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Curvature Flows on Surfaces

MICHAEL STRUWE

Abstract. Prompted by recent work of Xiuxiong Chen, a unified approach to
the Hamilton-Ricci and Calabi flows on a closed, compact surface is presented,
recovering global existence and exponentially fast asymptotic convergence from
concentration-compactness results for conformal metrics.
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1. – Introduction

Let (M, g0) be a compact Riemann surface without boundary. Consider
the normalized Hamilton-Ricci flow

(1)
∂g

∂t
= rg − Ric = (r − R)g,

where R is the scalar curvature of g with average r and where Ric = Rg is
the Ricci curvature of g. Since Ric is proportional to g, the flow (1) generates
a flow of conformal metrics g(t) of fixed volume. Hamilton [14] and Chow
[11] established global existence and exponential convergence for this flow. The
most difficult case is the case when M is the sphere S2. For this case a simpler
proof of the above result was later given by Bartz-Struwe-Ye [4] along the lines
of Ye’s [22] proof of the corresponding result for the Yamabe flow in higher
dimensions.

Also consider the Calabi flow

(2)
∂g

∂t
= �g K · g,

where �g is the Laplace-Beltrami operator on (M, g) – with the analysts’ sign!
– and where K = R/2 is the Gauss curvature. Again, (2) generates a flow of
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conformal metrics g(t) of fixed volume. Surprisingly, equation (2) also has a
physical interpretation which is apparently unrelated to its differential geometric
origins (Calabi [7]). Solutions to equation (2) describe the time evolution of the
compact factor in a Robinson-Trautman [18] solution to the Einstein equations.
Using the a-priori bounds on solutions that derive from this interpretation, in
particular, Singleton’s [20] Bondi mass estimate, Chrusciel [12] deduced global
existence and exponential convergence of solutions to (2) to a limit metric of
constant scalar curvature.

In a recent preprint, Xiuxiong Chen [9] suggested a completely different
approach to Chrusciel’s result based on ideas from geometric analysis and using,
in particular, his analysis of the compactness properties of conformal metrics
with bounded Calabi energy and area and their possible concentration behavior.
Inspired by his work, here we propose a much simplified and essentially self-
contained proof where we also clarify some points left open by Chen. The
central ideas of our argument may be carried over to the Ricci flow, for which
we achieve a proof of global existence and exponential convergence based only
on elementary integral estimates and avoiding the use of the maximum principle
completely. Prompted by this work, Schwetlick [19] has shown that the same
ideas also may be applied to the class of curvature flows studied by Polden [17].

A core ingredient is the characterization of possible singularities of the
flow as concentration points for the integrated curvature. In Section 3 below
we show that this is a direct consequence of the L1-estimates of Brezis-Merle
[6] for the Gauss equation

(3) −�u = K e2u in � ⊂ R2,

relating the Gauss curvature of a metric e2u geucl to the conformal factor.
Moreover, in the analytically most subtle case when M is the sphere we

adapt Singleton’s [20] idea to study a flow of metrics that are normalized with
respect to the Möbius group action, which in turn is a variant of De Turck’s
[13] trick; finally, we apply the Kazdan-Warner [15] identity to deal with the
problem of a non-trivial kernel of the linearized Gauss equation.

We start with an analysis of the Calabi flow and return to the Ricci flow
in Section 6. We may suppose that M is orientable; otherwise we consider the
oriented double cover. Moreover, for simplicity, throughout the following we
assume that a background metric g0 of constant scalar curvature R0 = 2K0 has
been fixed in the conformal class of the flow g(t). Although the Calabi and
Ricci flows may be used to reprove the uniformization theorem, here we will
not pursue this. In the following, a subscript will usually indicate the metric
used to compute a norm or scalar product, etc.; otherwise, all norms by default
will refer to the metric g0; the letter C denotes a generic constant, sometimes
numbered for clarity.

Acknowledgements. I thank the referee for very diligent and careful
proof-reading of the manuscript and helpful comments.
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2. – The Calabi flow

Representing g(t) = e2u(t)g0, and letting ut = ∂u
∂t , etc., equation (2) trans-

lates into the evolution equation

(4) ut = 1

2
�g K

for u, where �g = e−2u�g0 and with

(5) K = e−2u(−�g0u + K0) = −�gu + K0e−2u .

In the following we simply write �0 = �g0 , etc., for brevity. By (4) the
area element dµ = dµg = e2udµ0 evolves according to

(6)
d

dt
(dµ) = 2ut dµ = �g K · dµ.

From this conservation of volume is immediate; indeed,
d

dt

(∫
M

dµ

)
=
∫

M
�g K dµ = 0.

By adding a suitable constant to a solution u of (4), with no loss of generality
we may therefore assume that the corresponding metrics have unit volume.

Our aim is to show the following:

Theorem 2.1. For any u0 ∈ H 2(M, g0) there exists a unique, global solution
u of (4) with u(0) = u0 and a smooth limit function u∞ corresponding to a smooth
metric g∞ = e2u∞g0 of constant Gauss curvature such that

||u(t) − u∞||H2 ≤ Ce−αt

for some constant α > 0 and all t ≥ 0.

Higher regularity of u for t > 0 and exponential convergence in stronger
norms may easily be derived from this result. Our proof is based on the
following a priori estimates.

As was pointed out by Chen [9], the Calabi flow decreases a number of
curvature functionals, in particular, the Calabi energy

Ca(g) =
∫

M
|K − K0|2 dµ =

∫
M

K 2 dµ − C0,

where C0 ≥ 0 by the Gauss-Bonnet theorem only depends on the genus and
the volume of (M, g0), and the Liouville energy

E(u) = 1

2

∫
M

(|∇u|20 + 2K0u) dµ0,

where the norm |·|0 refers to the metric g0.
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In fact, using (5), we find that K evolves under (4) according to

(7) Kt = −2ut K − �gut = −K�g K − 1

2
�2

g K .

Thus, from (6) we obtain

(8)

d

dt
Ca(g(t)) = 2

∫
M

(Kt K + K 2ut ) dµ

= −
∫

M
(K�2

g K + K 2�g K ) dµ

= −
∫

M
((�g K )2 − 2K |∇K |2g) dµ,

But for any function f on M , upon integrating by parts and commuting
derivatives, as in Aubin [1], Theorem 4.19, formula (25), we have

(9)
∫

M
(�g f )2 dµ =

∫
M

(|∇2 f |2g + K |∇ f |2g) dµ;

therefore

(10)
d

dt
Ca(g(t)) = −2

∫
M

|∇2 K − 1

2
�g K · g|2g dµ ≤ 0.

