Prescribing a Fourth Order Conformal Invariant on the Standard Sphere, Part II: Blow up Analysis and Applications

ZINDINE DJADLI - ANDREA MALCHIODI MOHAMEDEN OULD AHMEDOU

Abstract

In this paper we perform a fine blow up analysis for a fourth order elliptic equation involving critical Sobolev exponent, related to the prescription of some conformal invariant on the standard sphere $\left(\mathbb{S}^{n}, h\right)$. We derive from this analysis some a priori estimates in dimension 5 and 6 . On \mathbb{S}^{5} these a priori estimates, combined with the perturbation result in the first part of the present work, allow us to obtain some existence result using a continuity method. On \mathbb{S}^{6} we prove the existence of at least one solution when an index formula associated to this conformal invariant is different from zero.

Mathematics Subject Classification (2000): 53C21 (primary), 35B45, 35J60, 53A30, 58G30 (secondary).

1. - Introduction

Let (M, g) be a smooth 4-dimensional Riemmanian manifold, and consider the following fourth order operator, introduced by Paneitz [34]

$$
P_{g}^{4} \varphi=\Delta_{g}^{2} \varphi-\operatorname{div}_{g}\left(\frac{2}{3} \operatorname{Scal}_{g} g-2 \operatorname{Ric}_{g}\right) d \varphi
$$

where Scal_{g} and Ric_{g} denote the scalar curvature and the Ricci curvature of $\left(M^{4}, g\right)$ respectively. Originally this operator was introduced for physical motivations and has many applications in mathematical physics, see [23], [35], [1] and [26]. Moreover the Paneitz operator enjoys many geometric properties, in particular it is conformally invariant, and can be seen as a natural extension of the Laplace-Beltrami operator on 2-manifolds. After the pioneering works by T. Branson [12], [13] and S. A. Chang and P. Yang [21], this operator has been the subject of many papers [14], [17], [18], [29], see also the surveys [15]
and [22]. P_{g}^{4} has been generalized to manifolds of dimension greater than 4 by T. Branson [13], and it is given for $n \geq 5$ by

$$
P_{g}^{n} u=\Delta_{g}^{2} u-\operatorname{div}_{g}\left(a_{n} \operatorname{Scal}_{g} g+b_{n} \operatorname{Ric}_{g}\right) d u+\frac{n-4}{2} Q_{g}^{n} u
$$

where

$$
\begin{gathered}
a_{n}=\frac{(n-2)^{2}+4}{2(n-1)(n-2)}, b_{n}=-\frac{4}{n-2} \\
Q_{g}^{n}=\frac{1}{2(n-1)} \Delta_{g} \operatorname{Scal}_{g}+\frac{n^{3}-4 n^{2}+16 n-16}{8(n-1)^{2}(n-2)^{2}} \operatorname{Scal}_{g}^{2}-\frac{2}{(n-2)^{2}}\left|\operatorname{Ric}_{g}\right|^{2} .
\end{gathered}
$$

As for P_{g}^{4}, the operator $P_{g}^{n}, n \geq 5$, is conformally invariant; if $\tilde{g}=\varphi^{\frac{4}{n-4}} g$ is a conformal metric to g, then for all $\psi \in C^{\infty}(M)$ we have

$$
P_{g}^{n}(\psi \varphi)=\varphi^{\frac{n+4}{n-4}} P_{\tilde{g}}^{n}(\psi)
$$

In particular, taking $\psi=1$, it is

$$
\begin{equation*}
P_{g}^{n}(\varphi)=\frac{n-4}{2} Q_{\tilde{g}}^{n} \varphi^{\frac{n+4}{n-4}} . \tag{1}
\end{equation*}
$$

In this paper we continue to study the problem of prescribing Q on the standard sphere $\left(S^{n}, h\right), n \geq 5$. By equation (1), the problem can be formulated as follows. Given $f \in C^{2}\left(\mathbb{S}^{n}\right)$, we look for solutions of

$$
\begin{equation*}
P_{h}^{n} u=\frac{n-4}{2} f u^{\frac{n+4}{n-4}}, \quad u>0, \quad \text { on } \mathbb{S}^{n} . \tag{P}
\end{equation*}
$$

On the unit sphere $\left(\mathbb{S}^{n}, h\right), n \geq 5$, the operator P_{h}^{n} is coercive on the Sobolev space $H_{2}^{2}\left(\mathbb{S}^{n}\right)$, and has the expression

$$
P_{h}^{n} u=\Delta_{h}^{2} u+c_{n} \Delta_{h} u+d_{n} u
$$

where

$$
c_{n}=\frac{1}{2}\left(n^{2}-2 n-4\right), \quad d_{n}=\frac{n-4}{16} n\left(n^{2}-4\right) .
$$

Problem (P) is the analogue, for Paneitz operator, of the so-called Scalar Curvature Problem, to which many works are devoted, see [4], [6], [2], [8], [9], [10], [11], [20], [16], [27], [30], [31], [33], [38], and the references therein. We also refer to the monograph [5].

Our aim is to give sufficient conditions on f such that problem (P) possesses a solution. It is easy to see that a necessary condition for solving (P) is that f has to be positive somewhere. Moreover, there are also obstructions of Kazdan-Warner type, see [24] and [40].

In the first part of the present work, [25], we established a perturbative result, see for a particular case Theorem 1.1 below. Before stating Theorem 1.1, we introduce some preliminary notation following [20].

For $P \in \mathbb{S}^{n}$ and $t \in[1,+\infty)$ we denote by $\varphi_{P, t}$ the conformal map on \mathbb{S}^{n} defined as follows: using stereographic coordinates with projection through the point P, we set

$$
\varphi_{P, t}(y)=t y
$$

Let also $G: B^{n+1} \rightarrow \mathbb{R}^{n+1}$ be given by

$$
G\left(\frac{t-1}{t} P\right)=\frac{1}{\omega_{n}} \int_{\mathbb{S}^{n}}\left(f \circ \varphi_{P, t}(x)\right) x d v(h),
$$

where ω_{n} denotes the volume on \mathbb{S}^{n} with respect to its standard volume $d v(h)$.
Theorem 1.1. There exists $\varepsilon(n)>0$, depending only on n, such that (P) admits a solution for all $f \in C^{\infty}\left(\mathbb{S}^{n}\right)$ satisfying

$$
\begin{equation*}
\Delta_{h} f(q) \neq 0 \quad \text { whenever } \quad \nabla f(q)=0 \tag{ND}
\end{equation*}
$$

and

$$
\left\|f-\frac{n\left(n^{2}-4\right)}{8}\right\|_{L^{\infty}\left(\mathbb{S}^{n}\right)} \leq \varepsilon(n)
$$

$\operatorname{deg}\left(G,\left\{(P, t) \in \mathbb{S}^{n} \times(1 ;+\infty), t<t_{0}\right\}, 0\right) \neq 0 \quad$ for t_{0} large enough.
Our main goal in this second part is to perform a fine blow up analysis of equation (P) and of its subcritical approximation. Then we take advantage of this study to derive some compactness and non-perturbative existence results for problem (P) in lower dimensions. In order to describe the blow up analysis we need some preliminaries.

Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded smooth domain, $\tau_{i} \geq 0$ satisfy $\lim _{i} \tau_{i}=0$, $q_{i}=\frac{n+4}{n-4}-\tau_{i}$ and $\left\{f_{i}\right\}_{i} \in C^{1}(\Omega)$ satisfy

$$
\begin{equation*}
\frac{1}{A_{1}} \leq f_{i}(x) \leq A_{1}, \quad \text { for all } x \in \Omega, \text { for all } i \tag{2}
\end{equation*}
$$

for some positive constant A_{1}. Consider the family of equations

$$
\begin{equation*}
\Delta^{2} u_{i}=\frac{n-4}{2} f_{i}(x) u_{i}^{q_{i}}, \quad u_{i}>0, \quad \Delta u_{i}>0, \quad x \in \Omega \tag{3}
\end{equation*}
$$

We recall that according to our notation

$$
\Delta \varphi=-\sum_{i=1}^{n} \frac{\partial^{2} \varphi}{\partial x_{i}^{2}}, \quad \varphi \in C^{2}(\Omega)
$$

Our aim is to describe the behavior of u_{i} when i tends to infinity. It is possible to prove, see Remark 2.8, that if $\left\{u_{i}\right\}_{i}$ remains bounded in $L_{\text {loc }}^{\infty}(\Omega)$, then for any $\alpha \in(0,1) u_{i} \rightarrow u$ in $C_{\mathrm{loc}}^{4, \alpha}(\Omega)$ along some subsequence. Otherwise, we say that $\left\{u_{i}\right\}_{i}$ blows up. In the following we adapt to this new framework the definition of isolated blow up points and isolated simple blow up points which were introduced by R. Schoen, [37] (see also Y. Y. Li, [31]). Let $B_{r}(x)=\left\{y \in \mathbb{R}^{n}:|y-x|<r\right\}$.

Definition 1.2. Suppose that $\left\{f_{i}\right\}_{i}$ satisfy (2), and $\left\{u_{i}\right\}_{i}$ satisfy (3). A point $\bar{y} \in \Omega$ is called a blow up point for $\left\{u_{i}\right\}_{i}$ if there exists $y_{i} \rightarrow \bar{y}$, such that $u_{i}\left(y_{i}\right) \rightarrow+\infty$.

In the sequel, if \bar{y} is a blow up point for $\left\{u_{i}\right\}_{i}$, writing $y_{i} \rightarrow \bar{y}$ we mean that, for all i, y_{i} is a local maximum of u_{i} and $u_{i}\left(y_{i}\right) \rightarrow+\infty$ as $i \rightarrow+\infty$.

Definition 1.3. Assume that $y_{i} \rightarrow \bar{y}$ is a blow up point for $\left\{u_{i}\right\}_{i}$. The point $\bar{y} \in \Omega$ is called an isolated blow up point if there exist $\bar{r} \in(0, \operatorname{dist}(\bar{y}, \partial \Omega))$ and $\bar{C}>0$ such that

$$
\begin{equation*}
u_{i}(y) \leq \bar{C}\left|y-y_{i}\right|^{-\frac{4}{q_{i}-1}}, \quad \text { for all } y \in B_{\bar{r}}\left(y_{i}\right) \cap \Omega \tag{4}
\end{equation*}
$$

Let $y_{i} \rightarrow \bar{y}$ be an isolated blow up point for $\left\{u_{i}\right\}_{i}$, we define $\bar{u}_{i}(r)$ to be (here $\left|\partial B_{r}\right|$ is the n - 1 -dimensional volume of ∂B_{r})

$$
\begin{equation*}
\bar{u}_{i}(r)=\frac{1}{\left|\partial B_{r}\right|} \int_{\partial B_{r}\left(y_{i}\right)} u_{i}, \quad r \in\left(0, \operatorname{dist}\left(y_{i}, \partial \Omega\right)\right), \tag{5}
\end{equation*}
$$

and

$$
\hat{u}_{i}(r)=r^{\frac{4}{q_{i}-1}} \bar{u}_{i}(r), \quad r \in\left(0, \operatorname{dist}\left(y_{i}, \partial \Omega\right)\right) .
$$

Definition 1.4. An isolated blow up point $\bar{y} \in \Omega$ for $\left\{u_{i}\right\}_{i}$ is called an isolated simple blow up point if there exist some $\varrho \in(0, \bar{r})$, independent of i, such that $\hat{u}_{i}(r)$ has precisely one critical point in $(0, \varrho)$ for large i.

The study of equation (3) has the following motivation. Taking a subcritical approximation of (P), we consider

$$
\begin{array}{r}
P_{h}^{n} v_{i}-\frac{n-4}{2} f_{i}(x) v_{i}^{q_{i}}=0, \quad v_{i}>0, \quad \text { on } \mathbb{S}^{n} \tag{6}\\
q_{i}=\frac{n+4}{n-4}-\tau_{i}, \quad \tau_{i} \geq 0, \quad \tau_{i} \rightarrow 0
\end{array}
$$

After performing a stereographic projection $\pi: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}$ through the north pole on \mathbb{S}^{n}, equation (6) is transformed into

$$
\Delta^{2} u_{i}(y)=\frac{n-4}{2} f_{i}(y) H_{i}(y)^{\tau_{i}} u_{i}(y)^{q_{i}}, \quad u_{i}>0, \quad \text { on } \mathbb{R}^{n},
$$

where

$$
\begin{equation*}
u_{i}(y)=\left(\frac{2}{1+|y|^{2}}\right)^{\frac{n-4}{2}} v_{i}(x), \quad H_{i}(y)=\left(\frac{2}{1+|y|^{2}}\right)^{\frac{n-4}{2}}, \quad y=\pi(x) \tag{7}
\end{equation*}
$$

One can check that, under the assumption $f_{i}>0$, if v_{i} satisfies (6) and u_{i} is given by (7), then it must be $u_{i}>0, \Delta u_{i}>0$ on \mathbb{R}^{n}, so we are reduced to study equation (3). Dealing with the blow up phenomenon we will use the same terminology for both u_{i} and v_{i}, taking into account the relation (7).

Our main result regarding the blow up analysis for equation (6) is the following.

