Prompted by recent work of Xiuxiong Chen, a unified approach to the Hamilton-Ricci and Calabi flows on a closed, compact surface is presented, recovering global existence and exponentially fast asymptotic convergence from concentration-compactness results for conformal metrics.
@article{ASNSP_2002_5_1_2_247_0, author = {Struwe, Micha\"el}, title = {Curvature flows on surfaces}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {247--274}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {2}, year = {2002}, zbl = {1150.53025}, mrnumber = {1991140}, language = {en}, url = {archive.numdam.org/item/ASNSP_2002_5_1_2_247_0/} }
Struwe, Michael. Curvature flows on surfaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 2, pp. 247-274. http://archive.numdam.org/item/ASNSP_2002_5_1_2_247_0/
[1] “Some Nonlinear Problems in Riemannian Geometry”, Monographs in Mathematics, Springer, 1998. | MR 1636569 | Zbl 0896.53003
,[2] Meilleures constantes dans le théorème d'inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal. 32 (1979), 148-174. | MR 534672 | Zbl 0411.46019
,[3] Uniqueness of Einstein Kähler metrics modulo connected group actions, In: “Proc. Algebraic geometry”, Sendai (1985), Adv. Stud. Pure Math. 10 (1987), 11-40. | MR 946233 | Zbl 0641.53065
- ,[4] A new approach to the Ricci flow on , Ann. Cl. Sci. (4) Scuola Norm. Sup. Pisa, 21 (1994), 475-482. | Numdam | MR 1310637 | Zbl 0818.53050
- - ,[5] “Geometry II”, Universitext, Springer, 1987. | MR 882916 | Zbl 0606.51001
,[6] Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. Paretial Differential Equations 16 (1991), 1223-1253. | MR 1132783 | Zbl 0746.35006
- ,[7] Extremal Kähler metrics, In: “Seminar on differential geometry”, S. T. Yau (ed.), Princeton University Press, 1982. | MR 645743 | Zbl 0487.53057
,[8] The Moser-Onofri inequality and applications to some problems in conformal geometry, In: “Nonlinear partial differential equations in differential geometry”, R. Hardt - M. Wolf (eds.), IAS/Park City Math. Ser. 2 (1996), 65-125. | MR 1369587 | Zbl 0924.58106
,[9] Calabi flow in Riemann surface revisited: A new point of view, Intern. Math. Res. Notices No. 6 (2001), 275-297. | MR 1820328 | Zbl 1078.53065
,[10] Weak limits of Riemannian metrics in surfaces with integral curvature bounds, Calc. Var. Partial Differential Equations 6 (1998), 189-226. | MR 1614627 | Zbl 0894.53040
,[11] The Ricci-Hamilton flow on the 2-sphere, J. Diff. Geom. 24 (1986), 153-179.
,[12] Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation, Comm. Math. Phys. 137 (1991), 289-313. | MR 1101689 | Zbl 0729.53071
,[13] Deforming metrics in the direction of their Ricci tensors, J. Diff. Geom. 18 (1983), 157-162. | MR 697987 | Zbl 0517.53044
,[14] The Ricci flow on surfaces, Contemp. Math. 71 (1988), 237-262. | MR 954419 | Zbl 0663.53031
,[15] Curvature functions for compact 2-manifolds, Ann. of Math. 99 (1974), 14-47. | MR 343205 | Zbl 0273.53034
- ,[16] On a nonlinear problem in differential geometry, In: “Dynamical systems”, M. Peixoto (ed.), Academic Press, 1973. | MR 339258 | Zbl 0275.53027
,[17] Curves and surfaces of least total curvature and fourth order flows, Ph. D. thesis, Tübingen, 1996.
,[18] Spherical gravitational waves, Phys. Rev. Lett. 4 (1960), 431-432 | Zbl 0093.43304
- ,[19] Higher order curvature flows on Riemannian surfaces, preprint, 2000.
,[20] Ph. D. thesis, Monash University, 1990; confer also: On global existence and convergence of vacuum Robinson-Trautman solutions, Class. Quantum Grav. 7 (1990), 1333-1343. | MR 1064183 | Zbl 0702.53061
,[21] On embeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483. | MR 216286 | Zbl 0163.36402
,[22] Global existence and convergence of the Yamabe flow, J. Differential Geom. 39 (1994), 35-50. | MR 1258912 | Zbl 0846.53027
,