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A Parabolic Quasi-Variational Inequality
Arising in a Superconductivity Model

JOSÉ FRANCISCO RODRIGUES - LISA SANTOS

Abstract. We consider the existence of solutions for a parabolic quasilinear prob-
lem with a gradient constraint which threshold depends on the solution itself. The
problem may be considered as a quasi-variational inequality and the existence of
solution is shown by considering a suitable family of approximating quasilinear
equations of p-Laplacian type. A priori estimates on the time derivative of the
approximating solutions and on the nonlinear diffusion coefficients are used in the
passage to the limit, as well as a suitable sequence of convex sets with variable
gradient constraint. The asymptotic behaviour as t -~ oc is also considered, and
the solutions of the quasi-variational inequality are shown to converge, at least
for subsequences, to a solution of a stationary quasi-variational inequality. These
results can be applied to the critical-state model of type-II superconductors in
longitudinal geometry.

Mathematics Subject Classification (1991): 35K85 (primary), 35K55, 35R35
(secondary).

1. - Introduction

In a critical-state model of type-II superconductors with a longitudinal
geometry, the main unknown is the magnetic field H = (o, 0, u (x, t)), where
x = (XI, x2) E S2 c JR2. By Maxwell’s equations,

where E denotes the electric field, the unknown density of the induced current
J is given by 

, -

In some superconductivity models (see [3]), it is assumed that the electric
field E inside the superconductor depends on the current density J through
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a power law (which generalizes the classical Ohm’s law E = p J) with the
scalar resistivity given by p = P(Ijl) = po1JIP-2 = where po &#x3E; 0
is a constant and p &#x3E; 2. Hence, the Maxwell’s equation for the longitudinal
component of the magnetic field implies that u = u (x, t) satisfies the two-
dimensional quasilinear parabolic equation

In Bean’s critical-state model (see [ 11 ]), the current density cannot exceed
the critical value jc &#x3E; 0 and it has been suggested that this threshold may also
depend on )H) I (see Kim et al. [6]).

The constitutive relation for E is then modified to

being ~. &#x3E; 0 an unknown Lagrange multiplier.
Imposing initial and boundary conditions (in a bounded domain S2 in R 2),

it may be easily shown that this problem is equivalent to the following quasi-
variational inequality (for details about this derivation see [II], where only the
degenerate case po = 0 was considered) to a new variable h = u - he,

being

where h e = he(t) is related to the density of external currents, as well as f ’ .
This model is the main motivation for the study of this new type of quasi-

variational inequalities. This kind of problems seem not well studied in the
literature and are not considered, for instance, in the classical references on

quasi-variational inequalities [1] or [2]. Recent works in this area are, for

example, the modelling works [10], [11] or a very special case of a one-
dimensional quasi-variational inequality considered in [7].

In Section 2 we present the main results of this paper, a result on the
existence of solutions for the quasi-variational inequality and a result about the
asymptotic behaviour in time of these solutions.

In Section 3 we consider a family of approximating solutions and we
establish apriori estimates. Section 4 includes the passage to the limit in the

family of solutions of the approximated problems, concluding with the proof
of the existence of at least a solution for the quasi-variational inequality in the
N-dimensional case.

Section 5 studies the asymptotic behaviour in time of the solutions, which,
in particular, also yields the existence of a solution to the corresponding elliptic
quasi-variational inequality, extending a result of [8].
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2. - Main results

Let Q be a bounded, open subset of R , with smooth boundary and
let Let

denote the spatial gradient and suppose that F, f’ and h are
---1 1 

given functions such that

where denotes the p-Laplacian, and
denote the spaces of bounded measures in S2 and Q T , re-

spectively, and We also denote by
the space of Lipschitz functions that vanish on

Given i we can define a convex set

and the quasi-variational problem as follows:

To find u in an appropriate class of functions, such that:

Our first aim is to prove existence of a solution to the problem (5). For

that, we consider, for 8 &#x3E; 0, fE, h, and F, smooth functions approximating,
respectively, f, h and F in the norms of for any q  o0W6, (0),
and in , with independent of s)
and a CL function R - R, non decreasing and such that

We consider a sequence of the following approximated problems
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We noticed that a similar approximation was introduced by Gerhardt (see
[5]) in the treatment of the elastic-plastic torsion problem with multiply con-
nected cross-section, which is an elliptic variational inequality and it was also
used for studying a parabolic variational inequality with gradient constraint
in [12].

