L P -uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 30 (2001) no. 2, p. 285-309
@article{ASNSP_2001_4_30_2_285_0,
     author = {Liskevich, Vitali and R\"ockner, Michael and Sobol, Zeev and Us, Oleksiy},
     title = {$L^P$-uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 30},
     number = {2},
     year = {2001},
     pages = {285-309},
     zbl = {1072.35196},
     mrnumber = {1895713},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2001_4_30_2_285_0}
}
Liskevich, Vitali; Röckner, Michael; Sobol, Zeev; Us, Oleksiy. $L^P$-uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 30 (2001) no. 2, pp. 285-309. http://www.numdam.org/item/ASNSP_2001_4_30_2_285_0/

[1] S. Albeverio - YU.G. Kondratiev - M. Röckner, An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Anal. 1 (1992), 307-317. | MR 1245233 | Zbl 0808.47021

[2] S. Albeverio - Yu G. Kondratiev - M. Röckner, Addendum to: An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Anal. 2 (1993), 195-198. | MR 1246751 | Zbl 0808.47022

[3] S. Albeverio - Yu. G. Kondratiev - M. Röckner, Dirichlet operators via stochastic analysis, J. Funct. Anal. 128 (1995), 102-138. | MR 1317712 | Zbl 0820.60042

[4] G. Da Prato - L. Tubaro, Self-adjointness of some infinite dimensional elliptic operators and application to stochastic quantization, Prob. Th. Rel. Fields 118 (2000), 131-145. | MR 1785456 | Zbl 0971.47019

[5] A. Eberle, "Uniqueness and non-uniqueness of singular diffusion operator", Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1999. | MR 1734956

[6] M. Fukushima - Y. Oshima - M. Takeda, "Dirichlet forms and symmetric Markov processes", de Gruyter, Berlin- New York, 1994. | MR 1303354 | Zbl 0838.31001

[7] Yu G. Kondratiev - T.V. Tsikalenko, Dirichlet operators and associated differential equations, Selecta Mathematica Sovetica 10 (1991), 345-397. | Zbl 0755.35144

[8] V.A. Liskevich - M. Röckner, Strong uniqueness for a class of infinite dimensional Dirichlet operators and applications to stochastic quantization, Ann. Scuola. Norm. Sup. Pisa Cl. Sci (4) 27 (1998), 69-91. | Numdam | MR 1658889 | Zbl 0953.60056

[9] V.A. Liskevich - M. Röckner - Z. Sobol, Dirichlet operators with variable coefficients in LP spaces of functions of infinitely many variables, Infinite Dim. Anal., Quantum Prob. and Related Topics, No.4, 2 (1999), 487-502. | MR 1810809 | Zbl 1043.47507

[10] V.A. Liskevich - Yu. A. Semenov, Dirichlet operators: a-priori estimates and uniqueness problem, J. Funct. Anal. 109 (1992) 199-213. | MR 1183610 | Zbl 0788.47041

[11] A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems", Birkhäuser, Basel-Boston- Berlin, 1995. | MR 1329547 | Zbl 0816.35001

[12] Z.M. Ma - M. Röckner, "Introduction to the theory of (non-symmetric) Dirichlet forms", Springer-Verlag, Berlin-Heidelberg -New-York-London- Paris-Tokio, 1992. | MR 1214375 | Zbl 0826.31001

[13] R. NAGEL (editor), "One-parameter Semigroups of Positive Operators", Lecture Notes in Mathematics, vol. 1184, Sringer, Berlin, 1986. | Zbl 0585.47030

[14] L. Schwartz, "Radon measures on arbitrary topological space and cylindrical measures", Oxford University Press, London, 1973. | MR 426084 | Zbl 0298.28001