We provide a local classification of selfdual Einstein riemannian four-manifolds admitting a positively oriented hermitian structure and characterize those which carry a hyperhermitian, non-hyperkähler structure compatible with the negative orientation. We show that selfdual Einstein 4-manifolds obtained as quaternionic quotients of and are hermitian.
@article{ASNSP_2002_5_1_1_203_0, author = {Apostolov, Vestislav and Gauduchon, Paul}, title = {Selfdual {Einstein} hermitian four-manifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {203--243}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {1}, year = {2002}, mrnumber = {1994808}, zbl = {1072.53006}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2002_5_1_1_203_0/} }
TY - JOUR AU - Apostolov, Vestislav AU - Gauduchon, Paul TI - Selfdual Einstein hermitian four-manifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 203 EP - 243 VL - 1 IS - 1 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2002_5_1_1_203_0/ LA - en ID - ASNSP_2002_5_1_1_203_0 ER -
%0 Journal Article %A Apostolov, Vestislav %A Gauduchon, Paul %T Selfdual Einstein hermitian four-manifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 203-243 %V 1 %N 1 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2002_5_1_1_203_0/ %G en %F ASNSP_2002_5_1_1_203_0
Apostolov, Vestislav; Gauduchon, Paul. Selfdual Einstein hermitian four-manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 1, pp. 203-243. http://archive.numdam.org/item/ASNSP_2002_5_1_1_203_0/
[1] Compact Self-dual Hermitian Surfaces, Trans. Amer. Math. Soc. 348 (1996), 3051-3063. | MR | Zbl
- - ,[2] The Riemannian Goldberg-Sachs Theorem, Int. J. Math. 8 (1997), 421-439. | MR | Zbl
- ,[3] “Almost Kähler Geometry”, Ph.D. Thesis, Oxford, 1998.
,[4] Self-duality in four dimensional geometry, Proc. Roy. Soc. London, A 362 (1979), 425-461. | MR | Zbl
- - ,[5] Sur de nouvelles variétés riemanniennes d'Einstein, Publications de l'Institut É. Cartan (Nancy) 4 (1982), 1-60. | Zbl
,[6] “Einstein manifolds”, Ergeb. Math. Grenzgeb.3, Folge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987. | MR | Zbl
,[7] Les variétés de dimension à signature non nulle dont la courbure est harmonique sont d’Einstein, Invent. Math. 63 (1981), 263-286. | MR | Zbl
,[8] Killing vectors in self-dual Euclidean Einstein spaces, J. Math. Phys. (1982), 1126-1130. | MR | Zbl
- ,[9] Conformal duality and compact complex surfaces, Math. Ann. 274 (1986), 517-526. | MR | Zbl
,[10] A note on hyper-Hermitian four-manifolds, Proc. Amer. Math. Soc. 102 (1988), 157-164. | MR | Zbl
,[11] Self-dual and anti-self-dual Hermitian metrics on compact complex surfaces, In “Mathematics and General Relativity”, Proceedings, Santa Cruz 1986, J. Isenberg (ed.), Contemp. Math. 71 (1988), 105-114. | MR | Zbl
,[12] Bochner-Kähler metrics, J. Amer. Math. Soc. 14 (2001) 623-715. | MR | Zbl
,[13] The Faraday 2-form in Einstein-Weyl geometry, Math. Scand. 89 (2001) 97-116. | MR | Zbl
,[14] The geometry of the Toda equation, J. Geom. Phys. 36 (2000) 152-162. | MR | Zbl
,[15] “Selfdual Einstein metrics and conformal submersions”, Edinburgh Preprint MS-00-001 (2000), available at arXiv: math.DG/0001041.
,[16] Einstein metrics, hyper-complex structures and the Toda field equation, Differential Geom. Appl. 14 (2001) 199-208. | MR | Zbl
- ,[17] Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics, Ann. Inst. Fourier 50 (2000), 921-963. | Numdam | MR | Zbl
- ,[18] “Selfdual Einstein metrics with torus symmetry”, Edinburgh Preprint MS-00-022 (2000), available at arXiv:math.DG/0105263. | MR | Zbl
- ,[19] Some topological obstructions to Bochner-Kähler metrics and their applications, J. Differential Geom. 13 (1978), 574-588. | MR | Zbl
,[20] Kähler-Einstein metrics with SU(2) action, Math. Proc. Cambridge Philos. Soc. 115 (1994), 513-525. | MR | Zbl
- ,[21] Exemples de métriques de Kähler et d'Einstein autoduales sur le plan complexe, In: “Géometrie riemannienne en dimension 4”, Séminaire Arthur Besse, L. Bérard-Bergery, M. Berger C. Houzel (eds.), CEDIC/Fernand Nathan, 1981. | Zbl
,[22] Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), 405-433. | Numdam | MR | Zbl
,[23] Local constraints on Einstein-Weyl geometries, J. reine angew. Math. 491 (1997), 183-198. | MR | Zbl
- ,[24] A generalization of the momentum mapping construction for quaternionic-Kähler manifolds, Comm. Math. Phys. 108 (1987), 108, 117-138. | MR | Zbl
,[25] New metrics with holonomy, Nucl. Phys. B 289 (1987), 573.