Here, in local coordinates we denote

|∇2 f |2g = gik g jl∇i∇j f ∇k∇l f,

thereby tacitly summing over repeated indices.
Similarly, we compute

(11)

d

dt
E(u(t)) =

∫
M

(〈∇u, ∇ut 〉0 + K0ut ) dµ0

=
∫

M
ut (−�g0u + K0) dµ0 =

∫
M

ut K dµ

= 1

2

∫
M

K�g K dµ = −1

2

∫
M

|∇K |2g dµ ≤ 0,

where 〈·, ·〉0 denotes the inner product defined by g0.
In particular, for any T > 0 we have

(12) E(u(T )) + 1

2

∫ T

0

∫
M

|∇K |2g dµ dt = E(u(0)),

thus providing an important space-time a priori integral estimate for the flow.
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Indeed, by classical results the Liouville energy is bounded from below in
any class of conformal metrics with prescribed volume. For K0 ≤ 0 and unit
volume, this easily follows from Jensen’s inequality

(13) 2
∫

M
u dµ0 ≤ log

(∫
M

e2u dµ0

)
= 0.

For K0 > 0 the lower bound on E is a consequence of Moser’s [16] sharp
version of Trudinger’s [21] inequality; see Aubin [1], p. 63, 65, and 231.

Finally, Chen observes that the Calabi flow also decreases the Mabuchi
energy, introduced in [3]. However, our aim being to discuss curvature flows
on surfaces in a unified manner, here we will not make use of his Mabuchi
energy estimate or Singleton’s Bondi mass bounds and only rely on estimates
(8), (11) directly related to curvature.

3. – Concentration-compactness

We recall the following L1-estimate of Brezis-Merle [6], Theorem 1.

Theorem 3.1. Let B be the unit ball in R2, u a distribution solution to the
equation

−�u = f on B, u = 0 on ∂ B,

where f ∈ L1(B). Then for any p < 4π/|| f ||L1 there holds e|u| ∈ L p(B) with∫
B

ep|u| dx ≤ C(4π − p || f ||L1)
−1.

This result may be applied to obtain concentration-compactness results for
families of solutions to equation (5), as follows. Let BR(x0) ⊂ M be the ball
of radius R around x0 in the metric defined by g0.

Theorem 3.2. Let gn = e2un g0 be a family of smooth conformal metrics on M
with unit volume and bounded Calabi energy. Then, either i) the sequence (un) is
bounded in H 2(M, g0), or ii) there exist points x1, . . . , xL ∈ M and a subsequence
(un) such that for any R > 0 and any l ∈ {1, . . . , L} there holds

(14) lim inf
n→∞

∫
BR (xl )

|Kn| dµn ≥ 2π,

where dµn = dµgn and where Kn is the Gauss curvature of gn. Moreover, there
holds

2π L ≤ lim sup
n→∞

(Ca(gn) + C0)
1/2 < ∞,

and either un → − ∞ as n → ∞ locally uniformly on M \ {x1, . . . , xL}, or (un)

is locally bounded in H 2 on (M, g0) away from x1, . . . , xL .
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Proof. Choose R0 > 0 such that for R ≤ R0 any metric ball BR(x0) on
(M, g0) is diffeomorphic to the flat unit disc B in R2. By the Riemann mapping
theorem we may choose these diffeomorphisms ϕ to be conformal. Identifying
B with ϕ(B), then we may regard g0 = e2u0 geucl, gn = e2(u0+un)geucl, n ∈ N,
as conformal metrics on B. Letting vn = un + u0, from (5) then we have

−�vn = Kne2vn on B,

where � is the standard Laplacian.
Suppose that for a point x0 ∈ M and some R > 0 there holds

(15) sup
n

∫
BR (x0)

|Kn| dµn ≤ a < 2π.

We may assume R ≤ R0. Then, letting u0, vn = un + u0 as above, we find that

−�vn = Kne2vn =: fn

is bounded in L1(B) with

|| fn||L1(B) =
∫

BR (x0)

|Kn| dµn ≤ a < 2π.

Splitting vn = v(0)
n + wn , where v(0)

n is harmonic in B and where wn = 0 on
∂ B, from Theorem 3.1 we obtain a uniform bound

(16)
∫

B
ep|wn | dx ≤ C(p, a)

for any p < 4π/a. Since a < 2π , we may fix some such number p > 2.
On the other hand, by the mean value property of harmonic functions, for

any y ∈ B1/2(0) ⊂ R2 we may estimate

v(0)
n (y) =

∫
B1/2(y)

v(0)
n dx ≤

∫
B1/2(y)

vn dx +
∫

B1/2(y)

|wn| dx,

where
∫

denotes mean value.
By Jensen’s inequality, and recalling that all gn have unit volume, moreover,

we can bound

2
∫

B1/2(y)

vn dx ≤ log

(∫
B1/2(y)

e2vn dx

)
≤ C + log

(∫
B

e2vn dx
)

≤ C.

Similarly, using (16) we can bound∫
B1/2(y)

|wn| dx ≤ C + log
(∫

B
e|wn | dx

)
≤ C,

uniformly for y ∈ B1/2(0).
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Thus, evn ≤ Cewn is bounded in L p(B1/2(0)). By Hölder’s inequality, and
recalling that

||Knevn ||2
L2(B)

=
∫

BR (x0)

|Kn|2 dµn ≤
∫

M
|Kn|2 dµn ≤ C,

therefore we find that
−�vn = Knevn · evn

is bounded in Lq(B1/2(0)) for some q > 1.
Now suppose that (15) is satisfied for every x0 ∈ M for some number

a < 2π and some R = R(x0) > 0. Then, upon covering M with finitely many
balls BRi (xi ) corresponding to the ball B1/2(0) under the conformal maps in the
above construction, we obtain that (�0un) is bounded in Lq(M, g0) for some
q > 1. Hence, by the Calderón-Zygmund inequality, un ∈ W 2,q(M, g0) with

||∇2un||Lq ≤ C ||�0un||Lq ≤ C.

In particular, since W 2,q ↪→ C0, this implies that

max un − min un ≤ C,

and hence, in view of the volume constraint, that

||un||L∞ ≤ C.

Going back to (5), then (un) is bounded in H 2(M, g0) with

(17) ||un||2H2 ≤ C(||�0un||2L2 + ||un||2L∞) ≤ C ||Kn||2L2 + C ≤ C,

proving i).
If (15) is not satisfied at a point x1 ∈ M for any a < 2π and any R > 0,

we choose a subsequence (un) (relabelled) such that

(17) lim inf
n→∞

∫
B1/n(x1)

|Kn| dµn ≥ 2π.