THEOREM 1. With the assumptions (1), (2) and (3), for any 1  p  00,

the problem (5) has at least a solution u belonging to T ; n

C°(QT), such that ut e T; M(Q)). In addition, u is the weak limit in

T ; (for any q  of a of solutions of the
family of approximated problems (7), u£n ~~ u in C°(QT) and also utn -1 

n

T ; M(Q)) weak-*.

REMARK 1. Since _u is continuous and bounded, for each t e [0, T ],
C C and the first integral of the left hand side of (5)

should be understood in the duality sense between and taking
into account that is a.e. a bounded measure.

Consider now the corresponding stationary quasi-variational inequality:

where we assume F satisfies (1) and

Existence of a solution of the problem (8) may be proved as in [3].
We may also consider the problem (5) with T = +00. Then we have the

following
THEOREM 2. Suppose that the assumption (2) is satisfied for T = +00, i. e.,

there exists C &#x3E; 0 such that

and, in addition,

Let u denote a solution of the problem (5). Then there exists a sequence {tn }n,
and a function 1
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3. - The approximating problems

Let us consider the family of approximated problems defined by (7).
PROPOSITION 1. With the assumptions (1), (2) and (3), the problem (7) has a

unique solution

PROOF. This is a direct consequence of well known results for quasilinear
parabolic equations (see [9]). D

We shall establish some a priori estimates for the solutions of the approx-
imated problems.

LEMMA 1. Suppose that ( 1 ), (2) and (3) are satisfied and that u’ is the solution
of the problem (7). Then there exists a constant M &#x3E; 0 independent Of E E ]0, 1 [
such that

PROOF. This estimate is a consequence of the assumptions and global bound-
edness for weak solutions of the Dirichlet problem for quasilinear degenerate
parabolic equations (see [4] and its references). We need only to remark that in
(7) 1 and this is the crucial fact for deriving the weak maximum principle
estimate. D

REMARK 2. We remark that the constant M that appears in (12) depends
on T only through IIf(t)IILOO(Q), and therefore it will be independent of T if
f E oo ; L’(0)) = i.e., under the assumption (9).

LEMMA 2. Suppose that ( 1 ), (2) and (3) are satisfied and u’ is the solution of
the problem (7). Then there exists a constant C &#x3E; 0 independent of 8 E ]0, 1 [ such
that

PROOF. We differentiate the equation of the approximated problem (7) in
order to t and set v = ul. Then

Consider the sign function, denoted by sgn° and defined as follows:
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Let ; , be a sequence of C2 functions, approximating pointwise
sgn" when 3 - 0, such that

Notice that, if then

I 
Multiply 

- 

the equation (13) by and integrate over Qt. Then, since
and we have

Notice that, since k, is monotone nondecreasing,

and
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On the other hand,

For p &#x3E; 2, obviously, the second member of this equation is nonnegative.
For 1  p  2, using Cauchy-Schwartz inequality, we have

So, since neglecting the nonnegative terms of (14)

and letting in (14), we obtain

and so

where C &#x3E; 0 may be chosen independent of 8. 0

LEMMA 3. Suppose that assumptions ( 1 ), (2) and (3) are satisfied and uE is the
solution to the problem (7). Then there is a constant C &#x3E; 0 independent of 8 E]O, 1 [
such that

PROOF. We consider the first equation of the problem (7), multiply it by u’
and integrate over QT. Then
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Since f £ and u’ are uniformly bounded, independently of 8, in

and, since ut is uniformly bounded in , by Lemma 2,

and so, it follows that

But, on the other hand,

because in we have and in

So, we conclude

LEMMA 4. Suppose that the assumptions ( 1 ), (2) and (3) are satisfied and US is
the solution of the problem (7). Then, for any q E [ 1, there exists a constant

Cq &#x3E; 0 independent of £ E ]0, 1 [ such that

PROOF. We know, from (16), that there exists a constant C, independent of
E, such that, for any E E ]0, 1 [,
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So, we have

Recalling that

we obtain, for each

Given q E N, we have

Since there exists a constant M &#x3E; 0, not depending on s, such that

M, we can estimate the first integral in the second member

of (18) as follows:

On the other hand the second integral of the second member of (18) satisfies

where Dj is a constant independent of E.
So, using (17), we easily conclude that

depending on q, but not on 8 .
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4. - The limiting process and further remarks

In this section we will let E -~ 0 and prove that if we define

we have, at least for a subsequence E ~ 0, for any given v(t) E for every
t E I, the convergence of a sequence of functions vB, with vB (t) E lKuS(t), to
the function v, when s - 0. 