,[26] Quaternionic Reduction and Quaternionic Orbifolds, Math. Ann. 282 (1988), 1-21. | MR | Zbl
- ,[27] La -forme de torsion d’une variété hermitienne compacte, Math. Ann. 267 (1984), 495-518. | MR | Zbl
,[28] Structures de Weyl-Einstein, espaces de twisteurs et variétés de type , J. reine angew. Math. 469 (1995), 1-50. | MR | Zbl
,[29] Complex structures on compact conformal manifolds of negative type, In: “Complex Analysis and Geometry”, V. Ancona, E. Ballico and A. Silva (eds.), Marcel Dekker, New York-Basel-Hong Kong, 1996, 201-212. | MR | Zbl
,[30] Connexion canonique et structures de Weyl en géométrie conforme, Preprint (unpublished).
,[31] Hyper-Hermitian metrics with symmetry, J. Geom. Phys. 25 (1998), 291-304. | MR | Zbl
- ,[32] Classification of Gravitational Instanton Symmetries, Comm. Math. Phys. 66 (1979), 291-310. | MR
- ,[33] Self-duality of Kähler surfaces, Compositio Math. 51 (1984), 265-273. | Numdam | MR | Zbl
,[34] Minitwistor spaces and Einstein-Weyl spaces, Class. Quantum Grav. 2 (1985), 565-577. | MR | Zbl
- ,[35] Explicit construction of self-dual -manifolds, Duke Math. J. 77 (1995), 519-552. | MR | Zbl
,[36] Counter-example to the generalized positive action conjecture, Comm. Math. Phys. 118 (1988), 591-596. | MR | Zbl
,[37] C. LeBrun, private communication.
[38] Einstein-Weyl structures in the conformal classes of LeBrun metrics, Class. Quantum Grav. 14 (1997), 2635-2645. | MR | Zbl
,[39] “Einstein equations and Cauchy-Riemann geometry”, Ph.D. Thesis, SISSA/ ISAS, Trieste, 1993.
,[40] Einstein metrics, spinning top motions and monopoles, Math. Ann. 274 (1986), 35-59. | MR | Zbl
,[41] Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature, J. reine angew. Math. 441 (1993), 99-113. | MR | Zbl
- ,[42] Hermite-Einstein four-dimensional manifolds with symmetry, Class. Quantum Grav. 15 (1998), 1721-1735. | MR | Zbl
- ,[43] Locally Kähler gravitational instantons, Acta Phys. Pol. B 14 (1983), 637-661. | MR
- ,[44] Special structures on four-manifolds, Riv. Mat. Univ. Parma 17 (4) (1991), 109-123. | MR | Zbl
,[45] “Riemannian geometry and holonomy groups”, Pitman Research Notes in Mathematics Series, 201, New York, 1989. | MR | Zbl
,[46] Cohomogeneity-one metrics with self-dual Weyl tensor, In “Twistor Theory”, S. Huggett (ed.), Marcel Dekker, New York (1995), 171-184. | MR | Zbl
,[47] Scalar-flat Kähler and hyper-Kähler metrics from Painlevé-III, Class. Quantum Grav. 12 (1995), 1535-1547. | MR | Zbl
,[48] The -Toda field equation and special four-dimensional metrics, In: “Geometry and Physics”, J. E. Andrsen, J. Dupont, H. Pedersen and A. Swann (eds.), Marcel Dekker, New York (1997), 307-312. | MR | Zbl
,[49] Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398. | MR | Zbl
- ,[50] On locally and globally conformal Kähler manifolds, Trans. Amer. Math. Soc. 262 (1980), 533-542. | MR | Zbl
,[51] Some curvature prperties of complex surfaces, Ann. Mat. Pura Appl. 32 (1982), 1-18. | MR | Zbl
,[52] On the pseudo-conformal geometry of a Kähler manifolds, Math. Z. 157 (1977), 265-270. | MR | Zbl
,