Iterating, we choose points xl , l ∈ N, and further subsequences such that (17)
holds for every xl . This iteration terminates after finitely many steps. Indeed,
having determined x1, . . . , xL as above, choose R < 1

2 min1≤k 
=l≤L dist(xk, xl).
The balls BR(xl) thus being disjoint, for any n we can bound

L∑
l=1

∫
BR (xl )

|Kn| dµn =
∫

∪L
l=1 BR (xl )

|Kn| dµn

≤
∫

M
|Kn| dµn ≤

(∫
M

|Kn|2 dµn

)1/2 (∫
M

dµn

)1/2

= (Ca(gn) + C0)
1/2.
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Therefore, upon letting n → ∞, we find

2π L ≤ lim sup
n→∞

(Ca(gn) + C0)
1/2

and the latter is at most equal to the limes superior for the original sequence.
Given any compact, connected domain D ⊂ M \ {x1, . . . , xL}, a covering

argument as in the proof of i) then shows that (�0un) is bounded in Lq(U, g0)

on a neighborhood U ⊂ D for some q > 1, and hence

(18) (max
D

un − min
D

un) ≤ C ||∇2un||Lq ≤ C

for some C = C(D). The volume constraint now implies a uniform upper bound
un ≤ C on D, and (5) yields the L2-bound ||�0un||2L2(D)

≤ C · (Ca(gn)+C0) ≤
C . Finally, the Calderón-Zygmund inequality implies that (un − minD un) is
bounded in H 2(D, g0).

It remains to observe that in view of (18) there holds minD un → − ∞
as n → ∞ on one such domain D1 if and only if this happens on any such
domain D2, as is seen by applying (18) to a connected domain D containing
D1 ∪ D2.

Remark. By Hölder’s inequality, we have

(19)

(∫
BR (x0)

|Kn| dµn

)2

≤
∫

BR (x0)

|Kn|2 dµn ·
∫

BR (x0)

dµn ≤ C
∫

BR (x0)

dµn.

Thus, (14) implies Chen’s criterion

lim sup
n→∞

(∫
BR (x0)

|Kn|2 dµn ·
∫

BR (x0)

dµn

)
≥ 4π2

for any R > 0, characterizing concentration points x0 ∈ M ; see [10], Lemma
2, p. 201. Chen remarks that the latter constant may be improved to 16π2,
which is optimal if we measure concentration in the L2-norm. However, for
the L1-norm the constant 2π is the best possible, as is illustrated by long thin
cylinders with spherical caps.

4. – Local existence

Combining (4), (5) we deduce the equation

(20) ut + 1

2
�2

gu = 1

2
K0�ge−2u
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for the evolution of the conformal factor. We show the existence of a solution
u ∈ C0([0, T ]; H 2(M, g0)) with ut , ∇4u ∈ L2([0, T ] × M) of equation (20) for
data u(0) = u0 ∈ H 2(M, g0) for sufficiently small T > 0.

Fix a constant C1 > ||u0||H2 . Given a family of metrics g = g(t) = e2u(t)g0
satisfying the uniform bound

(21) C−1||u||L∞ ≤ ||u||H2 ≤ C1,

let v be the solution to the linear biharmonic evolution equation

(22) vt + 1

2
�2

gv = 1

2
K0�ge−2u

with Cauchy data v = u0 at t = 0.
Upon multiplying (22) with the testing function �2

gv and integrating by
parts, we then see that the a-priori bound (21) also holds for v on a sufficiently
short time interval [0, T ] and vt , ∇4v are bounded in L2([0, T ]× M). Similarly,
subtracting equations (22) for the solutions vi corresponding to the choice of
metrics gi = e2ui (t)g0, i = 1, 2, upon multiplying by �2

g(v1 − v2) we find that
the operator taking u to the solution v of the initial value problem (22) defines
a contraction mapping in the space {u ∈ L∞([0, T ]; H 2(M, g0)); ||u||H2 ≤ C1}
for sufficiently small T > 0. Existence of a solution with the desired properties
then follows from Banach’s fixed point theorem.

Moreover, the solution u is smooth for t > 0, as is most easily seen by
applying standard L2-estimates to the equation (7) for the evolution of curvature.
For instance, a local uniform bound for ||∇K ||L2 – and hence for ||u||H3 –
may be obtained upon multiplying (7) by �g K and integrating by parts with
respect to dµg, etc. These estimates are tedious but standard and need not be
discussed here.

5. – Long time existence and asymptotic convergence

We now use the geometric a-priori bounds on the Calabi and Liouville
energies guaranteed by (10) and (11) to show that any local solution g = g(t)
to the Calabi flow (2) may be extended for all time and, as t → ∞, converges
exponentially fast to a limit metric of constant Gauss curvature. To illustrate
the argument, we first discuss the case when M has positive genus. Note that
in this case the background metric g0 is the only metric of constant scalar
curvature in its conformal class having unit volume; moreover, K0 ≤ 0.

5.1. – Positive genus

Since K0 ≤ 0, from (11) and (13) we have the uniform bound

(23) E(u(0)) ≥ E(u) = 1

2

∫
M

(|∇u|20 + 2K0u) dµ0 ≥ 1

2

∫
M

|∇u|20 dµ0 ≥ 0
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for u = u(t) and all t ≥ 0. Thus, by the Moser-Trudinger inequality we can
uniformly bound ∫

M
e4|u| dµ0 ≤ C

and therefore, by (19) and Hölder’s inequality,

(∫
BR (x0)

|K | dµ

)2

≤ (Ca(g(t)) + C0) ·
∫

BR (x0)

e2u dµ0 ≤ C

(∫
BR (x0)

dµ0

)1/2

,

uniformly in t , ruling out concentration. From Theorem 3.2 it then follows that
u(t) is bounded in H 2(M, g0) ↪→ L∞, uniformly in t ; in particular, the local
solution constructed in Section 4 may be extended for all t > 0 and all metrics
g(t), 0 < t < ∞, are uniformly equivalent to the background metric g0.

In the fixed background metric g0 we may use the Sobolev embedding
H 1 ↪→ L4 with the estimate

(24) || f ||2
L4 ≤ C || f ||L2 || f ||H1 ≤ C || f ||2

H1

for any function f on M . Moreover, letting f̄ be the average of f , upon
integrating by parts we have

λ1

∫
M

| f − f̄ |2 dµ0 ≤
∫

M
|∇ f |20 dµ0 =

∫
M

( f − f̄ )(−�0 f ) dµ0

≤
(∫

M
| f − f̄ |2 dµ0

)1/2 (∫
M

|�0 f |2 dµ0

)1/2

,

where λ1 is the first positive eigenvalue of the operator −�0 on M . Hence we
obtain

(25) λ1

∫
M

| f − f̄ |2 dµ0 ≤
∫

M
|∇ f |20 dµ0 ≤ λ−1

1

∫
M

|�0 f |2 dµ0,

which in combination with (9) also yields the Calderón-Zygmund type estimate

(26)
∫

M
|∇2 f |20 dµ0 ≤ C

∫
M

|�0 f |2 dµ0.

Theorem 5.1. Suppose K0 ≤ 0. Then for any α < λ2
1 there holds ||u(t)||2

H2 ≤
Ce−αt for some constant C and all t ≥ 0.
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Proof. From (12) and (23) we have the bound∫ ∞

0

∫
M

|∇K |20 dµ0 dt =
∫ ∞

0

∫
M

|∇K |2g dµg dt ≤ 2E(u(0)) < ∞.

Hence, and using (25), for a suitable sequence ti → ∞ (i → ∞) we obtain

λ1

∫
M

|K (ti ) − K (ti )|2 dµ0 ≤
∫

M
|∇K (ti )|20 dµ0 → 0 (i → ∞).