ThEOREM 1.5. Let $n=5,6$, and assume that $\left\{f_{i}\right\}_{i}$ is uniformly bounded in $C^{1}\left(\mathbb{S}^{n}\right)$ and satisfy (2). If $n=6$ we also assume that $\left\{f_{i}\right\}_{i}$ is uniformly bounded in $C^{2}\left(\mathbb{S}^{n}\right)$. Let $\left\{v_{i}\right\}_{i}$ be solutions of (6): then

$$
\left\|v_{i}\right\|_{H_{2}^{2}\left(\mathbb{S}^{n}\right)} \leq C
$$

where C is a fixed constant depending on n, A_{1} and the C^{1} bounds of $\left\{f_{i}\right\}_{i}$ (and also the C^{2} bounds of $\left\{f_{i}\right\}_{i}$ if $n=6$). Furthermore, after passing to a subsequence, either $\left\{v_{i}\right\}_{i}$ remains bounded in $L^{\infty}\left(\mathbb{S}^{n}\right)$, or $\left\{v_{i}\right\}_{i}$ has only isolated simple blow up points, and the distance between any two blow up points is bounded below by some fixed positive constant.

A fundamental ingredient in the blow up analysis is a Harnack type inequality for the above fourth order operator, proved in Lemma 2.5.

The blow up analysis can be specialized further in the case $n=5$, yielding to a concentration phenomenon at most at one point for sequences of solutions of (6) and also to a compactness result for solutions of equation (P) under condition (ND).

Theorem 1.6. Let $n=5$, and assume that $\left\{f_{i}\right\}_{i}$ is uniformly bounded in C^{1} norm and satisfy (2). Let $\left\{v_{i}\right\}_{i}$ be solutions of (6). Then, after passing to a subsequence, either $\left\{v_{i}\right\}_{i}$ is bounded in $L^{\infty}\left(\mathbb{S}^{n}\right)$ or $\left\{v_{i}\right\}_{i}$ has precisely one isolated simple blow up point.

THEOREM 1.7. Let $n=5$ and $f \in C^{2}\left(\mathbb{S}^{5}\right)$ be a positive Morse function satisfying (ND). Then for any $\underset{\sim}{\varepsilon}>0$ and any $\alpha \in(0,1)$ there exist positive constants $C=C(f, \varepsilon)$ and $\tilde{C}=\tilde{C}(f, \varepsilon, \alpha)$ such that for all μ with $\varepsilon \leq \mu \leq 1$, any positive solution v of (P) with f replaced by $f_{\mu}=\mu f+(1-\mu) \frac{105}{8}$ satisfies

$$
C^{-1} \leq v(q) \leq C, \quad \text { for all } q \in \mathbb{S}^{n} ; \quad\|v\|_{C^{4, \alpha}\left(\mathbb{S}^{5}\right)} \leq \tilde{C}
$$

Just notice that when $\mu=0$, the function $u \equiv 1$ is a solution of P with f replaced by $f_{\mu}=f_{0}=\frac{105}{8}$.

Using Theorem 1.7, we derive the following existence result.

THEOREM 1.8. Under the assumptions of Theorem 1.7, assume that the following condition holds,

$$
\begin{equation*}
\sum_{x \in \operatorname{Crit}(f), \Delta_{h} f>0}(-1)^{m(f, x)} \neq-1, \tag{8}
\end{equation*}
$$

where $\operatorname{Crit}(f)=\left\{x \in \mathbb{S}^{n} \mid \nabla f(x)=0\right\}$ and $m(f, x)$ denotes the Morse index of f at x. Then equation (P) has at least one solution, and the set of solutions of (P) is compact in $C^{4, \alpha}\left(\mathbb{S}^{5}\right)$.

The above theorem is proved using a topological degree argument, following [16]. Theorem 1.1 provides the initial step of a continuity argument, while the a priori estimates in Theorem 1.7 are used to verify the invariance of the Leray- Schauder degree as one moves along the parameter in the continuity scheme. Let us observe that formula (8) appeared first in [10].

In contrast with the case $n=5$ where there is only one blow up point, see Theorem 1.6, the cases $n \geq 6$ can present multiple blow up points, just as for scalar curvature problem in dimension $n \geq 4$, see [9], [11], [31]. In order to describe our results for $n=6$, we introduce some more notation.

Given $f \in C^{2}\left(\mathbb{S}^{6}\right)$, consider

$$
\begin{aligned}
\mathcal{F} & =\left\{p \in \mathbb{S}^{6}: \nabla f(p)=0\right\} \\
\mathcal{F}^{+} & =\left\{p \in \mathbb{S}^{6}: \nabla f(p)=0, \Delta_{h} f(p)>0\right\} \\
\mathcal{F}^{-} & =\left\{p \in \mathbb{S}^{6}: \nabla f(p)=0, \Delta_{h} f(p)<0\right\}, \\
\mathcal{M}_{f} & =\left\{v \in C^{2}\left(\mathbb{S}^{6}\right): v \text { satisfies }(P)\right\} .
\end{aligned}
$$

For $p_{0} \in \mathbb{S}^{6}$, let $\pi_{p_{0}}: \mathbb{S}^{6} \rightarrow \mathbb{R}^{6}$ denote the stereographic projection with pole $-p_{0}$. In $\pi_{p_{0}}$-stereographic coordinates, we consider the function $J_{p_{0}}: \mathbb{S}^{6} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
J_{p_{0}}(y)=\frac{1}{2}\left(\frac{1+|y|^{2}}{|y|^{2}}\right), \quad y \in \mathbb{R}^{6} . \tag{9}
\end{equation*}
$$

We note that the function $J_{p_{0}}$ is singular at p_{0} and is a multiple of the Green's function of P_{h}^{6} on \mathbb{S}^{6}. We recall that the Green's function for this operator with pole p_{0} is a positive function $G_{p_{0}}$ satisfying $P_{h}^{6} G_{p_{0}}=\delta_{p_{0}}$. One can check the existence of such a function taking a multiple of $J_{p_{0}}$, the uniqueness following from the coercivity of P_{h}^{6}, see above.

