We consider a class of two-dimensional Ginzburg-Landau problems which are characterized by energy density concentrations on a one-dimensional set. In this paper, we investigate the states of vanishing energy. We classify these zero-energy states in the whole space: They are either constant or a vortex. A bounded domain can sustain a zero-energy state only if the domain is a disk and the state a vortex. Our proof is based on specific entropies which lead to a kinetic formulation, and on a careful analysis of the corresponding weak solutions by the method of characteristics.
@article{ASNSP_2002_5_1_1_187_0, author = {Jabin, Pierre-Emmanuel and Otto, Felix and Perthame, Beno\^It}, title = {Line-energy {Ginzburg-Landau} models : zero-energy states}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {187--202}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {1}, year = {2002}, mrnumber = {1994807}, zbl = {1072.35051}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2002_5_1_1_187_0/} }
TY - JOUR AU - Jabin, Pierre-Emmanuel AU - Otto, Felix AU - Perthame, BenoÎt TI - Line-energy Ginzburg-Landau models : zero-energy states JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 187 EP - 202 VL - 1 IS - 1 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2002_5_1_1_187_0/ LA - en ID - ASNSP_2002_5_1_1_187_0 ER -
%0 Journal Article %A Jabin, Pierre-Emmanuel %A Otto, Felix %A Perthame, BenoÎt %T Line-energy Ginzburg-Landau models : zero-energy states %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 187-202 %V 1 %N 1 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2002_5_1_1_187_0/ %G en %F ASNSP_2002_5_1_1_187_0
Jabin, Pierre-Emmanuel; Otto, Felix; Perthame, BenoÎt. Line-energy Ginzburg-Landau models : zero-energy states. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 1, pp. 187-202. http://archive.numdam.org/item/ASNSP_2002_5_1_1_187_0/
[1] Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327-355. | MR | Zbl
- - ,[2] On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for grasient fields, Proc. Roy. Soc. Edinburgh 129A (1999), 1-17. | MR | Zbl
- ,[3] “Ginzburg-Landau vortices”, Progress in Nonlinear Differential Equations and their Applications, Birkhauser, 1994. | MR | Zbl
- - ,[4] Théorèmes de trace pour les espaces de fonctions de la neutronique, C.R. Acad. Sci. Paris Sér. I 299 (1984), 834 and 300 (1985), 89. | MR | Zbl
,[5] A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh 131 (2001), 833-844. | MR | Zbl
- - - ,[6] Magnetic microstructures, a paradigm of multiscale problems, Proceedings of ICIAM, to appear. | Zbl
- - - ,[7] “Geometric measure theory”, Springer-Verlag, 1969. | MR | Zbl
,[8] A reverse isoperimetric inequality, stability and extremal theorems for plane curves with bounded curvature, Rocky Mountain J. Math. 25 (1995), n. 2, 635-684. | MR | Zbl
- ,[9] Compactness in Ginzburg-Landau energy by kinetic averaging, Comm. Pure Appl. Math. 54 (2001), 1096-1109. | MR | Zbl
- ,[10] Singular perturbation and the energy of folds, J. Nonlinear Sci 10 (2000), 355-390. | MR | Zbl
- ,[11] Limiting domain wall energy in micromagnetism, Comm. Pure Appl. Math. 54 (2001), 294-338. | MR | Zbl
- ,[12] Compactness, kinetic formulation, and entropies for a problem related to micromagnetics, preprint (2001). | MR | Zbl
- ,[13] Solutions of the Boltzmann equation, In: “Pattern and waves”, North-Holland 1986. | MR | Zbl
,[14] Strong traces for solutions to multidimensional scalar conservation laws, Arch. Rational Mech. Anal., to appear. | MR | Zbl
,