Observing that for any t the constant a = K0 minimizes the integral∫
M |K − a|2 dµ, from equivalence of g0 and g(ti ) then we conclude that

(27) Ca(g(ti )) ≤
∫

M
|K (ti ) − K (ti )|2 dµ ≤ C

∫
M

|K (ti ) − K (ti )|2 dµ0 → 0

as i → ∞, which in view of (10) implies that

(28) Ca(g(t)) → 0 as t → ∞.

Writing (5) as

−�0u − K0(e
2u − 1) = (K − K0)e

2u,

upon multiplying by −�0u and integrating by parts, we deduce that

||�0u||2
L2 + 2|K0|

∫
M

e2u|∇u|20 dµ0

≤
∫

M
|�0u||K − K0|e2u dµ0 ≤ C ||�0u||L2(Ca(g))1/2.

Thus from (28) we conclude that

(29) ||�0u(t)||2
L2 ≤ C · Ca(g(t)) → 0,

which together with (25), (26) and our volume constraint implies that

(30) ||u(t)||H2 → 0 as t → ∞.

Also using (25), we can then improve (27) to read

(31) Ca(g) ≤ (1 + o(1))||K − K ||2
L2 ≤ (1 + o(1))λ−2

1 ||�0 K ||2
L2

with error o(1) → 0 as t → ∞.
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Thus, and observing that by (30) we have uniform convergence gt → g0 as
t → ∞, we deduce from (8) and (24)-(26) that with error o(1) → 0 as t → ∞
there holds

d

dt
Ca(g(t)) = −

∫
M

(|�g K |2 − 2K |∇K |2g) dµ

= −
∫

M
(|�g K |2 + 2|K0||∇K |2g) dµ + 2

∫
M

(K − K0)|∇K |2g dµ

≤ −(1 − o(1))

∫
M

|�0 K |2 dµ0 + C ||K − K0||L2 ||∇K ||2
L4

≤ −(1 − o(1))||�0 K ||2
L2 + C · Ca(g(t))1/2||∇K ||2

H1

≤ −(1 − o(1))||�0 K ||2
L2 ≤ −αCa(g(t)),

for any α < λ2
1, if t ≥ t0 is sufficiently large. It follows that

Ca(g(t)) ≤ Ce−αt

and hence, in view of (29), (25), and (26) that

||u(t) − u(t)||2
H2 ≤ Ce−αt

for all t ≥ 0. But from conservation of volume we also have

(2 + o(1))u(t) =
∫

M
(e2u(t) − 1) dµ0

=
∫

M
(e2u(t) − e2u(t)) dµ0 ≤ C ||u(t) − u(t)||2

L2 ≤ Ce−αt .

The claim follows.

5.2. – The sphere

Any metric g on S2 being conformal to the standard one, we may take this
to be our background metric g0, now normalized to have volume 4π , and we
may regard (S2, g0) as the submanifold {x ∈ R3; |x | = 1} of Euclidean space.

The special difficulties arising in the case M = S2 may be attributed to the
action of the Möbius group G = Möb+(2) of oriented conformal diffeomor-
phisms on S2, which is a non-compact, six-dimensional Lie group containing
the group SO(3) of rigid rotations as a subgroup; see for instance Berger [5],
Theorem 18.10.4.

The Möbius group acts on metrics g = e2u g0 and their curvatures, as
follows. Given ϕ ∈ G, let ϕ∗g be the pull-back of g under ϕ. Observing that
ϕ is conformal with

ϕ∗g0 = det dϕ · g0,
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we have
ϕ∗g = e2u◦ϕϕ∗g0 = e2vg0

with

v = u ◦ ϕ + 1

2
log det dϕ;

moreover, ∫
M

dµϕ∗g0 =
∫

M
dµ0 = 4π.

Thus, and in view of

(32) Kϕ∗g = Kg ◦ ϕ, Kϕ∗g0 = K0 ◦ ϕ ≡ 1,

we have

(33)
Ca(ϕ∗g) =

∫
M

|Kϕ∗g − K0|2 dµϕ∗g

=
∫

M
|Kg − K0|2 ◦ ϕ e2u◦ϕ det dϕ dµ0 = Ca(g).

From the identity

(34) �ϕ∗g( f ◦ ϕ) = (�g f ) ◦ ϕ,

and writing h = ϕ∗g for brevity, we also deduce that

(35)
∫

M
(|�h Kh|2 + K 2

h�h Kh) dµh =
∫

M
(|�g Kg|2 + K 2

g�g Kg) dµg,

and similarly for any other geometric expression that is naturally defined inde-
pendent of the coordinate representation. Finally, there holds

(36) E(v) = E(u);

see for instance Chang [8], Lemma 1, p. 85.
Now let g = g(t) be a solution to (4). Following Singleton’s [20] adaptation

of De Turck’s [13] trick to the Calabi flow we define a flow of gauge-equivalent
metrics h = ϕ∗g. However, instead of Singleton’s condition we require the
identity

(37)
∫

M
xdµh = 0

to be satisfied for all t , where x denotes the position vector in R3 .
Condition (37) being invariant under rotations, in addition we require that

each ϕ fixes a prescribed point p0 ∈ S2 and maps some given e0 ∈ Tp0 S2, e0 
= 0,
to a positive multiple of itself.
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By [8], Lemma 2, p. 85, we can find a conformal transformation ϕ0 so that
(37) is satisfied at the initial time t = 0. The above conditions then determine
a unique gauge flow ϕ = ϕ(t), generated by a vector field

ξ = ξ(t) = (dϕ)−1ϕt ∈ Tid G.

Interpreting ϕt as a vector field on S2 with ϕt (x) ∈ Tϕ(x)S2 for all x ∈ S2, we
may also regard ξ as the pull-back vector field ξ = ϕ∗ϕt . Similarly, we may
identify any member of Tid G with a vector field on S2. An equation for ξ now
may be obtained, as follows.

Letting g(t) = e2u(t)g0, h(t) = ϕ(t)∗g(t) = e2v(t)g0 with

v(t) = u(t) ◦ ϕ(t) + 1

2
log det(dϕ(t))

as above, upon differentiating we have

(38) vt = ut ◦ ϕ + ξ · dv + 1

2
div0ξ.

Observing that (4) and (32), (34) imply

ut ◦ ϕ = 1

2
�g Kg ◦ ϕ = 1

2
�h Kh = 1

2
e−2v�0 Kh,

from the normalization condition (37) we obtain the relation

0 = d

dt

(∫
M

xdµh

)
= 2
∫

M
xvt dµh

=
∫

M
x�0 Kh dµ0 +

∫
M

xdiv0(ξe2v) dµ0.

Also using the equation for the coordinate function F(x) = x on S2,

−�0 F = 2F,

upon integrating by parts then we arrive at the identity

(39) 2
∫

M
x Kh dµ0 +

∫
M

ξ dµh = 0.

