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Exponential Sums and Additive Problems
Involving Square-free Numbers

JÖRG BRÜDERN - ALBERTO PERELLI

Abstract. Let r v (N) denote the number of representations of the integer N as a sum
of v square-free numbers. We obtain unconditional and conditional bounds for
the error term in the asymptotic formula for rv (N), when v &#x3E; 3. The conditional
bounds are essentially best possible for v &#x3E; 4. The unconditional bounds are,
for v &#x3E; 3, essentially best possible with respect to the present knowledge on
the distribution of the zeros of the Riemann zeta function. Proofs are based on
the circle method. The main ingredients are a new pointwise estimate for the
exponential sum S(a) over square-free numbers and a recent bound (see [3]) for
the L2-norm of S(a) restricted to the minor arcs.

Mathematics Subject Classification (1991) : 11P55.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVIII (1999), pp. 591-613

1. - Introduction

Let r,-(N) denote the number of representations of the natural number N as
the sum of v square-free numbers. In a series of papers Evelyn and Linfoot [5]
established asymptotic formulae for rv(N). When v &#x3E; 2, they obtained

where 6v(N) is the singular series defined by

and where
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Note that 8 (v) is strictly increasing with 8 (v) -* 4 as v -~ 00. When v &#x3E; 3,
these results were obtained by the Hardy-Littlewood circle method, and have
been refined by Mirsky [12] to

When v = 2, Evelyn and Linfoot used an elementary argument which was
much simplified by Estermann [4]. More recently Heath-Brown [9] considered
the related problem of counting square-free twins; his method carries over to
the problem under consideration and yields the validity of (1) with 9 (2) = --4-
In this paper we analyse the error term in (1) more precisely, and link it with
the zeros of Dirichlet L-functions. The first theorem improves on the results
of Evelyn and Linfoot and of Mirsky for all v &#x3E; 3.

THEOREM 1. Let v &#x3E; 3. Then

A further improvement of the exponent in the error term below v - 2 would
imply a zero-free strip of the Riemann zeta function to the left of Re(s) = 1.
This is a consequence of the following theorem.

THEOREM 2. Let 0 denote the supremum of the real parts of the zeros of the
Riemann zeta function. Then, for any v &#x3E; 2 and any 6 &#x3E; 0,

We have # a 2 , with equality should the Riemann hypothesis hold. One
may conjecture that the true order of magnitude of the error term in ( 1 ) is

v 
7

roughly of size N"- 4 . If one is prepared to assume the generalised Riemann
hypothesis (G R H ) for all Dirichlet L-functions, it is possible to confirm this,
at least when v a 4.

THEOREM 3. Suppose that G R H holds. Then, 4,

Moreover,

Thus, when v = 3, we miss the optimal exponent of N in the error term 
Our proofs of Theorems 1 and 3 utilize the circle method, and therefore

follow the path of Evelyn and Linfoot in the first few steps. A new tool for our
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purposes has become available only very recently. Granville, Vaughan, Wooley
and the authors [3] have investigated the mean square of the exponential sum

restricted to minor arcs. For a precise statement of the result which is relevant
to us here, let 1 :s iN and denote by the union of all intervals

with 1 q :S Q and (a , q ) = 1, and let m ( Q ) -
1 + 6~’~] B~(6). Then, Theorem 1.3 of [3] asserts that

Note that this is stronger than "square root cancellation" for  

As was explained in [3], one can deduce from (4), via the circle method, that (1)
holds with 9 (2) = 5 . This is weaker than the elementary result of Evelyn and
Linfoot for v = 2, but for v &#x3E; 3 one may hope to improve their work by
starting from the orthogonality relation

using (4) combined with a reasonably strong pointwise estimate for S(a). Such
is provided in the next theorem.

THEOREM 4. Let S(a) and tn(Q) be as above. Then, for 1  Q  N 3/7 one
has

A similar result occurs inter alia in Baker, Brüdem and Harman [2], but
is subject to the more stringent condition Q  N 1/3 .

We shall begin with proving Theorem 4 in Section 2. The argument is based
on classical Weyl sum techniques, with an extra idea contained in Lemma 1
below. An application of the circle method yields Theorem 1, with (4) and
Theorem 4 as the key ingredients. This will be described in Section 3.

