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Distance Between Components in Optimal Design Problems
with Perimeter Penalization

CHRISTOPHER J. LARSEN

Abstract. We consider minimal energy configurations of mixtures of two materials
in Q c I1~2, where the energy includes a penalization of the length of the interface
between the materials. We show that the distance between any two components
of either material is positive away from the boundary.
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1. - Introduction

Many problems in materials science, such as optimal design, phase transi-
tions, liquid crystals, etc., involve interfacial energies. A model problem is the
optimal design of composites of two or more materials, with an energy penalty
on the length of the interface separating the materials. Optimal design without
such a penalty has been the subject of extensive study (see especially [8], [7],
and the English translations of these and other papers in [2]). More recently, [1] ]
and [6] independently investigated effects due to the presence of interfacial en-
ergy in a broad class of problems that includes problems of optimal design of
composites of two materials. They considered minimizing functionals of the
form 

A

where A c Q c R N is measurable, a A is a positive two-valued function taking
the smaller value in A and the larger in A~, u E H1(Q), and is the

perimeter of A in Q. In [6], this problem is considered subject to a Dirichlet
condition on u and a constraint with respect to where A meets a 0, and in [ 1 ],
a zero Dirichlet condition is assumed, but there are additional terms in the

energy motivated by problems of optimal design. A is interpreted to be the
region occupied by one material and A~ is occupied by the other, a A represents
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the conductivities of the two materials, u is the temperature, and a term of the
form -2JQfudx can be included in the energy, where f E represents
a source density (see Example 2.5 in [1]).

In this paper, we study the components of optimal sets A when Q C ~2.
First, we consider the problem of minimizing

over u E and measurable A. We take aA = 1 in A and L &#x3E; 1
in A~. Typically in optimal design, one assumes a fixed amount of the material A
(i.e., fixed measure of A). Here, we first replace this constraint with the 
term (where JAI is the Lebesgue measure of A). This eases some of the analysis,
as well as possibly reflecting the fact that in practice A would simply be the
more expensive material, resulting in an added cost of At the end of the

paper, we indicate why the I term can be replaced by a constraint on the
measure of A. As we explain below, our results are easy when there is no term
in (A I or constraint on I A 1, but instead there is a constraint involving a A n 

This energy E is in the class considered in [1]. The main results in [1] ]
are the existence of minimizers and a proof that optimal sets A are essentially
open. In fact, they prove that up to a set of HI 1 measure zero, there is no
difference between the measure theoretic boundary of A and its topological
boundary (see the proof of Theorem 2.2 in [1]). [6] proves the critical Holder
regularity u E CO,112(Q), and the partial regularity of a A.

It is our conjecture that stronger regularity holds. In particular, that op-
timal u are Lipschitz. From this, it would follow from quasiminimal surface
theory that A and its complement each occupy a finite number of connected

regions with C 1 boundaries (for a relatively quick proof that does not rely on
quasiminimal surface theory, see [5]). The idea to show u is Lipschitz is based
on the fact that Vu can only blow up at a singularity in a A . Here we show that
there cannot be singularities in a A due to boundaries of different components
intersecting, thereby demonstrating that pairs of components of either material
must be a positive distance apart in any Q’ c c Q. Note that this is simple
in the case of the problem considered in [6], since the constraint on A there
doesn’t affect compact perturbations of A. In that case, it is immediate from

equation (3.1 ) below (with C = 0) that components cannot touch. We also point
out that, in any case, it is immediate from the relative isoperimetric inequality
for Q c R" that A‘’ has a finite number of components.

Our approach is as follows. For a minimizing pair (u, A), we know from
the analysis in [6] that

for some k &#x3E; 0 and all C Q .

Furthermore, since
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u satisfies a Caccioppoli inequality. In particular, it is easy to see from Sec-
tion 2.2 of [4] that for c &#x3E; 0, there exists c’ &#x3E; 0 such that,

then

where u is the average of u over We can then study the minimization
of the functional

assuming only that u satisfies (1.2) and the above Caccioppoli inequality (1.3)
(and knowing that for a minimizer A, we have partial regularity of a A, etc.).

We first show, in Lemma 3.1, that if two components of a minimizer A meet
at a point in Q, then in small neighborhoods of this point, the components must
become elongated and fit in a relatively narrow rectangle T. In Theorem 3.3,
we then consider small disjoint balls whose union contains most of T, and
whose radii are large compared to T’s width. It follows that there must be

high concentrations of IVul2 in these balls, yet the measure of these components
of A are relatively small. Using Lemma 3.2, we show that either a significant
proportion of must "spill over" to A~ in these balls, or there must be
a quantity of A nearby besides what lies in T. In either case, it reduces E
to expand A, as this expansion either weighs more of by the lower
value of a A in A, or it consumes part of the boundaries of the other nearby
components, which outweighs the increase in perimeter caused by the expansion.
We then show that our analysis applies to components of A~ . Finally, we indicate
why our results hold if the C ~ A ~ I term is replaced by a constraint on the total
measure of A.