Now the linear map 
 taking a vector field ξ ∈ Tid G (with the identification
made above) to the vector

X =
∫

M
ξ dµh ∈ R3
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by (37) vanishes on the space Tid SO(3); moreover, 
 is surjective. Indeed,
arguing indirectly, suppose that there is p ∈ S2 such that 〈X, p〉

R3 = 0 for all
X in the range of 
. For λ > 0 then consider the map

ϕp,λ = π−1
p ◦ δλ ◦ πp ∈ G,

where πp: S2 \ {p} → R2 denotes stereographic projection from p and where
δλ denotes dilation x �→ λx in R2. Observe that ϕp,1 = id; moreover, letting

η = ∂ϕp,λ

∂λ

∣∣
λ=1, there holds 〈η, p〉

R3 > 0 away from p and −p. Hence the
vector field η integrates to a vector Y = 
(η) such that 〈Y, p〉

R3 > 0, contrary
to assumption. In addition, this argument shows that for metrics h = e2vg0
with a uniform bound for e2v in L2(M, g0) the quantity 〈Y, p〉

R3 is uniformly
bounded away from 0, and the map 
 is boundedly invertible on a 3-dimensional
subspace of Tid G complementing the space Tid SO(3), uniformly for all such h.

Taking account of the normalization with respect to the action of SO(3),
we thus may choose a unique vector ξ ∈ Tid G satisfying (39) and preserving the
point p0 and the direction e0 ∈ Tp0 S2 infinitesimally. Moreover, ξ is bounded
in terms of X = 2

∫
M x Kh dµ0 as long as e2v is bounded in L2(M, g0). The

vector field ξ = ξ(t) uniquely determines a normalized gauge flow ϕ = ϕ(t)
satisfying (37) by solving the initial value problem

ϕt = dϕ · ξ

with initial data ϕ(0) = ϕ0.
The associated flow v = v(t) is bounded in H 2(M, g0). Indeed, by a result

of Aubin [2], in view of our volume normalization and condition (37), for any
ε > 0 with a constant C(ε) we have

1 =
∫

S2
e2v dµ0 ≤ C(ε) exp

(
(1/2 + ε)

∫
S2

|∇v|20 dµ0 +
∫

S2
2K0v dµ0

)
.

Choosing ε = 1/6, from (36) and (11) then we obtain the uniform bound

2/3
∫

S2
|∇v|20 dµ0 +

∫
S2

2K0v dµ0 ≥ C,

and hence
||∇v(t)||2

L2 ≤ 6E(v(t)) + C ≤ C;
confer also [8], Lemma 3, p. 86. Thus, the claim follows as in Section 5.1.
In particular, all metrics h(t) are equivalent to g0, uniformly in t ≥ 0, and the
vector field ξ(t) is uniformly bounded in terms of X (t) = 
(ξ(t))

Similar to the proof of Theorem 5.1 we now deduce exponential decay of
the function v.

Lemma 5.2. There exist constants α > 0, C such that Ca(g(t))+ ||v(t)||2
H2 ≤

Ce−αt for all t ≥ 0.
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Proof. i) We first show exponential decay of the Calabi energy. The same
reasoning as used in the proof of Theorem 5.1 yields a sequence ti → ∞ such
that

Ca(g(ti )) = Ca(h(ti )) ≤ C
∫

M
|∇Kh(ti )|2h dµh = C

∫
M

|∇Kg(ti )|2g dµg → 0

as i → ∞, and by (8) it follows that

(40) Ca(h(t)) = Ca(g(t)) → 0 as t → ∞.

But then also

(41) ||v(t)||H2 → 0 as t → ∞.

Indeed, being bounded in H 2(M, g0), any sequence vi = v(ti ), where ti → ∞ as
i → ∞, admits a subsequence (vi ) (relabelled) converging weakly in H 2(M, g0)

and uniformly to a limit v∗. Writing (5) in the form

−�0vi = Kh(ti )e
2vi − K0 = (Kh(ti ) − K0)e

2vi + K0(e
2vi − 1),

from (40) we then conclude that vi → v∗ strongly in H 2(M, g0) as i → ∞,
where v∗ solves the equation

−�0v
∗ + K0 = K0e2v∗

, K0 = 1.

All solutions v = v∗ to this equation with volume
∫

S2 e2v dµ0 = 4π are of the
form v = 1

2 log|det dϕ| for some Möbius transformation ϕ: S2 → S2. Taking
into account (37), it follows that v∗ = 0; confer [8], p. 87. Since (ti ) was
arbitrary, this gives the desired conclusion.

Hence, from (8) and (35) with error o(1) → 0 as t → ∞ we obtain

(42)

d

dt
Ca(h(t)) = −

∫
M

(|�h Kh|2 − 2Kh|∇Kh|2h) dµh

= −
∫

M
(|�0 Kh|2 − 2K0|∇Kh|20) dµ0 + o(1)

∫
M

|�0 Kh|2 dµ0 + I,

where the “error term” I in view of (25), (26) may be bounded

(43)
I = 2

∫
M

(Kh − K0)|∇Kh|2h dµh ≤ 2Ca(h(t))1/2
(∫

M
|∇Kh|4h dµh

)1/2

≤ o(1)||∇Kh||2L4 ≤ o(1)||∇Kh||2H1 ≤ o(1)||�0 Kh||2L2 .

Obtaining the desired bound for the principal term is slightly more subtle
than in the case where K0 ≤ 0 since the number 2K0 = 2 belongs to the
spectrum of −�0 on (M, g0).
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Let (ϕi ) be an L2-orthonormal basis of eigenfunctions for −�0 on (S2, g0)

with eigenvalues λi , i ∈ N0. Recall that λ0 = 0, λ1 = λ2 = λ3 = 2 < λ4 ≤ . . .

Expand Kh − K0 =∑∞
i=0 K i

hϕi . Writing

−�0 Kh =
∞∑

i=0

λi K i
hϕi ,

with the constant ϑ = λ4−2
λ4

> 0 we then obtain

(43)

∫
M

(|�0 Kh|2 − 2K0|∇Kh|20) dµ0

=
∫

M
(|�0 Kh|2 + 2K0(Kh − K0)�0 Kh) dµ0 =

∞∑
i=4

(λi − 2)λi (K i
h)

2

≥ ϑ

∞∑
i=4

λ2
i (K i

h)
2 ≥ ϑ

(∫
M

|�0 K i
h|2 dµ0 − 4

3∑
i=1

(K i
h)

2

)
.

We can estimate K 1
h , K 2

h , and K 3
h via the Kazdan-Warner [15] identity,

stating that ∫
M

〈∇Kh, ∇F〉0 dµh = 0

for any first order spherical harmonic F on (S2, g0), that is, for the restriction of
any linear function in R3 to S2 or – equivalently – for any F ∈ span{ϕ1, ϕ2, ϕ3}.
Indeed, using the relation

−�0 F = 2F,

upon integrating by parts in view of the Kazdan-Warner identity we find that∫
M

(Kh − K0)F dµh =
∫

M
(Kh − K0)〈∇F, ∇v〉0 dµh .