The next two sections are subject to G R H, and are devoted to the proof of
Theorem 3. The improved error terms come from enhanced information about
the distribution of square-free numbers in arithmetic progressions if G R H is

true. At the heart of (4), a version of the Barban-Davenport-Halberstam theorem
for square-free numbers due to Warlimont [14] is at work. Subject to G R H
one may expect a stronger version of the latter, but as experts in this field will
readily recognize, there are familiar but unconventional problems with routine
approaches to investigate the distribution of square-free numbers in arithmetic
progressions. We are able only to establish the expected bound for a certain
variance (see Section 4 below) if the square-free numbers are counted with
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suitable weights. The weight e-"IN fits well with additive problems. Thus we
are forced to formulate the circle method machinery in terms of the abelian
transform

of the previously defined exponential sum 5’(of). We can then write in terms
of absolutely convergent Mellin transforms of Dirichlet L-functions (see (22)-
(24)), and use arguments inspired by the work of Hardy and Littlewood [7]
and Linnik [ 11 ] (see also Languasco and Perelli [10]) to establish a conditional
improvement of (4). In Section 5, we use this to derive Theorem 4. Finally, in
Section 6, we prove Theorem 2 by a simple modification of a classical result
of Montgomery and Vaughan [13] ] concerning the error term in the asymptotic
formula for representations by sums of primes.

With little extra effort our results can be extended to sums of k-free num-

bers ; in the interest of brevity we have refrained from doing so.
Some mention should be made of the work of Friedlander and Goldston [6]

who considered the analogous problem with primes instead of square-free num-
v i v 2

bers, subject to G R H. Here, the S2-result has an in place of N’’- 4 , and
curiously, they also obtained a matching upper bound for v &#x3E; 4 summands, but
for v = 3 their result falls somewhat short of the expected one.

Our notational conventions are standard or else explained at the appropriate
stage of the argument. Statements involving an E are true for any 8 &#x3E; 0. Note
that this allows us to conclude from X « Z8, Y « Z’ that one has X Y « Z’,
for example.

2. - Exponential sums over square-free numbers

We prepare for the proof of Theorem 4 with a simple lemma.

LEMMA 1. Let a E R, and let a E Z,q E q-l.
For D &#x3E; 

Then

PROOF. We may assume that since the bound is trivial in the opposite
case. Let K = [ 2Z ] . The function
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is non-negative, of period 1 and satisfies ~: ~ z. Hence

where

By Lemma 1 of Harman [8],

and the Lemma follows immediately.

To establish Theorem 4, we rewrite (3) in the form

We evaluate the inner geometric sum, and then split the outer summation into
ranges D  2D. This routine procedure yields some D = D(a) with
1  D  such that

say. The trivial bound T(a, D)  ND-1 is satisfactory when D &#x3E; Q, so we
may assume that D  Q.

Three different arguments are available to estimate T (a, D) more precisely.
We write X = By Dirichlet’s theorem, there are coprime integers a, q
with 1  X and we note that

First suppose that Then by (7), and we can write

where
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This shows that

that

We again make use of to infer

which is more than required.
We may now suppose that 8 D2 &#x3E; Q. Now, by Lemma 3.2 of Baker [I],

If N Q-1 we conclude that D) « which is again accept-
able.

It remains to discuss the case where

In the notation introduced in Lemma 1, by that Lemma and (7),

By (8), this reduces to T (a, D) « N 112+E +N’+ED -3/2 . This will be acceptable
if D3/2 &#x3E; Q. We may therefore suppose that D  Q2tJ. But then, by (8),

D2  Q4/3 which is impossible for Q  N3/~, and the proof of
Theorem 4 is complete.

