. Typically, -r, = O (E ) .
c) P, is the transition operator for the Ulam-type discretization of T with grid

size e. Again -r, = O(E), see [25], [21], [3], [9], [5] and for related work
also [14], [26], [ 11 ], [17].
For all these families inequality (3) is satisfied uniformly in E

provided there is an iterate T k of T with &#x3E; 2 and such that there
are no discontinuities or turning points c, c’ of T with Tic = c’ for some
0  j  k. But even if this condition is violated certain types of perturbations,
notably Ulam discretizations, satisfy (3) uniformly in e, see [5] for a detailed
discussion.

REMARK 2. Since in all these situations the P, can be interpreted as

positive operators on L~, their peripheral eigenvalues form a finite cyclic group,
see [31], [30], [13].
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REMARK 3. For some applications it is interesting to note that the compact-
ness assumption (7) can be replaced by the following weaker set of assumptions:

there is a sequence of linear operators 7rk : B - B with SUPK IIJrk 1/  00
and such that

and
is a compact operator for all k .

A simple calculation based only on these assumptions and on (3) shows that
there is a constant C &#x3E; 0 such that

It follows from [10, Lemma VIII.8.2] that in this case all are

quasicompact with essential spectral radius  a (in particular (4) holds). This
is in fact the previously mentioned approach of Rychlik [30]. Related questions
for function spaces of higher smoothness are discussed in [1].

ACKNOWLEDGMENTS. We like to thank Viviane Baladi for pointing out a
mistake in an earlier version of the proof of Corollary 1.

2. - The results

For 8 &#x3E; 0 and r &#x3E; a let

The main results of this paper are the following bounds on the resolvents

THEOREM 1. Suppose that (P,),,o is a family of linear operators on B satisfy-
ing (2)-(5). Fix 3 &#x3E; 0 and r E (a, M) and let 17 := Then TJ &#x3E; 0 and there

log M/a 
*

are constants co = Eo(8, r) &#x3E; 0, a = a(r) &#x3E; 0, b = b(8, r) &#x3E; 0, c = c(8, r) &#x3E; 0

and d = d (8, r) &#x3E; 0 such that for 0  E  eo and z E C B V8,r

and
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Explicit bounds on the constants co, a, b, c, d are given in the proof. They
all depend on the operators P, via the constants M, C1, ... , C4; Eo and b

depend also on the functions E « iE and z « I I (z - 
Denote aa(PE) _ IZ E C : Izl I  a } An immediate consequence

of (8) is that

for all 3 &#x3E; 0 and r E (a, M). Therefore, all accumulation points (as E -~ 0) of
spectral values in are contained in a,,,(PO). A more elementary proof of
this fact was previously given in [6]. But much more can be deduced from (9).
If h is an isolated eigenvalue of Po with &#x3E; a, then 3 &#x3E; 0 can be chosen so
small that (h) and we can define

does not depend on 8 as long as B8(À) n aa(PO) = IXI, and as we
just saw, also the projections are well defined and independent of 8 for
sufficiently small E .

COROLLARY 1. In the situation of Theorem 1, if À is an isolated eigenvalue of
Po with I &#x3E; r and if 8 &#x3E; 0 is such that B8(À) n aa(PO) = {À}, we have:

3) If 8 e (0, ~oL then = small enough.

REMARK 4. If the isolated eigenvalue À of Po has finite multiplicity, this
means in particular that, for E and 8 small enough, f1 consists of

eigenvalues ~.~E~, such that = À for all j, and the total multiplicity
of the ÀjE) equals the multiplicity of À.

For r &#x3E; a denote by yr the circle of radius r around the origin and define

COROLLARY 2. If, in the situation of Theorem
then
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REMARK 5. In many cases the P, are | - 1-contractions, i.e.M = 1. If,
in such a situation, we considered r = 1, i.e. a case which is not covered

by Theorem 1, then q as given there would evaluate to 1. A look at the

proofs reveals, however, that in this case the order of convergence in (9) is

only log I instead of iE. This is in agreement with results in [21], [17] on
the stability of eigenfunctions belonging to eigenvalues of modulus 1.

3. - Proofs

In the proofs we use the following abbreviating notation:

where we suppress the dependence of QE on z. Recall that since z ¢ V8,r
always lzl &#x3E; r &#x3E; a and Q-1 1 - (z - exists as a bounded linear operator
on B.

LEMMA 1. For each r E (a, M) holds

where

and with

and fxl denotes the smallest integer greater than or equal to x.

PROOF. For f E B holds

in view of (3). Observing (6), this yields

Let n = n 1. Then so that
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PROOF OF THEOREM 1. Consider any h E B and let g := Qoh. As

we have

we have

Combining these two estimates yields

Recall that g = Qoh = (z - Po ) h so that (C4M + Izl)lIhll. Therefore,

For the proof of assertion (8) we may assume that 2M, because
for Izl &#x3E; 2M a von Neumann series representation gives immediately that

and
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Since by Lemma 1, this and (12) yields for

so that

Applying Lemma 1 once more, we arrive at

for 0  e  el. By (15) it follows that Q, is invertible, its range is closed,
and the inverse is bounded, hence QE 1 exists as a bounded operator on B
since z cannot belong to the residual spectrum by assumption (4). Applying
this inequality to h := this is (8) with a := and

b:=1/2te1 °2r,e, 
*

We turn to the proof of (9) and keep the abbreviation h = Qc 1 f . Consider
estimate for Then

this yields

Since by Lemma 1 again, this yields

Recall H = r ) from (13) and let
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Then

for 
We apply this estimate to (PE - instead of f :

which proves (9) with

REMARK 6. In the preceding proof assumption (4) was used only to con-
clude that if z E C B then the range of the operator Q, = z - P, must
be all B. In some situations the following argument might be used instead of
assumption (4): Let A denote a connected component of (C B Vs,,., so A is open.
We claim that

Indeed, estimate (15) guarantees that dist(z, o~ ( PE ) ) &#x3E; ~ for z E 
where C = 2C5 + (2~~)’B and it is an easy exercise to derive (16) from this.
In view of the alternative (16) the unbounded component of (C B V8,r is certainly
disjoint from 

If C B aa(PO) is connected and if z E C B aa(PO), then z belongs to the
unbounded connected component of provided r - a and 8 are sufficiently
small, and it follows that z E C B if E  EO (8, r). In other words: Given
z E there are 8, r &#x3E; 0 (possibly depending on z) such that (z - PE)-1 1
exists as a bounded linear operator for E E [0,6o(~,r)]. In particular, (4) can
be replaced by "C B is connected for each r - a and 8 sufficiently small".

PROOF OF COROLLARY 1.

Note that this implies
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2) Using (8) follows

Fixing r and choosing 6 &#x3E; 0 such this yields for sufficiently
small E 

,

Applied to instead of f we can conclude that
for a suitable constant K2 &#x3E; 0.

3) Let us consider a n-dimensional subspace Vn of In view of part (1)
we can choose E and 3 small enough such that III n?,,8) -  Then,

2

for f E Vn,

where we have used the result of part (2) above.

This means that the unit ball of the subspace V n is contained in a 1/2
neighborhood of the subspace 8) (B). In this situation n  by
Tichomirov’s theorem (e.g.[29, Theorem 1.5]), and, by the arbitrariness of n,

The reverse inequality follows by interchanging the
roles of and 0

PROOF OF COROLLARY 2.

1 ) This is proved just like the first assertion of Corollary 1.

2) As observed in Therefore
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