In particular, letting F = ϕi , i = 1, 2, 3, we then obtain the estimate

(44)

|K i
h| =
∣∣∣∣∫

M
(Kh − K0)ϕi dµ0

∣∣∣∣
=
∣∣∣∣ ∫

M
(Kh − K0)〈∇ϕi , ∇v〉0 dµh +

∫
M

(Kh − K0)ϕi (e
−2v − 1) dµh

∣∣∣∣
≤ C · Ca(h(t))1/2||v(t)||H2 = o(1)Ca(h(t))1/2.

Combining this estimate with (43), from (42) we deduce that with error
o(1) → 0 as t → ∞ there holds

(45)
d

dt
Ca(h(t)) ≤ −(ϑ + o(1))

∫
M

|�0 Kh|2 dµ0 + o(1)Ca(h(t)).
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Thus, from (31) we conclude that for any α < ϑλ2
1 and sufficiently large

t there holds
d

dt
Ca(h(t)) < −αCa(h(t))

and it follows that
Ca(g(t)) = Ca(h(t)) ≤ Ce−αt

for all t ≥ 0 with some constant C .

ii) We can now show exponential decay of v. Observing that∫
M

(e2v − 1) dµ0 =
∫

M
dµh −

∫
M

dµ0 = 0

and recalling the normalization condition∫
M

xdµh =
∫

M
(e2v − 1)xdµ0 = 0,

we have an expansion

e2v − 1 =
∞∑

i=0

V iϕi

in terms of an L2-orthonormal basis of eigenfunctions ϕi as in the proof of
Lemma 5.2, where V 0 = . . . = V 3 = 0.

Also let v =∑∞
i=0 viϕi . Observe that

2vi = 2
∫

M
vϕi dµ0 =

∫
M

(e2v − 1)ϕi dµ0 + O(||v||2L∞) = V i + o(1)||v||H2,

where o(1) → 0 as t → ∞ on account of (41).
In particular, we have

(46)
3∑

i=0

(vi )2 ≤ o(1)||v||2
H2 .

Again writing (5) as

−�0v = (Kh − K0)e
2v + K0(e

2v − 1),

from Young’s inequality and uniform boundedness of v for any ε > 0 we obtain∫
M

|�0v|2 dµ0 ≤ C(ε)Ca(h(t)) + (1 + ε)

∫
M

(e2v − 1)2 dµ0

≤ C(ε)e−αt + (4(1 + ε) + o(1))

∫
M

|v|2 dµ0,

where o(1) → 0 as t → ∞.
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In terms of the coefficients vi , this implies that

∞∑
i=1

λ2
i (v

i )2 ≤ C(ε)e−αt + (4(1 + ε) + o(1))

∞∑
i=0

(vi )2.

Hence, if we choose ε > 0 so that

4(1 + ε) < λ2
4

and take (46) into account, we find

||v(t)||2
H2 ≤ C

∞∑
i=0

(1 + λ2
i )(v

i )2 ≤ Ce−αt + o(1)||v(t)||2
H2

where o(1) → 0 as t → ∞, proving our claim.

We can now complete the proof of Theorem 2.1 for the sphere.

Proof of Theorem 2.1 (completed). In view of Lemma 5.2, from (39) we
deduce the estimate

||ξ ||2L∞ ≤ C

∣∣∣∣ ∫
M

x Kh dµ0

∣∣∣∣2 = C

∣∣∣∣ ∫
M

x(Kh − K0) dµ0

∣∣∣∣2 ≤ C · Ca(h(t)) ≤ Ce−αt

for all t ≥ 0. Thus, and recalling that Tid G is a finite-dimensional space of
smooth vector fields, we have smooth exponential convergence ϕ(t) → ϕ∞ as
t → ∞. By Lemma 5.2 again, therefore also g(t) = (ϕ(t)−1)∗h(t) → g∞ =
(ϕ−1

∞ )∗g0 and hence u(t) → u∞ exponentially fast in H 2(M, g0) as t → ∞,
where g∞ = e2u∞g0 satisfies Ca(g∞) = 0.

6. – The Ricci flow

Similar ideas may be applied in the case of the Ricci flow (1) on a closed,
compact surface M . Denoting g(t) as g(t) = e2u(t)g0 for a background metric
g0 of constant curvature K0 conformal to g(0) and of equal volume, equation
(1) takes the simple form

(47) ut = K0 − K .

Inserting (5), this gives

(48)
1

2

d

dt
(e2u) − �0u + K0(1 − e2u) = 0,
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which immediately implies conservation of volume. For convenience, we again
normalize the volume to unity if K0 ≤ 0 and to the value 4π in the case of the
sphere. Moreover, from (11) we see that (1) may be regarded as the gradient
flow for the Liouville energy, satisfying

(49)
d

dt
E(u(t)) =

∫
M

ut K dµ = −
∫

M
(K0 − K )2 dµ = −

∫
M

|ut |2 dµ ≤ 0.

In [14], [11] Hamilton and Chow established global existence and exponential
convergence g(t) → g∞ as t → ∞ for (1), where Kg∞ ≡ const. Here we
reobtain their result by a simpler method, based essentially on the concentration-
compactness result in Theorem 3.2. In terms of a solution u to (47) the result
may be phrased as follows.

Theorem 6.1. For any u0 ∈ H 2(M, g0) there exists a unique, global solution
u of (47) with u(0) = u0 and a smooth limit u∞ corresponding to a smooth metric
g∞ = e2u∞g0 of constant curvature such that

||u(t) − u∞||H2 ≤ Ce−αt

for some constant α > 0 and all t ≥ 0.

Again, smoothness for t > 0 and exponential convergence in stronger norms
can be easily deduced from Theorem 6.1.

We first establish long-time existence, the delicate case being, of course,
the case when M = S2.

6.1. – Existence

Local existence for data u(0) = u0 ∈ H 2(M, g0) can be obtained by a stan-
dard fixed point argument in the space L∞([0, T ]; H 2(M, g0)) for sufficiently
small T > 0. The method is similar to the method we sketched in Section 4;
however, we now use �0vt as testing function in the equation

vt − �gv = K0(1 − e−2u)

replacing (22), etc. We show that the local solution remains bounded in
H 2(M, g0) for any finite time.

Lemma 6.2. For any T > 0, any solution u ∈ L∞
loc([0, T [; H 2(M, g0)) of (47)

there holds

sup
0≤t<T

∫
M

e4|u(t)| dµ0 < ∞.

Proof. If K0 ≤ 0, from (49) we obtain the uniform bound

1

2
||∇u(t)||2

L2 ≤ E(u(t)) ≤ E(u(0))
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and the assertion follows from the Moser-Trudinger inequality and in view of
the volume constraint.