To each $\left\{p^{1}, \ldots, p^{k}\right\} \subseteq \mathcal{F} \backslash \mathcal{F}^{-}, k \geq 1$, we associate a $k \times k$ symmetric matrix $M=M\left(p^{1}, \ldots, p^{k}\right)$ defined by

$$
\left\{\begin{array}{l}
M_{i i}=\frac{\Delta_{h} f\left(p^{i}\right)}{\left(f\left(p^{i}\right)\right)^{\frac{3}{2}}} \tag{10}\\
M_{i j}=-15 \frac{J_{p^{i}}\left(p^{j}\right)}{\left(f\left(p^{i}\right) f\left(p^{j}\right)\right)^{\frac{1}{4}}} \quad \text { if } i \neq j
\end{array}\right.
$$

Let $\rho=\rho\left(p^{1}, \ldots, p^{k}\right)$ denote the least eigenvalue of M. In particular, when $k=1$ it is

$$
\rho\left(p^{1}\right)=\frac{\Delta_{h} f\left(p^{1}\right)}{\left(f\left(p^{1}\right)\right)^{\frac{3}{2}}}
$$

It has been first pointed out by A. Bahri, [8], see also [10], that when the interaction between different bubbles is of the same order as the "self interaction", the function ρ for a matrix similar to that given in (10) plays a fundamental role in the theory of the critical points at infinity. For Paneitz operator such kind of phenomenon appears when $n=6$.

Define the set \mathcal{A} to be

$$
\begin{aligned}
& \mathcal{A}=\left\{f \in C^{2}\left(\mathbb{S}^{6}\right): f \text { is a positive Morse function on } \mathbb{S}^{6}\right. \text { such that } \\
&\left.\Delta_{h} f \neq 0 \text { on } \mathcal{F}, \text { and } \rho=\rho\left(p^{1}, \ldots, p^{k}\right) \neq 0, \forall p^{1}, \ldots, p^{k} \in \mathcal{F}^{+}\right\}
\end{aligned}
$$

Let us observe that \mathcal{A} is open in $C^{2}\left(\mathbb{S}^{6}\right)$ and dense in the space of positive C^{2} function with respect to the C^{2}-norm. We introduce an integer valued continuous function Index : $\mathcal{A} \rightarrow \mathbb{N}$ by the following formula

$$
\operatorname{Index}(f)=-1+\sum_{k=1}^{l} \sum_{\substack{\rho\left(p_{1} i_{1}, \ldots i_{k}\right)>0 \\ 1 \leq i_{1}<i_{2} \leq \ldots \leq i_{k} \leq l}}(-1)^{k-1+\sum_{j=1}^{k} m\left(f, p^{i_{j}}\right)},
$$

where $m\left(f, p^{i_{j}}\right)$ denotes the Morse index of f at $p^{i_{j}}$, and $l=\operatorname{card}\left|\mathcal{F}^{+}\right|$.
Now we state our existence and compactness result for $n=6$.
Theorem 1.9. Let $n=6$ and assume that $f \in \mathcal{A}$. Then for all $\alpha \in(0,1)$, there exists some constant C depending only on $\min _{\mathbb{S}^{6}} f,\|f\|_{C^{2}\left(\mathbb{S}^{6}\right)}, \min _{\mathcal{F}}\left|\Delta_{h} f\right|$, $\min _{\tilde{C}}\left\{\rho_{\tilde{C}}\left(p^{1}, \ldots, p^{k}\right): p^{1}, \ldots, p^{k} \in \mathcal{F}^{+}, k \geq 2\right\}$, and there exists some constant $\tilde{C}=\tilde{C}(C, \alpha)$ such that

$$
\begin{equation*}
\frac{1}{C} \leq v \leq C, \quad\|v\|_{C^{4, \alpha}\left(\mathbb{S}^{6}\right)} \leq \tilde{C} \tag{11}
\end{equation*}
$$

for all solution v of equation (P). Furthermore, for all $R \geq \max (C, \tilde{C})$

$$
\begin{equation*}
\operatorname{deg}\left(v-\left(P_{h}^{n}\right)^{-1}\left(f v^{5}\right), \mathcal{O}_{R}, 0\right)=\operatorname{Index}(f) \tag{12}
\end{equation*}
$$

where

$$
\mathcal{O}_{R}=\left\{v \in C^{4, \alpha}\left(\mathbb{S}^{6}\right): \frac{1}{R} \leq v \leq R,\|v\|_{C^{4, \alpha}\left(\mathbb{S}^{6}\right)} \leq R\right\}
$$

and deg denotes the Leray-Schauder degree in $C^{4, \alpha}\left(\mathbb{S}^{6}\right)$. As a consequence, if Index $(f) \neq 0$, then (P) has at least one solution.

Theorem 1.9 is proved by using the following subcritical approximation of (P)

$$
\begin{equation*}
P_{h}^{n} u=\frac{n-4}{2} f u^{5-\tau}, \quad u>0, \quad \text { on } \mathbb{S}^{6} \tag{13}
\end{equation*}
$$

for $\tau>0$ small. Using the Implicit Function theorem, similarly to [38] and [31], we find for any k-tuple of points $p^{1}, \ldots, p^{k} \in \mathcal{F}^{+}$with $\rho\left(p^{1}, \ldots, p^{k}\right)>0$ a family of solutions of (13) highly concentrated around these points. Differently from the scalar curvature case, it is not immediate to check that this kind of solutions are positive: this fact is proved in Subsection 3.4. Using the blow up analysis we prove that the only blowing up solutions of (13) are of the above type. Then by a degree argument, using the condition $\operatorname{Index}(f) \neq 0$, we derive the existence of at least one solution of (P).

We organize our paper as follows. In Section 2 we provide the main local blow up analysis for (3). In Section 3 we prove a-priori estimates in H_{2}^{2} norm and L^{∞} norm for solutions of equation (P) in dimensions 5 and 6. Then we derive our compactness and existence results. In the Appendix, we provide some useful technical results.

Acknowledgements. Part of this work was accomplished when the first author enjoyed the hospitality of the SISSA at Trieste. He would like to thank A. Ambrosetti for the invitation and all the members of this institute for their hospitality. It is also a great pleasure to thank A. Ambrosetti, A. Bahri, A. Chang, M. Gursky, E. Hebey and P. Yang for their interest in this work and their useful comments. The authors are also indebted to M. Morini for helpful discussions. A.M. is supported by a Fulbright Fellowship for the academic year 2000-2001 and by M.U.R.S.T. under the national project "Variational methods and nonlinear differential equations". M.O.A. research is supported by a postdoctoral fellowship from SISSA.

2. - Estimates for isolated simple blow up points

In this section we study the properties of isolated simple blow up points for equation (3). We first prove some Harnack type inequalities. In the following, given $r>0, B_{r}$ will denote the open ball of radius r centred at 0 in \mathbb{R}^{n}, and \bar{B}_{r} its closure.