We note that proving a version of Lemma 3.1 for dimensions greater than 2
seems to be significantly more complicated (or even impossible), while the proof
of Lemma 3.2 is not dimension dependent (except that for Q c R , factors
of r would be replaced by factors of rN-1 ).

2. - Preliminaries and notation

For a measurable set E C Q c ~2, E I denotes its Lebesgue measure and
the perimeter of E in Q is
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We denote by Br (x ) the open ball centered at x with radius r. If PQ (E)  oo,

then we define the measure theoretic boundary 8*E in Q to be

and there exists a HI 1 measurable function vE : 8*E - S 1 satisfying

for all q5 E R~), where HI is the 1 dimensional Hausdorff measure and S’
is the unit circle. Note that we then have PQ (E) = 

It is easy to see from the definition of measure theoretic boundary that if
E = El U E2, then

and this inequality can be strict. However, it follows from the proof of The-
orem 2.2 in [1] ] that an optimal A satisfies is equivalent
to a set that is the interior of its closure, and taking A to be this open set,
we have = 0. Hence, we can consider the at most countable

components Ai of A, and write A = UA1. It follows from Lemma 3.3 and the

proof of Lemma 3.4 in [5] ] that

and this equality holds if Ai is replaced with Ai U Aj, or any union of com-
ponents. The effect of this is that if we add a set S to A, then from (2.2),

U S)  U S) ~-- and so by (2.3) U S) &#x3E;
U S). Again, the same holds if Ai is replaced with any union

of components. This fact will be used repeatedly below.

3. - Distance between components

We first study the local geometry of A near intersections of its components
in Q.

LEMMA 3.1. Let A1 be components of A, and suppose x E 
ForO  r  dist (x, aS2), we can choose components A; and o,f’Ai n Br(x) and

Aj n Br (x ) respectively, such that x E a Al n and there exists a rectangle Tr
containing A; U Ai with length 2r and width o(r).
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PROOF. Notice first that for r &#x3E; 0, only a finite number of components of
Ai n Br(x) intersect Br/2(x) (since A has finite perimeter), and so x is in the

boundary of one (or more) of these components. The same is true for Aj, and
so we can choose components A~ Aj whose boundaries contain x. For the rest
of this proof, we will write Ai for A~, etc.

Let Zi E Ai, Zj E Aj, and let I be the line segment from zi to zj and d
be the diameter of Br (x ) parallel to l . := dist (d, l ) and let 0  E  P.
Set D := Ai U Aj U B8(x), which is connected. Let r c D be a simple arc
containing x and intersecting l only at the endpoints of r, so that for a segment
l’ C l, r U l’ is a Jordan curve. We denote its interior by I, and note that I is
connected.

Take a basis vector e 1 to be parallel to l and construct 0 = Ole, + Ø2e2 E
with 10 1  1, Ø2 = 0, and I fA, I arbitrarily close to fJ. It then0 i i

follows from (2.1) that ( &#x3E; P. The same holds for Aj, and
a similar argument shows 

We then have

Adding I U to A therefore reduces perimeter by at least U

Aj]) - 2n 8 and increases E by no more than Cnr2. Hence, it must be that

It follows that f3 is o(r), and the lemma follows. D

The Holder continuity of u follows from natural modifications to the proof
in [6]. Indeed, the limits of the blow-up sequences in Lemma 2.2 of that paper
and the corresponding limits for the problem here are the same. Theorem 2,

0,1 ,

showing u E C0 2 , 1 applies here with very minor modification. In fact, we won’t

actually use Holder continuity, but rather the inequality (1.2) from which the
Holder continuity follows.

We now show that, in balls where there is a concentration of there

is a lower bound on either the proportion of A, or on how much of |VU|2
must "spill over" from A to A~. The strategy for this proof was inspired by
Lemma 2.2 in [6].

LEMMA 3.2. Given c &#x3E; 0, there exists y &#x3E; 0 such that if 0  r dist(y, 
and 

_
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then either

PROOF. Suppose to the contrary that there exists a sequence ixi, ri } such
that 

I

and

where Bi denotes B,, (xi). Define vi E HI (Bl (0)) by

where U-i i is the average of u on Bi. Also, define Ai : _ ri and now denote1

B (0) by B 1. Then

and

Notice that vi are bounded in so, for a subsequence, in

H 1 ( B 1 ) for some v. Note also that a) implies B I - 0. From b), and
since vi are bounded in it follows that - 0. Let 6 &#x3E; 0,
and choose Ts C B, measurable such that [  8 and XAi ~ 0 uniformly
on Ts. Then for i sufficiently large, Ts n Ai = 0 and we have

It follows that = 0, and so v = constant = 0 since the average
of v is 0.