If M = S2, then as above we may choose the standard metric as our
background metric with volume 4π and K0 = 1. Given u = u(t), we determine
Möbius transformations ϕ = ϕ(t) such that h = h(t) = ϕ(t)∗ g(t) = e2v(t)g0
with

v(t) = u(t) ◦ ϕ(t) + 1

2
log det(dϕ(t))

satisfying (37), where ϕ(t) is normalized with respect to the action of SO(3)

as in Section 5 above.
From (38), (47), (32), and (5) we have

vt = ut ◦ ϕ + 1

2
e−2vdiv0(ξe2v) = e−2v

(
�0v + K0(e

2v − 1) + 1

2
div0(ξe2v)

)
,

where, as in Section 5.2, we regard

ξ = ξ(t) = (dϕ)−1ϕt ∈ Tid G

as a vector field on S2. Our normalization then implies that

(50)

0 = d

dt

(∫
M

xdµh

)
= 2
∫

M
(xvt ) dµh

= 2
∫

M
x(�0v + K0(e

2v − 1)) dµ0 +
∫

M
xdiv0(ξe2v) dµ0

= 2
∫

M
(�0x)v dµ0 −

∫
M

ξ dµh = −4
∫

M
xv dµ0 −

∫
M

ξ dµh .

In view of (36) and (49) for v we have the uniform a-priori bound

E(v(t)) = E(u(t)) ≤ E(u(0)).

Therefore, from Aubin’s result and the Moser-Trudinger inequality we obtain

(51) ||v(t)||2
H1 ≤ C,

∫
M

e4|v| dµ0 ≤ C

in the same way as in Section 5.2 above. Hence by (50) we can bound

||ξ ||L∞ ≤ C

∣∣∣∣∫
M

xv dµ0

∣∣∣∣ ≤ C ||v||L2 ≤ C

uniformly in time. Upon integration, this yields that

sup
0≤t<T

(||ϕ(t) − ϕ(0)||C1 + ||ϕ(t)−1 − ϕ(0)−1||C1) ≤ C(T )
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and therefore that∫
M

e4|u| dµ0 ≤ C(T )

∫
M

e4|v◦ϕ(t)−1| dµ0 ≤ C(T )

∫
M

e4|v| dµ0 ≤ C(T ).

Lemma 6.3. Under the hypotheses of Lemma 6.2 for any T > 0 there holds

sup
0≤t<T

||u(t)||2
H2 < ∞.

Proof. Upon multiplying (48) by −�0ut and integrating by parts with
respect to dµ0, we obtain∫

M
e2u|∇ut |20 dµ0 + 1

2

d

dt

(∫
M

|�0u|2dµ0

)
= −2

∫
M

e2u(∇ut ,∇u)0(ut − K0)dµ0

≤ 1

2

∫
M

e2u|∇ut |20 dµ0 + C
∫

M
e2u|∇u|20(|ut |2 + 1)dµ0.

Hence for any 0 ≤ t0 < t1 ≤ T we find that

(52)

I : =
∫ t1

t0

∫
M

e2u|∇ut |20 dµ0 dt + sup
t0≤t<t1

||u(t)||2
H2

≤ C
∫ t1

t0

∫
M

e2u|∇u|20(|ut |2 + 1) dµ0 dt + C ||u(t0)||2H2 + C(T ),

thereby using that we can bound

||u||2
H2 ≤ C(||�0u||2

L2 + ||u||2
L2)

for any t , together with the estimate

||u||2
L2 ≤ C

∫
M

e2|u| dµ0 ≤ C(T ).

From boundedness of e2u in L2(M, g0) and (24), for t0 ≤ t < t1 ≤ T we
deduce

(53)
∫

M
e2u|∇u|20 dµ0 ≤ C(T )||∇u||2

L4 ≤ C(T )||u||2
H2 ≤ C(T ) sup

t0≤t<t1
||u(t)||2

H2 .

Also observing that

||∇u||2
L2 ≤ E(u) + C ||u||L2 ≤ C(T ),
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in the same fashion for t0 ≤ t < t1 we find

(54)

∫
M

e2u|∇u|20|ut |2 dµ0 =
∫

M
|∇u|20|(eu)t |2 dµ0 ≤ ||∇u||2

L4 ||(eu)t ||2L4

≤ C ||∇u||L2 ||(eu)t ||L2 ||(eu)t ||H1 ||∇u||H1

≤ C(T )||(eu)t ||L2 ||(eu)t ||H1 · sup
t0≤t<t1

||u(t)||H2 .

Noting that

||(eu)t ||2L2 =
∫

M
e2u|ut |2 dµ0 =

∫
M

|ut |2 dµ

and recalling (49), we have∫ t1

t0

||(eu)t ||2L2 dt = E(u(t0)) − E(u(t1)) ≤ C,

where we define E(u(T )) := limt→T E(u(t)). Similarly, we estimate∫ t1

t0

||(eu)t ||2H1 dt ≤ C
∫ t1

t0

∫
M

e2u(|∇ut |20 + |∇u|20|ut |2 + |ut |2) dµ0 dt.

Thus, upon integrating (54) and observing that

sup
t0≤t<t1

||u(t)||2
H2 ≤ I,

from Hölder’s inequality we obtain

I I :=
∫ t1

t0

∫
M

e2u|∇u|20|ut |2 dµ0 dt ≤ C1(T )(E(u(t0))− E(u(t1)))
1/2(I + I I +C).

Since t �→ E(u(t)) is continuous, non-increasing and uniformly bounded
on [0, T ], given ε ∈]0, 1/2[ there is τ > 0 such that for any 0 ≤ t0 < t1 ≤ T
satisfying t1 ≤ t0 + τ there holds

C1(T )(E(u(t0)) − E(u(t1)))
1/2 ≤ ε ≤ 1/2.

For such t0, t1 then we have

I I ≤ 2ε I + C.

Hence from (52), (53) with a constant C2 = C2(T ) we deduce that

I ≤ C2(τ + ε)I + C ||u(t0)||2H2 + C(T ).

Choosing ε = 1
3C2

, clearly we may also assume that τ ≤ 1
3C2

. Upon
covering [0, T ] by finitely many intervals of length τ , we obtain the desired
conclusion.
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6.2. – Convergence

Finally, we establish exponential convergence. Our key estimate is (49).
Moreover, using the evolution equation

Kt = −2ut K − �gut = �g K + 2K (K − K0)

analogous to (7) we obtain the relation

(55)

d

dt
Ca(g(t)) = 2

∫
M

((K − K0)Kt + (K − K0)
2ut ) dµg

= 2
∫

M
((K − K0)

2(K + K0) − |∇K |2g) dµg

= −2
∫

M
(|∇K |2g − 2K0(K − K0)

2) dµg + 2
∫

M
(K − K0)

3 dµg.

First consider the case K0 ≤ 0.

Theorem 6.4. Suppose K0 ≤ 0. There exist constants C, α > 0 such that
||u(t)||2

H2 ≤ Ce−αt for all t ≥ 0.