Lemma 2.1. For $\sigma \in(0,1]$, let $A_{\sigma}=B_{3 \sigma} \backslash \bar{B}_{\frac{1}{3} \sigma}$, and $A_{\sigma}^{\prime}=\bar{B}_{2 \sigma} \backslash B_{\frac{1}{2} \sigma}$. Let $g \in L^{\infty}\left(A_{\sigma}\right)$, and suppose u is a positive C^{4} solution of

$$
\Delta^{2} u=g u, \quad \Delta u>0, \quad \text { in } B_{3 \sigma}
$$

Then there exists $C=C\left(n,\|g\|_{L^{\infty}\left(A_{\sigma}\right)}\right)$ such that

$$
\max _{A_{\sigma}^{\prime}} u \leq C \bar{u}(2 \sigma)
$$

Proof. Set $\xi(y)=u(\sigma y), y \in B_{3}$. It is easy to see that ξ satisfies

$$
\begin{equation*}
\Delta^{2} \xi(y)=\sigma^{4} g(\sigma y) \xi(y), \quad \xi(y)>0, \quad \Delta \xi(y)>0 \quad y \in B_{3} \tag{14}
\end{equation*}
$$

Set $w_{1}=\xi, w_{2}=\Delta \xi$. Then $\left(w_{1}, w_{2}\right)$ is a positive solution of the following elliptic system

$$
\begin{cases}\Delta w_{1}=w_{2} & \text { in } B_{3} \tag{15}\\ \Delta w_{2}=\sigma^{4} g(\sigma y) w_{1} & \text { in } B_{3}\end{cases}
$$

For system (15), being a cooperative elliptic one, we can use the following weak Harnack Inequality due to Arapostathis, Ghosh and Marcus [3]
where $C=C\left(n,\|g\|_{L^{\infty}\left(A_{\sigma}\right)}\right)$. On the other hand, averaging the first equation in (15), we have

$$
-\overline{\Delta w}_{1}(t)+\bar{w}_{2}(t)=0, \quad \forall t \in(0,3]
$$

which is equivalent to

$$
\ddot{\bar{w}}_{1}(t)+\frac{n-1}{t} \dot{\bar{w}}_{1}(t)+\bar{w}_{2}(t)=0, \quad \forall t \in(0,3] .
$$

Clearly, by the positivity of w_{1} and w_{2} and by (15), the functions w_{1} and w_{2} are superharmonic, so \bar{w}_{1} and \bar{w}_{2} are both non-negative and non-increasing. From another part, since ξ is a smooth function, $\dot{\bar{w}}_{1}$ and $\dot{\bar{w}}_{2}$ are bounded near zero. Hence we can use the following lemma

Lemma 2.2 (Serrin-Zou, [39]). Let a be a positive real number and assume that $y=y(r)>0$ satisfies

$$
\ddot{y}(t)+\frac{n-1}{t} \dot{y}(t)+\varphi(t) \leq 0 \quad \forall t \in(0, a),
$$

with φ non-negative and non-increasing on $(0, a)$, and \dot{y} bounded near 0 . Then there holds

$$
y(t) \geq c t^{2} \varphi(t) \quad \forall t \in(0, a)
$$

where $c=c(n)$.

As a consequence, here, we have

$$
\bar{w}_{1}(t) \geq c t^{2} \bar{w}_{2}(t) \quad \forall t \in(0,2] .
$$

which implies that for $t \in\left[\frac{1}{2}, 2\right]$ it is $\bar{w}_{2}(t) \leq c_{1} \bar{w}_{1}(t)$, where c_{1} is a positive real constant independent of t. Hence, using (16) and the superharmonicity of w_{1}, we deduce

$$
\max _{\bar{B}_{2} \backslash B_{\frac{1}{2}}} w_{1} \leq C \max \left\{\min _{r \in[1 / 2,2]} \bar{w}_{1}(r), \min _{r \in[1 / 2,2]} \bar{w}_{2}(r)\right\} \leq C \min _{r \in[1 / 2,2]} \bar{w}_{1}(r) \leq C \bar{w}_{1}(2)
$$

This concludes the proof of Lemma 2.1, coming back to the original function u.

From Lemma 2.1, we deduce the following Harnack Inequality.
Lemma 2.3. Let $\Omega \subseteq \mathbb{R}^{n}$ and $g \in L^{\infty}(\Omega)$, and assume that u is a C^{4} positive solution of

$$
\Delta^{2} u=g u, \quad \Delta u>0, \quad \text { on } \Omega .
$$

Then for every $\Omega^{\prime} \subset \subset \Omega$, there exists $C=C\left(n,\|g\|_{L^{\infty}(\Omega)}, \Omega, \Omega^{\prime}\right)$ such that

$$
\max _{\overline{\Omega^{\prime}}} u \leq C \min _{\overline{\Omega^{\prime}}} u
$$

Proof. Let $\bar{\sigma} \in\left(0, \frac{1}{10} \operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)\right)$. First we claim that there exists a constant $\tilde{C}=\tilde{C}\left(n,\|g\|_{L^{\infty}(\Omega)}\right)$ such that for every point $x_{0} \in \Omega^{\prime}$ there holds

$$
\begin{equation*}
\max _{\bar{B}_{\sigma}\left(x_{0}\right)} u \leq \tilde{C} u\left(x_{0}\right) . \tag{17}
\end{equation*}
$$

Once (17) is established, the assertion follows by covering Ω^{\prime} with a finite number of balls of radius $\bar{\sigma}$ starting from a minimum of u on Ω^{\prime}. Of course, the number of these balls can be chosen depending only on $n, \Omega, \Omega^{\prime}$.

Let us now prove (17). Consider the function $z(y)=u\left(x_{0}+y\right)$. Then it is clear that z satisfies the assumptions of Lemma 2.1 for $\sigma \in(0, \bar{\sigma})$, and taking $g\left(x_{0}+\cdot\right)$ instead of g. Hence we deduce

$$
\max _{\overline{\Omega^{\prime}}} z \leq \tilde{C}\left(n,\|g\|_{L^{\infty}(\Omega)}\right) \bar{z}(2 \sigma), \quad \sigma \in(0, \bar{\sigma}) .
$$

Recalling the definition of z, and taking into account that z is superharmonic, we have

$$
\max _{\overline{\Omega^{\prime}}} z \leq \tilde{C}\left(n,\|g\|_{L^{\infty}(\Omega)}\right) \bar{z}(0)=\tilde{C}\left(n,\|g\|_{L^{\infty}(\Omega)}\right) u\left(x_{0}\right) .
$$

This implies (17).

Remark 2.4. Let f be a C^{1} positive function on \mathbb{S}^{n}, and $q \in\left[1, \frac{n+4}{n-4}\right]$. Let u be a positive solution of $P_{h}^{n} u=f u^{q}$ on \mathbb{S}^{n}. It follows from Lemma 2.3 that upper bounds on u imply also lower bounds on u.

