@article{ASNSP_2001_4_30_1_97_0, author = {Metafune, Giorgio}, title = {$L^p$-spectrum of {Ornstein-Uhlenbeck} operators}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {97--124}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 30}, number = {1}, year = {2001}, mrnumber = {1882026}, zbl = {1065.35216}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2001_4_30_1_97_0/} }
TY - JOUR AU - Metafune, Giorgio TI - $L^p$-spectrum of Ornstein-Uhlenbeck operators JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2001 SP - 97 EP - 124 VL - 30 IS - 1 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2001_4_30_1_97_0/ LA - en ID - ASNSP_2001_4_30_1_97_0 ER -
%0 Journal Article %A Metafune, Giorgio %T $L^p$-spectrum of Ornstein-Uhlenbeck operators %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2001 %P 97-124 %V 30 %N 1 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2001_4_30_1_97_0/ %G en %F ASNSP_2001_4_30_1_97_0
Metafune, Giorgio. $L^p$-spectrum of Ornstein-Uhlenbeck operators. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 30 (2001) no. 1, pp. 97-124. http://archive.numdam.org/item/ASNSP_2001_4_30_1_97_0/
[1] Gaussian estimates and interpolation of the spectrum in LP, Differential Integral Equations 7 (1994), 1153-1168. | MR | Zbl
,[2] Spectral properties of the operator equation A X + X B = Y, Quart. J. Math. Oxford Ser. (2) 45 (1994), 133-149. | MR | Zbl
- - ,[3] L'hypercontractivite et son utilisation en theorie des semi-groupes, in: D. Bakry, R. D. Gill, S. A. Molchanov, Lectures on probability theory, Springer LNM 1581, (1992), 1-114. | MR | Zbl
,[4] The spectrum of the Cesaro operator, Acta Sci. Math. 29 (1968), 31-34. | MR | Zbl
,[5] Elliptic and parabolic equations in Rn with coefficients having polynomial growth, Comm. Partial Differential Equations 21 (1996), 281-317. | MR | Zbl
,[6] On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal. 131 (1995), 94-114. | MR | Zbl
- ,[7] Ergodicity for Infinite Dimensional Systems", Univ. Press, Cambridge, 1996. | MR | Zbl
- , "[8] L1 properties of intrinsic Schrödinger semigroups, J. Funct. Anal. 65 (1986), 126-146. | MR | Zbl
- ,[9] On Analyticity of Ornstein- Uhlenbeck semigroups, Rend. Mat. Acc. Lincei (9) 10 (1999), 131-140. | MR | Zbl
,[10] Hypoelliptic differential operators of second order, Acta Math. 119 (1967), 147-171. | MR | Zbl
,[11] One-parameters Semigroup for Linear Evolution Equations", 194 Springer Graduate Texts in Mathematics, 2000. | MR | Zbl
- , "[12] Asymptotic Expansions", Dover, 1956. | MR | Zbl
, "[13] Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in Rn, Ann. Scuola Norm. Sup. Pisa Cl. Sc. (4) 24 (1997), 133-164. | EuDML | Numdam | MR | Zbl
,[14] On the Ornstein-Uhlenbeck operator in L 2 spaces with respect to invariant measures, Trans. Amer. Math. Soc. 349 (1997), 155-169. | MR | Zbl
,[15] Generation of smoothing semigroups by elliptic operators with unbounded coefficients in Rn,, Rend. Istit. Mat. Univ. Trieste 28 (1997), 251-279. | MR | Zbl
- ,[16] Optimal L∞ and Schauder estimates for elliptic and parabolic operators with unbounded coefficients, In: Proc. Conf. "Reaction-diffusion systems" G. Caristi - E. Mitidieri (eds.), Lecture notes in pure and applied mathematics 194, M. Dekker (1998), 217-239. | Zbl
- ,[17] Note sur ler processus d'Ornstein-Uhlenbeck, Seminaire de probabilités XVI, Springer LNM 920 (1982), 95-133. | EuDML | Numdam | MR | Zbl
,[18] Norm discontinuity of Ornstein-Uhlenbeck semigroups, Semigroup Forum 59 (1999), 389-403. | MR | Zbl
- ,[19] Introduction to Fourier Analysis on Euclidean Spaces", Princeton Univ. Press, 1971. | MR | Zbl
- , "[20] A course of Modem Analysis", Cambridge Univ. Press, Cambridge, 1927. | JFM
- , "[21] The stability of positive semigroups on L p spaces, Proc. Amer. Math. Soc. 123 (1995), 3089-3094. | MR | Zbl
,