3. - The addition of square-free numbers

This section is devoted to the proof of Theorem 1. We begin with the
case v = 3. The argument departs from the integral (5). Let m = m(N/) and
9R = Then, by Theorem 4 and (4),
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and (5) yields

We prepare for the treatment of the major arcs 9R by introducing a suitable
approximation to S(a). Let G (q ) be the multiplicative function defined on prime
powers by

Furthermore, let

For and write

This defines S*(a) on ~( 2 N 1~2), and for a in this set, we write

We recall a special case of Lemma 3.2 of [3] which asserts that for 1  Q 
one has

It is now straightforward to replace Sea) by S*(a) in (9). Note that (13)
gives

We multiply by e(-aN) and integrate over 9Jl to infer that

where
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Bounds for E2 and E3 are readily deduced from (14) and Theorem 4. We write
S)1(Q) = ~(26)~(6). Then, for 1 s Q  N 1~3, we deduce from Theorem 4
that 

-

and (14) now yields

From (10), we have G (q ) « q8-1, and from (11) we see that +
It follows at once that for 1  Q  N 1 ~3 one has

and (14) shows that

On summing (15) and (17) over Q = 2-&#x3E; N 1 ~3 with j E N we deduce that

For the estimation of EI we invoke Lemma 4.2 of [3] which shows that

Thus, by (16), we have

Hence, by summing over Q = 2-~ N 1 ~3 as before, we find that E 1 « N3~2+£ .
We may now conclude that indeed (9) holds with Sea) replaced by S* (a ), and
consequently,

where
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We now observe that by elementary counting,

and that for any.

We use the latter with X = q -1 N-2~3 and then obtain

where

As we have observed earlier, we have IG(q)1 I  q £-1. Moreover, one has the
familiar estimate (q, N), and therefore

By a similar argument, one readily confirms that

Collecting together, (18) finally gives

Since G(q) and cq (N) are multiplicative functions of q, we may rewrite the
infinite sum as an Euler product, and one then finds that

Theorem 1 now follows, at least when v = 3. For larger values of v one may
proceed as above, estimating the extra generating functions trivially. Details

may be omitted.
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4. - A conditional mean square estimate

In this section we provide improved versions of (4) and (14) subject to
G R H. It will be necessary to work with rapidly convergent Mellin transforms,
and therefore we express our results in terms of the abelian transform S(a)
defined in (6). Before we can formulate our first lemma, which is still un-

conditional, we need to introduce some notation. For any Dirichlet character
modulo r, let = X (b)e(b/r) denote its Gauss sum, and let L(s, X)
be the Dirichlet L-function. Whenever rlq, write

By comparing Euler products, one readily confirms that for Re(s) &#x3E; 1 one has

LEMMA 2. For any coprime natural numbers a, q and any f3 one has

where.

PROOF. This is a straightforward exercise, so we shall be brief. In (6), we
sort terms according to the value of (q, n) and take the resulting formula

as the starting point. Now write q = rd, n = md and note that JL(md) = 0
whenever (m, d) &#x3E; 1. This shows that

The condition (m, r) = (m, d) = 1 is equivalent with (m, q) = 1. We sort the
sum over m according to residue classes m --_ b(mod r) with 1  b  r and
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(b, r ) = 1, and then pick up the congruence condition by characters modulo r.
This leads to

But

by i
and the Mellin transform of e-’ is r(s). Hence,

and the lemma follows immediately. D

We now wish to shift the line of integration in Lemma 2 to the left. From
now on, we assume that G R H is true. Let Xo denote the principal character
( mod r ) . Then

and L(s, Xo) has no zeros in Re(s) &#x3E; 4. Since ~ (s) is holomorphic on C
except for a simple pole of residue 1 at s = 1, it follows that for X = Xo the
integrand in Lemma 2 is holomorphic in Re(s) &#x3E; 4 except for a simple pole
at s = 1, with residue

where

When X =1= Xo, then L (s, X) is entire, and L (2s, X2) again has no zeros in

Re(s) &#x3E; 1. Thus, in this case, the integrand in Lemma 2 is holomorphic for

Re(s) &#x3E; 4. *
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Fix a real number a with 4  or  2. By Stirling’s formula and standard
upper bounds for the L-functions, it is readily confirmed that the line of inte-
gration in Lemma 2 may be moved to Re (s ) = a. Since -c (Xo) = = JL(r)
by a well-known evaluation of Ramanujan’s sum, this yields

where

with

The first term on the right of (22) can be much simplified. Indeed, recalling (21 )
and (10), one readily verifies that for q a prime power, one has

but then, by multiplicativity, this identity holds for all q. Recalling the definition
of z(d, P), we may rewrite (22) as

and it should become apparent that 8(q, a, fJ) is the proper analogue of the
function A(a) in Section 3 and [3]. The following lemma gives a mean square
bound which improves on (14).