Lemma 2.5. Let $\left\{f_{i}\right\}_{i}$ satisfy (2), $\left\{u_{i}\right\}_{i}$ satisfy (3), and let $y_{i} \rightarrow \bar{y} \in \Omega$ be an isolated blow up point. Then for any $r \in\left(0, \frac{1}{3} \bar{r}\right)$, we have the following weak Harnack inequality

$$
\begin{aligned}
& \max _{y \in \bar{B}_{2 r}\left(y_{i}\right) \backslash B_{\frac{r}{2}}\left(y_{i}\right)} u_{i}(y) \leq C \min _{y \in \bar{B}_{2 r}\left(y_{i}\right) \backslash B_{\frac{r}{2}}\left(y_{i}\right)} u_{i}(y) \\
& \max _{y \in \bar{B}_{2 r}\left(y_{i}\right) \backslash B_{\frac{r}{2}}\left(y_{i}\right)}\left(\Delta u_{i}(y)\right) \leq \frac{1}{r^{2}} C \min _{y \in \bar{B}_{2 r}\left(y_{i}\right) \backslash B_{\frac{r}{2}}\left(y_{i}\right)} u_{i}(y),
\end{aligned}
$$

where C is some positive constant depending only on n, \bar{C}, and $\sup _{i}\left\|f_{i}\right\|_{L^{\infty}{ }_{\left(B_{\bar{r}}\left(y_{i}\right)\right)} \text {. }}$
Proof. Set $\xi(y)=r^{\frac{4}{q_{i}-1}} u_{i}\left(y_{i}+r y\right), y \in B_{3}$. It is easy to see that ξ satisfies

$$
\begin{cases}\Delta^{2} \xi(y)=\frac{n-4}{2} f_{i}\left(y_{i}+r y\right) \xi(y)^{q_{i}} & y \in B_{3} \tag{18}\\ \Delta \xi>0 & y \in B_{3} \\ 0<\xi(y) \leq \bar{C}|y|^{-\frac{4}{q_{i}-1}} & y \in B_{3}\end{cases}
$$

The first inequality follows easily from Lemma 2.3. For the second one, it is sufficient to use the above rescaling, (16) and Lemma 2.2.

Remark 2.6. It is clear from the proof of Lemma 2.5 that the conclusion remains true if instead of assuming that \bar{y} is an isolated blow up we only assume (4).

Proposition 2.7. Let $\left\{f_{i}\right\}_{i}$ be bounded in $C_{\text {loc }}^{1}(\Omega)$ and satisfy (2). Let $\left\{u_{i}\right\}_{i}$ satisfy (3), and let $y_{i} \rightarrow \bar{y} \in \Omega$ be an isolated blow up point for $\left\{u_{i}\right\}_{i}$. Then, for any $R_{i} \rightarrow+\infty$ and $\varepsilon_{i} \rightarrow 0^{+}$, we have, after passing to a subsequence of u_{i} (still denoted $\left\{u_{i}\right\}_{i},\left\{y_{i}\right\}_{i}$, etc \ldots), that

$$
\begin{gathered}
\left\|u_{i}\left(y_{i}\right)^{-1} u_{i}\left(u_{i}\left(y_{i}\right)^{-\frac{q_{i}-1}{4}} \cdot+y_{i}\right)-\left(1+k_{i}|\cdot|^{2}\right)^{\frac{4-n}{2}}\right\|_{C^{4}\left(B_{2 R_{i}}(0)\right)} \leq \varepsilon_{i}, \\
R_{i} u_{i}\left(y_{i}\right)^{-\frac{q_{i}-1}{4}} \rightarrow 0 \quad \text { as } i \rightarrow+\infty,
\end{gathered}
$$

where $k_{i}^{2}=\frac{1}{2 n(n-2)(n+2)} f_{i}\left(y_{i}\right)$.
Proof. Consider

$$
\xi_{i}(x)=u_{i}\left(y_{i}\right)^{-1} u_{i}\left(u_{i}\left(y_{i}\right)^{-\frac{q_{i}-1}{4}} x+y_{i}\right) \quad \forall|x| \leq \bar{r} u_{i}\left(y_{i}\right)^{\frac{q_{i}-1}{4}}
$$

Clearly

$$
\begin{cases}\Delta^{2} \xi_{i}(x)=\frac{n-4}{2} f_{i}\left(u_{i}\left(y_{i}\right)^{-\frac{q_{i}-1}{4}} x+y_{i}\right) \xi_{i}(x)^{q_{i}} & |x| \leq \bar{r} u_{i}\left(y_{i}\right)^{\frac{q_{i}-1}{4}} \\ 0<\xi_{i}(x) \leq \bar{C}|x|^{-\frac{4}{q_{i}-1}}, \quad \Delta \xi_{i}>0 & |x| \leq \bar{r} u_{i}\left(y_{i}\right)^{\frac{q_{i}-1}{4}} \\ \xi_{i}(0)=1, \quad \nabla \xi_{i}(0)=0 & \end{cases}
$$

It follows from Remark 2.6 and from the superharmonicity of ξ_{i} that for $r \in$ $(0,+\infty)$ we have for i large

$$
\max _{x \in \partial B_{r}(0)} \xi_{i}(x) \leq C \min _{x \in \partial B_{r}(0)} \xi_{i}(x) \leq C \xi_{i}(0)=C,
$$

so ξ_{i} is uniformly bounded in $C_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{n}\right)$. For every $r>1$, by Remark 2.6, we also have

$$
\begin{equation*}
\max _{\partial B_{r}} \Delta \xi \leq \frac{C}{r^{2}} \bar{\xi}_{i}(r) \leq C . \tag{19}
\end{equation*}
$$

Since the functions $\Delta \xi_{i}$ satisfy the equation $\Delta\left(\Delta \xi_{i}\right)=f_{i}\left(y_{i}+r y\right) \xi_{i}^{q_{i}}$, then from L^{p} estimates (see e.g. [28], Theorem 9.11) and Schauder estimates (see e.g. [28], Chapter 6) $\left\{\Delta \xi_{i}\right\}_{i}$ is bounded in $C_{\text {loc }}^{2, \alpha}\left(\mathbb{R}^{n}\right)$. By the same reasons it follows that $\left\{\xi_{i}\right\}_{i}$ is bounded in $C_{\text {loc }}^{4, \alpha}\left(\mathbb{R}^{n}\right)$.