We now have that vi -~ 0 in = 1. We show that

this contradicts the Caccioppoli inequality from (1.3) 
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It is easy to see that vi inherit a corresponding inequality

Since vi -~ 0 in L2(Bl), both terms in this inequality go to 0. However, we
have from (1.2) that , and so

which is a contradiction. o

We now prove our main result, a theorem showing that E can be reduced
near points in Q where boundaries of components intersect.

THEOREM 3.3. Let Ai and Aj be components of A. Then dist(Ai, &#x3E; 0 away
from 

PROOF. We suppose xo E a Ai n 8Aj n Q and show that E can be reduced
in Br (xo) for sufficiently small r. Using Lemma 3.2 with c = we find y
as specified by that lemma and for each 0  r dist(xo, aS2), we consider a
rectangle Tr guaranteed by Lemma3.1. We also will use the notation Ai for A~,
etc., as we did in the proof of Lemma 3.1. We then essentially cover the longer
axis of Tr with disjoint balls Br’ (xa), where r’ = qr and r~ is the reciprocal of
a positive integer (the number of balls) and will be specified later.

We first estimate Define A := AB(Br’/2(Xa) n (Ai U Aj)),
r /2 a

and note that replacing A with A reduces perimeter by i U 8Aj) n
and increases perimeter by which we know

from Lemma 3.1 is o (r ) . For r &#x3E; 0 small enough, 
is arbitrarily close to 4 (or is greater than 4), while 
is arbitrarily close to zero. Hence, for r small enough, replacing A with A
reduces perimeter by at least r’. However, this replacement shifts some Dirichlet
energy off of A, resulting in an increase in energy of no more than

Since this replacement cannot reduce E, we must have

and so
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Now consider the smallest rectangle T’ enclosing all the balls Br’ (xa). If
we add this set to A, perimeter is increased by no more than 4r’ and I is
increased by no more than 4Crr’. We now show that this is more than offset

by the total reduction in E.
To see the reduction in each ball, consider one of the balls and

suppose first inequality ii) of Lemma 3.2 holds. Then adding T’ to A reduces
energy in this ball by at least (L - Next, suppose inequality i) holds.
Since

it must be that, for r sufficiently small,

Hence, denoting by B one of the two components of

the relative isoperimetric inequality (see, e.g., Theorem 2 (ii) in Section 5.6.2
of [3], Theorem 5.4.3 in [9]), it follows that

where c is the constant from this isoperimetric inequality. Adding T’ to A

removes this boundary, and so reduces E in this ball by at least

Setting

as T’ contains ) balls, there is a total reduction of at least!!! r’. Finally, since17 17

E7r’ &#x3E; 4r’ +4Crr’ for q sufficiently small, E is reduced by adding T’ to A. This
contradicts (u, A) being a minimizer, and it must be that aA~ =0. D

If Oi, Oj are components of A~, it is not hard to extend the previous
analysis to show that they too cannot meet. Considering a ball of radius r

centered at a point in a Oi n 80j, an argument similar to Lemma 3.1 shows
that a component of A in this ball must be contained in a rectangle Tr as

specified by that lemma. Theorem 3.3 then applies just as for intersections of
a Ai and 8Aj .

Lastly, we sketch why this analysis holds when the term I is replaced
by a constraint on JAI. Throughout, the role of C I A I has been to provide the
ability to make small additions to A with a cost proportional to area, and this
cost has been overcome by other energy reductions. If A ~ I is constrained, such
additions are not possible. However, it is enough to show that, for a minimizer
(u, A) of the constrained problem, the small additions to A can be achieved by
removing the same amount of A from elsewhere. As long as this can be done
with a cost bounded by a constant times the measure of the removed set, our
analysis holds for the constrained problem.
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From [6], we know that ~ 1 almost every point in a A has a neighborhood
in which a A is Consider such a point x, and choose r &#x3E; 0 such that
a A f1 Br (x) can be considered the graph of a function f : [-r, r] - I1~,
with A the epigraph of f. If f is not concave, then some of A can be removed
while reducing perimeter. Since within this ball Vu e L 00, removing a subset
of A from this ball increases the first term of E in proportion to the measure
of the subset. Hence, we need only consider the case where any removal of A
increases perimeter, i.e., f is concave (and so it has negative mean curvature).
If we then keep u fixed, add a I term, and minimize over only variations
of f, a simple calculation shows that for C big enough, for the new minimizing
function f and corresponding set A, the mean curvature of f will be less than
that of f, so f &#x3E; f. Hence, i will have less area by AA, will be

larger by Al, and so so that if A is replaced
by A in the constrained problem, the energy cost per area is bounded by C. We
note that the idea behind these calculations is similar to that for the existence
of Lagrange multipliers for the constrained problem.
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