Proof. Observe that (49) and (23) imply∫ ∞

0
Ca(g(t)) dt ≤ E(u0) =: E0.

Hence

(56) lim inf
t0→∞ Ca(g(t0)) ≤ lim inf

t0→∞

∫ ∞

t0

Ca(g(t)) dt → 0.

and there exist arbitrarily large numbers t0 ≥ 0 such that

(57) Ca(g(t0)) ≤ E0.

Choose such a time t0 and let t1 ≥ t0 be any number such that

(58) sup
t0≤t≤t1

Ca(g(t)) ≤ 4E0.

Since (49) and our assumption K0 ≤ 0 as in Section 5.1 imply uniform bounds

||u(t)||H1 ≤ C, ||e2|u(t)|||L2 ≤ C

independent of t , Theorem 3.2 then implies that

sup
t0≤t≤t1

||u(t)||H2 ≤ C;
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in particular the metrics g(t) and g0 are uniformly equivalent for t0 ≤ t ≤ t1.
Thus, by the Poincaré-Sobolev inequality (24) we may bound

(59)

∫
M

|K − K0|3 dµ ≤ C ||K − K0||3L3 ≤ C ||K − K0||L2 ||K − K0||2L4

≤ C ||K − K0||2L2 ||K ||H1 ≤ 1

2
||∇K ||2

L2 + C(1 + Ca(g(t)))Ca(g(t)).

From (55) we then obtain

d

dt
Ca(g(t)) ≤ −

∫
M

|∇K |2g dµg + C(1 + Ca(g(t)))Ca(g(t)).

Integrating in time, we deduce

(60) Ca(g(t1)) ≤ Ca(g(t0)) + C1(1 + sup
t0≤t≤t1

Ca(g(t)))
∫ t1

t0

Ca(g(t)) dt

with a constant C1 = C1(E0). Choose T > 0 such that

C1

∫ ∞

T
Ca(g(t)) dt ≤ 1

2
min{1, E0}.

Then for t0 ≥ T satisfying (57) and any t1 ≥ t0 such that

Ca(g(t1)) = sup
t0≤t≤t1

Ca(g(t)) ≤ 4E0

from (60) we obtain the bound

Ca(g(t1)) ≤ 2Ca(g(t0)) + E0 ≤ 3E0;
hence this bound, in fact, is valid for all t ≥ t0. But then (60) and (56) imply
convergence

Ca(g(t)) → 0 as t → ∞,

and (59) may be improved to read

(61)
∫

M
|K − K0|3 dµg ≤ o(1)

(
||∇K ||2

L2 + Ca(g(t))
)

with error o(1) → 0 as t → ∞. Moreover, as in deducing (30) from (28) in
the proof of Theorem 5.1, in addition we obtain convergence

||u(t)||H2 → 0 as t → ∞.

From (25), (27), and (55) we then deduce the differential inequality

d

dt
Ca(g(t)) ≤ −(2 + o(1))

∫
M

|∇K |2g dµg + o(1)Ca(g(t)) ≤ −αCa(g(t))

for any α < 2λ1 and sufficiently large t , proving exponential decay

Ca(g(t)) ≤ Ce−αt .

Exponential decay of u now follows exactly as in the proof of Theorem 5.1.
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If M = S2 with the spherical metric g0 of curvature K0 ≡ 1 we argue
similarly for the normalized flow h = h(t) = e2v(t) g0 introduced in Lemma 6.2
above.

Lemma 6.5. There exist constants C, α > 0 such that there holds

||v(t)||2
H2 ≤ Ce−αt

for all t ≥ 0.

Proof. Again we start by showing exponential decay of Ca(h(t)). As
demonstrated in Section 5.2, all terms in (55) transform invariantly under Möbius
transformations and we obtain the identity

(62)
d

dt
Ca(h(t)) = −2

∫
M

(|∇Kh|2h−2K0|Kh−K0|2) dµh+2
∫

M
(Kh−K0)

3 dµh .

Moreover, as in the case K0 ≤ 0, for t0 ≥ 0 satisfying (57) with E0 = E(u0) −
lim

t→∞ E(t) and any t1 ≥ t0 such that (58) and hence (59) are valid, we obtain that

Ca(g(t1)) = Ca(h(t1)) ≤ Ca(h(t0)) + C(1 + sup
t0≤t≤t1

Ca(h(t)))
∫ t1

t0

Ca(h(t)) dt.

Since E is uniformly bounded from below, again (56) is valid and we deduce
that

Ca(g(t)) = Ca(h(t)) → 0 as t → ∞
exactly as before. But then, by the argument leading to (41) in the proof of
Lemma 5.2 it follows that

||v(t)||H2 → 0 as t → ∞
and (61), (62) imply that

(63)

d

dt
Ca(h(t)) ≤ − 2

∫
M

(|∇Kh|20 − 2K0|Kh − K0|2) dµ0

+ o(1)

(∫
M

|∇Kh|20 dµ0 + Ca(h(t))
)

,

where o(1) → 0 as t → ∞.
Expanding

Kh − K0 =
∞∑

i=0

K i
hϕi

in terms of an L2-orthonormal basis of eigenfunctions for −�0 on (S2, g0) as
in Section 5.2, for i = 0 by the Gauss-Bonnet theorem we have

(64)
4π K 0

h =
∫

M
(Kh − K0) dµ0 =

∫
M

(Kh − K0) dµ + o(1)Ca(h(t))1/2

= o(1)Ca(h(t))1/2;
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moreover, as in (44), in view of the Kazdan-Warner identity we have

K i
h =
∫

M
(Kh − K0)ϕi dµ0 = o(1)Ca(h(t)1/2,

where o(1) → 0 as t → ∞, i = 1, 2, 3.
Thus, with ϑ = λ4−2

λ4
> 0 we obtain∫

M
(|∇Kh|20 − 2K0|Kh − K0|2) dµ0 =

∞∑
i=4

(λi − 2)(K i
h)

2 + o(1)Ca(h(t))

≥ ϑ

∞∑
i=4

λi (K i
h)

2 + o(1)Ca(h(t)) ≥ (ϑλ1 + o(1))Ca(h(t)).

But then (63) implies that
d

dt
Ca(h(t)) ≤ −αCa(h(t))

for any α < 2ϑλ1 and sufficiently large t . It follows that

Ca(g(t)) ≤ Ca(h(t)) ≤ Ce−αt ,

as desired.
Exponential convergence

||v(t)||2
H2 ≤ Ce−αt

then follows exactly as in Lemma 5.2.

We can now complete the proof of Theorem 6.1 for the sphere.

Proof of Theorem 6.1 (completed). In view of (50) and Lemma 6.5 we
have

||ξ(t)||2L∞ ≤ C

∣∣∣∣ ∫
M

xv dxh

∣∣∣∣2 ≤ C ||v(t)||2
H2 ≤ Ce−αt

and we conclude that ϕ(t) → ϕ∞ smoothly and therefore also g(t) = e2u(t)g0 =
(ϕ(t)−1)∗h(t)→g∞ =e2u∞g0 exponentially fast in H 2(M,g0) as t →∞, where

Ca(g∞) = lim
t→∞ Ca(g(t)) = 0.
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