1

Recalling Lemma 4, let u be the weak limit in
of a subsequence of

Then

LEMMA 5. Suppose that the assumptions ( 1 ), (2) and (3) are satisfied and that
u£ is the solution of the problem (7). Let (t) be the convex set defined in ( 19) and
u the function defined in (20), weak limit in Lq (0, T ; Wo’q (Q)) of the subsequence

Then for any ) such that ) for
there exists a

such that

PROOF. Since there are constants C, and Cq such that

(for q &#x3E; N), by a well known compactness theorem ([13], page 84), is

relatively compact in C([0, T]; C(Q)) and so, at least for another subsequence
of the subsequence in (20), still denoted by E - 0, we have

and therefore also

Let and notice that
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Define and, given such that

define

Then,

because

So, we have i for a.e. and

since

uniformly in

PROOF OF THEOREM 1. Recalling (20) and (21), for some subsequence
we have

and, besides that, this subsequence may be chosen in such a way that

Now, given for we have



164

since, by monotonicity,

Given such that for a.e.

we consider as in Lemma 5. Since

multiplying the equation and integrating over
we have

and letting 8 ~ 0, since v’ - v in strongly, we obtain

Since s and t are arbitrary, we may conclude

It still remains to prove that a.e.. in Q, for a.e.
If we prove this, a variant of Minty’s lemma will show that (22) implies (5).

To prove that F(u(t)) a.e. in 0, for a.e. t E I is equivalent to
prove that the set f (x , t ) E Q T : ~ I &#x3E; F (u (x , t ) ) ~ has measure zero.

We recall from Lemma 3 that

Given 8 E ]0, 1 [ and M E R+, M &#x3E; ~, we define

and then, since in AM,s, we have
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where A ~ I denotes the Lebesgue measure of the set A in
So we have
II

and, choosing M = we get

and

being D a constant that bounds from above

independently of E. -
So, in Q T or, equivalently,

Substitute now in (22), for where w

belongs to ]0, 1] ] and divide both members by 0. We obtain

Letting 0 ~ 0 we conclude that u is a solution to the quasivariational
inequality (5). D

5. - Asymptotic behaviour in time

Consider T = +00. We first show that there exists a global solution of the
quasivariational inequality (5) when T = +00 and then, in some sense, there

exists a limit function, when t ~ solution of a stationary quasivariational
inequality.
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LEMMA 6. Suppose that (9) is satisfied. Then the problem (5) has a solution u
such that

being u the weak limit in (for any q  (0) of a subse-
quence of solutions of the family of approximated problems (7), ut ~ ut
in L°°(0, M(S2)) weak-* and, for all T &#x3E; 0, there exists a subsequence of
8 --~ 0, called 8T --+ 0, such that UBT - u in CO(QT). In addition, we have the

ET
estimate

PROOF. The assumption (9) implies that the estimates of Lemmas 1 and 2

may be obtained when T = + oo . The Ll boundedness of independently
of s and T and its boundedness in +oo; can also be obtained

easily from the boundedness of in .

which can be obtained as in Lemma 3, integrating only on S2, for a.e. t E [0, T].
So, we can pass to the limit in a subsequence E - 0 and get a function

which is the weak-limit
of US in these spaces.

The uniform convergence of a subsequence of US is obtained only in

C° ( QT ), for each T, which is enough to pass to the limit in the approximated
problem and to obtain that u is a solution of the quasivariational inequality for
almost every t E R+

In order to show (23) we multiply the approximated equation (7) by 
and, arguing as in the proof of Lemma 2, we obtain, after letting 5-~0,

for any

Using (15) we obtain

and letting E ~ 0 we conclude (23). 0

PROOF oF THEOREM 2. Let u be a solution of the problem (5), with T =
+oo.

Since



167

and

we have

and so, for a subsequence (tn)n, tn ~’ +00 and some function UOO E 1

n

we have 
-~ _ 1 -~ -

Since for every measurable subset o) C S2 we have

we find that

and, therefore, we have

It remains to show that M~ satisfies the inequality in (8).
By monotonicity, we rewrite (5) for a.e. t E R+ in the form

We consider a given function ~o satisfying

and we define, for 0  6  1,

with w °’° arbitrarily given in OCuoo.
We have

and, since uniformly, there exists no E N such that
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and so,

Substituting in (25), at time tn, v by ve obtain

and, letting tn ~ we obtain

since in weak and and the assump-

tions (9) and (10). Letting now 6 - 0, we get

and, applying Minty’s lemma, we see that u °° is a solution to the problem (8),
since we have already proved that UOO E Kuoo. D
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