Hence by the Ascoli-Arzelà theorem, there exists some function ξ such that, after passing to a subsequence,

$$
\begin{cases}\xi_{i} \rightarrow \xi & \text { in } C_{\mathrm{loc}}^{4}\left(\mathbb{R}^{n}\right), \\ \Delta^{2} \xi=\frac{n-4}{2}\left(\lim _{i} f_{i}\left(y_{i}\right)\right) \xi^{\frac{n+4}{n-4}} & \text { in } \mathbb{R}^{n}, \\ \xi \geq 0, \quad \Delta \xi_{i} \geq 0, \quad \xi(0)=1, \quad \nabla \xi(0)=0 . & \end{cases}
$$

Since $\Delta \xi \geq 0$, and $\xi \geq 0$, it follows from the maximum principle that ξ is positive in \mathbb{R}^{n}. It follows from standard regularity arguments that ξ is C^{∞} in \mathbb{R}^{n}, so the result in Lin [32] implies that

$$
\xi(x)=\left(1+\lim _{i} k_{i}|x|^{2}\right)^{\frac{4-n}{2}}
$$

where $k_{i}^{2}=\frac{1}{2 n(n-2)(n+2)} f_{i}\left(y_{i}\right)$. Proposition 2.7 is now proved.
Rermark 2.8. It follows from the proof of Proposition 2.7 that, under the assumption that $\left\{f_{i}\right\}_{i}$ is bounded in $C_{\text {loc }}^{1}(\Omega)$, if a sequence of solutions $\left\{u_{i}\right\}$ of (3) remains bounded in $L_{\text {loc }}^{\infty}(\Omega)$, then u_{i} converges in $C_{\text {loc }}^{4, \alpha}$ along a subsequence.

Since passing to subsequences does not affect our proofs, we will always choose $R_{i} \rightarrow+\infty$ first, and then ε_{i} (depending on R_{i}) as small as necessary.

In particular ε_{i} is chosen small enough so that y_{i} is the only critical point of u_{i} in $0<|y|<R_{i} u_{i}\left(y_{i}\right)^{-\frac{q_{i}-1}{4}}, \hat{u}_{i}(r)$ (defined after formula (5)) has a unique critical point in $\left(0, R_{i} u_{i}\left(y_{i}\right)^{-\frac{q_{i}-1}{4}}\right), 2 \varepsilon_{i}<\left(1+k_{i} R_{i}^{2}\right)^{\frac{4-n}{2}}$, and

$$
\left\|u_{i}\left(y_{i}\right)^{-1} u_{i}\left(u_{i}\left(y_{i}\right)^{-\frac{q_{i}-1}{4}} \cdot+y_{i}\right)-\left(1+k_{i}|\cdot|^{2}\right)^{\frac{4-n}{2}}\right\|_{C^{4}\left(B_{2 R_{i}}(0)\right)} \rightarrow 0 .
$$

Proposition 2.9. Let $\left\{f_{i}\right\}_{i} \in C_{\mathrm{loc}}^{1}\left(B_{2}\right)$ satisfies (2) with $\Omega=B_{2}$ and

$$
\begin{equation*}
\left|\nabla f_{i}(y)\right| \leq A_{2}, \quad \forall y \in B_{2} \tag{20}
\end{equation*}
$$

for some positive constant A_{2}. Assume that $\left\{u_{i}\right\}_{i}$ satisfies (3) with $\Omega=B_{2}$, and let $y_{i} \rightarrow \bar{y} \in \Omega$ be an isolated simple blow up point for $\left\{u_{i}\right\}_{i}$, which for some positive constant A_{3} satisfies

$$
\begin{equation*}
\left|y-y_{i}\right|^{\frac{4}{q_{i}-1}} u_{i}(y) \leq A_{3}, \quad \forall y \in B_{2} . \tag{21}
\end{equation*}
$$

Then there exists some positive constant $C=C\left(n, A_{1}, A_{2}, A_{3}, \varrho\right)(\varrho$ being given in the definition of isolated simple blow up point) such that for $R_{i} u_{i}\left(y_{i}\right)^{-\frac{q_{i}-1}{4}} \leq$ $\left|y-y_{i}\right| \leq 1$

$$
\begin{equation*}
C^{-1} u_{i}\left(y_{i}\right)^{-1}\left|y-y_{i}\right|^{4-n} \leq u_{i}(y) \leq C u_{i}\left(y_{i}\right)^{-1}\left|y-y_{i}\right|^{4-n} \tag{22}
\end{equation*}
$$

Furthermore there exists some biharmonic function $b(y)$ in B_{1} such that we have, after passing to a subsequence,

$$
u_{i}\left(y_{i}\right) u_{i}(y) \rightarrow h(y)=a|y|^{4-n}+b(y) \quad \text { in } C_{\mathrm{loc}}^{4}\left(B_{1} \backslash\{0\}\right),
$$

where

$$
a=\left(\lim _{i} k_{i}\right)^{\frac{4-n}{2}}
$$

Before proving Proposition 2.9 we need some lemmas.
Lemma 2.10. Under the assumptions of Proposition 2.9, except for (20), there exist $\delta_{i}>0, \delta_{i}=O\left(R_{i}^{-4+o(1)}\right)$ such that

$$
u_{i}(y) \leq C u_{i}\left(y_{i}\right)^{-\lambda_{i}}\left|y-y_{i}\right|^{4-n+\delta_{i}} \quad \text { for } R_{i} u_{i}\left(y_{i}\right)^{-\frac{q_{i}-1}{4}} \leq\left|y-y_{i}\right| \leq 1
$$

where $\lambda_{i}=\left(n-4-\delta_{i}\right)\left(\frac{q_{i}-1}{4}\right)-1$.

Proof. Let $r_{i}=R_{i} u_{i}\left(y_{i}\right)^{-\frac{q_{i}-1}{4}}$; it follows from Proposition 2.7 that
(23) $u_{i}(y) \leq C u_{i}\left(y_{i}\right) R_{i}^{4-n}, \quad \Delta u_{i}(y) \leq C u_{i}\left(y_{i}\right)^{\frac{q_{i}+1}{2}} R_{i}^{2-n}$ for all $\left|y-y_{i}\right|=r_{i}$.

Let $\hat{u}_{i}(r)$ be defined as in (5); it follows from the definition of isolated simple blow up and Proposition 2.7 that there exists $\varrho>0$ such that

$$
\begin{equation*}
r^{\frac{4}{q_{i}-1}} \bar{u}_{i}(r) \text { is strictly decreasing for } r_{i}<r<\varrho . \tag{24}
\end{equation*}
$$

Using (23), (24) and Lemma 2.5 we have that for all $r_{i}<\left|y-y_{i}\right|<\varrho$
$\left|y-y_{i}\right|^{\frac{4}{q_{i}-1}} u_{i}(y) \leq C\left|y-y_{i}\right|^{\frac{4}{q_{i}-1}} \bar{u}_{i}\left(\left|y-y_{i}\right|\right) \leq C r_{i}^{\frac{4}{q_{i}-1}} \bar{u}_{i}\left(r_{i}\right) \leq C R_{i}^{\frac{4-n}{2}+o(1)}$.
Therefore

$$
\begin{equation*}
u_{i}(y)^{q_{i}-1}=O\left(R_{i}^{-4+o(1)}\left|y-y_{i}\right|^{-4}\right) \quad \text { for all } r_{i} \leq\left|y-y_{i}\right| \leq \varrho \tag{25}
\end{equation*}
$$

Now we would like to apply Lemma 4.3 with $D=\left\{r_{i} \leq\left|y-y_{i}\right| \leq \varrho\right\}$, and $L_{1}=L_{2}=-\Delta, h_{11}=0, h_{12}=1, h_{21}=\frac{n-4}{2} f_{i} u_{i}^{q_{i}-1}$.