PROOF. a, -,8) ~ a, fJ) it suffices to estimate the integral
over [0, 8]. We cover this interval by [0, 2N-1] ] and O (log N) intervals of the
type [q, 2q] with 2A~’~ ~ ~  8. It follows that for some such q we must have
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where

and Ko is defined likewise, but with the integration extended over [0, 2N-1].
We now apply Cauchy’s inequality to (23). An elementary estimate for the

divisor function then shows that

where in accordance with earlier conventions, we wrote q = rd. We sum

over a, expand the square, use the orthogonality of characters and recall that
for all X mod r. This yields

We estimate Ko first. In the interest of brevity, write

with 4  a  2 and t E R, standard bounds for L-series
provide the inequalities

subject to GRH. We also have = d -~ and Dq (s, x)1 «q8 by elementary
estimates. Combined with Stirling’s formula for r (s), these inequalities imply
that

Moreover, for zo
now deduce that

we have From (24) we
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We may take cr = 4 + E. From (28) it follows that

j 
i 2

Integrating over [0,2N -1] ] yields Ko «N8-2q’2 which is acceptable.
More care is required to estimate K (r¡). Although not strictly necessary

here, we begin by smoothing the mean square; this process faciliates reference
to Languasco and Perelli [10] below. The obvious inequality

is our starting point. Now open the right hand side and recall (24), (29) and
the definition of zo to infer that

where

An upper bound for w) is required. We write

with 4  a  2 as before. Note that

Since arctan y = 2 - arctan Y holds for y &#x3E; 0, we now have

where

If we now write

then
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The integral J has been studied by Languasco and Perelli [10], but only for
or = 2 and (in their set-up) t &#x3E; 0, t’ &#x3E; 0. However, an inspection of their
argument ([10], pp. 312-314) shows that the estimates remain valid in our more
general situation. The inequality (14) of [10] still holds, provided that G 1 now
denotes a primitive of a primitive of fl (,8). If one then follows the pattern of
the estimation of G i in [10], one readily confirms that the bound corresponding
to (20) of [10] now reads

One then finds that for some suitable c &#x3E; 0, one has

From this, (32), (31) and (30), we may conclude that

where

A straightforward estimation shows that U « Nil (for example, transform the
integral via u = t + t’, v = t - t’). By (33), (27) and (28) it follows .that

With cr = 4 -~ ~ as before, the Lemma now follows from (26). 0

5. - The addition of square-free numbers: conditional results

We return to the main theme of the present paper, and establish the con-
ditional asymptotic formulae in Theorem 3. By orthogonality and (6), we have
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We shall apply the circle method to (34). Although there is still a dissection

into minor and major arcs, there is a certain flavour of a major arc treatment
throughout the interval [0, 1].

The intervals {a : Iqa - al :S N-1~2} with 1  a  q 
and (a, q) = 1 are pairwise disjoint. On the other hand, for any real

number a, Dirichlet’s theorem yields coprime numbers b, r with 1  r  -IN
N -1 ~2 . Therefore, there are numbers K (q , a ) , K’ (q , a ) where

with

such that the intervals

together with the define a disjoint.
cover of we now write, recalling (25),

Note that we may regard S* (a ) and Sea) as functions of period 1.. defined for

all real numbers.
Recall the definition of 9R(Q), S)1(Q) and m( Q) from Section 3. It is

interesting to compare the conclusions of the next Lemma with (14).

LEMMA 4. Let 1  4~. Then, subject to G R H,

and

PROOF. For the first estimate, use Lemma 3 with 3 = Q/(qN) and sum
Q. For the second estimate, proceed likewise with 6 = and

sum over q  0

LEMMA 5. Let m(Q) be defined as in Theorem 4. Then, for Q  N3/7,

PROOF. This follows from Theorem 4 by partial summation.
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For future reference, we record here a useful corollary. By (35) and (10),
we have when a Hence, for

we have

From (36) and Lemma 5, we deduce that for one has

We now embark on the main argument. Let v &#x3E; 3 be a fixed natural

number. By (36), we have

By (34), we conclude that

where

Write m = m(N3~~). From Lemma 4 and (37) we have

When 1 s Q s N3/7, we also deduce from Lemma 4 and (37) that

and since 9R = 9R(N3/7) is covered by O (log N) sets S)1(Q) with N3/7,
the bounds (39) and (40) yield

We prepare for the estimation of E4 with the following upper bound.
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LEMMA 6. Let k &#x3E; 2 and 1  2 N 1 /2. Then

If we take this for granted, then we may take k = 2v - 2, and apply
Cauchy-Schwarz’s inequality and Lemma 4 to deduce that

Likewise, for one finds that

The interval [ N -1 ~2 , 1 -~ N-I/2] may be covered and O (log N )
sets S)1(Q) with 1  Q  4 ~. Hence, for v &#x3E; 3, we may conclude that

Observe that by (41) and (42), we have suitable estimates for the errors in (38).

PROOF oF LEMMA 6. By (35), the integral in question does not exceed

The first integral here is whereas the second is

follows that

By (10), we have G (q ) = 0 unless q is cube-free. For any cube-free q, we may
write q = with square-free, and (10) yields IG(q)1 « q8(qlq2)-2.
For k &#x3E; 2, we infer that
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Similary, one readily confirms that

The conclusion of Lemma 6 is immediate. 0

1 
It remains to evaluate the main term in (38). By Lemma 6 with Q =

(41) and (42) we have

where By (35), we may write

The identity

may be verified by the calculus of residues. With z = 27r ip, we get

the power series for e~ shows that the function 
has a pole of order v, with 1 at z = 1, and is holomorphic
for all other z. We now integrate this function clockwise over the rectangle
with corners -3:::.i T, (1 ~ i ) T . Then, as r 2013~ oo, the integrals over the horizontal
paths as well as over the portion of Re(z) = T tend to 0, by straightforward
estimates. The integral over the vertical line from -iT to iT, however, tends
to the integral on the right hand side of (48), and (47) follows from the residue
theorem.

For X &#x3E; N-1 we have
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Therefore, by (43), (46) and (47),

Now observe that by (10) and multiplicativity,

the sum on the left being absolutely convergent for v &#x3E; 2 by (44). Another

application of (44) yields

and Theorem 3 follows from (45). Note that we miss the optimal result for
v = 3 only in the estimation of E5. If it were possible in Theorem 4 to extend
the range for Q to Q s then one would, in Theorem 3, obtain the same
precision for v = 3 as is provided for v &#x3E; 4.

6. - Proof of Theorem 2 .

Our proof of Theorem 2 closely follows a related result of Montgomery
and Vaughan [13], and we are therefore rather sketchy. We consider the power
series

for z = o with 2  o  1 when g - 1. We write throughout

This problem is strongly linked with the distribution of the error term
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since, by partial summation, one has

It is useful now to record here the elementary bound

valid whenever ~ &#x3E; -1 (see Lemma 2 of [13]). Elementary number theory
shows that E(x)  x1/2, and Evelyn and Linfoot [5] ] obtained E(x) = 
if the Riemann hypothesis holds; if the Riemann hypothesis is false, one has

1 , 
E(x) = From (52) and (53) we may conclude as follows.

LEMMA 7. In the notation introduced above, we have 1

Moreover, as ~O ---* 1 from the left, we have
Riemann hypothesis is true, one has

By the previous lemma, we have for any natural number v &#x3E; 2 that

which by another appeal to the lemma yields

Our preparations are now complete. By (53) we see that Theorem 2 will
follow provided we are able to establish that

and this we shall now deduce from (54). We begin by observing that whenever
(a, q) = 1, one has
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whence for q &#x3E; 2 we infer that

When q = 1, however, the sum on the left hand side of (56) equals [x]. By (49)
it follows that

and for v &#x3E; 2 the sum in the error term certainly converges, by (10). This

yields

for v &#x3E; 2. Now, since

is readily confirmed by elementary considerations, we deduce from (57) by
partial summation that

and (53) yields

The required (55) is now immediate from (54) and (58). The proof of Theorem 2
is now complete. If the Riemann hypothesis is true, then the above argument
shows that # = i, 8 = 0 in Theorem 2 are permissible.
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