Take $\alpha \in\left(0, \frac{1}{n-4}\right)$, and let

$$
\varphi_{1}=\left|y-y_{i}\right|^{-\alpha}, \quad \varphi_{2}=\Delta \varphi_{1} .
$$

By a direct computation, taking into account (25), one can check that
$\left\{\begin{array}{l}-\Delta \varphi_{1}+\varphi_{2}=0 ; \\ -\Delta \varphi_{2}+\frac{n-4}{2} f_{i} u_{i}^{q_{i}-1}=\left[-\alpha(2+\alpha)(n-2-\alpha)(n-4-\alpha)+O\left(R_{i}^{-4+o(1)}\right)\right]\left|y-y_{i}\right|^{-(4+\alpha)},\end{array}\right.$ for $r_{i} \leq\left|y-y_{i}\right| \leq \varrho$. It can be easily seen that with our choice of α it is $-\Delta \varphi_{2}+\frac{n-4}{2} f_{i} u_{i}^{q_{i}-1}<0$.

Now set

$$
\varphi_{1}=\left|y-y_{i}\right|^{4-n+\delta_{i}}, \quad \varphi_{2}=\Delta \varphi_{1} .
$$

Then there holds, again by (25)
$\left\{\begin{array}{l}-\Delta \varphi_{1}+\varphi_{2}=0, \\ -\Delta \varphi_{2}+\frac{n-4}{2} f_{i} u_{i}^{q_{i}-1}=\left[-\delta_{i}\left(2+\delta_{i}\right)\left(n-2-\delta_{i}\right)\left(n-4-\delta_{i}\right)+O\left(R_{i}^{-4+o(1)}\right)\right]\left|y-y_{i}\right|^{-n+\delta_{i}},\end{array}\right.$
for $r_{i} \leq\left|y-y_{i}\right| \leq \varrho$. So we can choose $\delta_{i}=O\left(R_{i}^{-4+o(1)}\right)$ such that $-\Delta \varphi_{2}+$ $\frac{n-4}{2} f_{i} u_{i}^{q_{i}-1}<0$. Now set

$$
\psi_{i}(y)=\gamma_{1} M_{i} \varrho^{\alpha}\left|y-y_{i}\right|^{-\alpha}+\gamma_{2} u_{i}\left(y_{i}\right)^{-\lambda_{i}}\left|y-y_{i}\right|^{4-n+\delta_{i}}
$$

where $M_{i}=\max _{{ }_{\partial B_{Q}}} u_{i}, \lambda_{i}=\left(n-4-\delta_{i}\right)\left(\frac{q_{i}-1}{4}\right)-1$ and $\gamma_{1}, \gamma_{2}>0$. It follows from the previous computations that we can apply Lemma 4.3 with $\left(w_{1}, w_{2}\right)=$ $\left(\psi_{i}, \Delta \psi_{i}\right)$ and $\left(z_{1}, z_{2}\right)=\left(u_{i}, \Delta u_{i}\right)$ provided we show

$$
\begin{cases}u_{i} \leq \psi_{i} & \text { on } \partial\left(\left\{r_{i} \leq\left|y-y_{i}\right| \leq \varrho\right\}\right) \tag{26}\\ \Delta u_{i} \leq \Delta \psi_{i} & \text { on } \partial\left(\left\{r_{i} \leq\left|y-y_{i}\right| \leq \varrho\right\}\right)\end{cases}
$$

For this purpose we observe that for $\left|y-y_{i}\right|=\varrho$, it is $\psi_{i} \geq \gamma_{1} M_{i}$, so if $\gamma_{1}>1$ we have

$$
\psi_{i}(y) \geq u_{i}(y) \quad \text { for }\left|y-y_{i}\right|=\varrho
$$

Moreover, by Lemma 2.5 there exist $C>0$ such that

$$
\max _{\partial B_{\varrho}} \Delta u_{i} \leq C \bar{u}_{i}(\varrho) \leq C M_{i},
$$

so one can easily check that for some $\gamma_{1}>0$ sufficiently large there holds

$$
\Delta \psi_{i}(y) \geq \Delta u_{i}(y) \quad \text { for }\left|y-y_{i}\right|=\varrho
$$

We observe that we have proved (26) on $\left|y-y_{i}\right|=\varrho$; for $\left|y-y_{i}\right|=r_{i}$, we have

$$
\psi_{i}(y) \geq \gamma_{2} u_{i}\left(y_{i}\right)^{-\lambda_{i}} r_{i}^{4-n+\delta_{i}}
$$

But $r_{i}=R_{i} u_{i}\left(y_{i}\right)^{-\frac{q_{i}-1}{4}}$ so, taking into account the expression of λ_{i} we derive

$$
\psi_{i}(y) \geq \gamma_{2} u_{i}\left(y_{i}\right) R_{i}^{4-n+\delta_{i}} \quad \text { for }\left|y-y_{i}\right|=r_{i}
$$

By Proposition 2.7, it turns out that $u_{i}(y) \leq C u_{i}\left(y_{i}\right) R_{i}^{4-n}$ for $\left|y-y_{i}\right|=r_{i}$, so it follows that for i large

$$
\psi_{i}(y) \geq u_{i}(y) \quad \text { for }\left|y-y_{i}\right|=r_{i}
$$

From another part, it is

$$
\Delta \psi_{i}(y) \geq \gamma_{2} u_{i}\left(y_{i}\right)^{-\lambda_{i}}\left(n-4+\delta_{i}\right)\left(2+\delta_{i}\right) r_{i}^{2-n+\delta_{i}} \quad \text { for }\left|y-y_{i}\right|=r_{i}
$$

so from the expression of r_{i} and from (23) it follows that for γ_{2} large enough

$$
\Delta \psi_{i}(y) \geq \Delta u_{i}(y) \quad \text { for }\left|y-y_{i}\right|=r_{i}
$$

We have now proved (26), so it is:

$$
\begin{equation*}
u_{i}(y) \leq \psi_{i}(y) \quad \text { for } r_{i} \leq\left|y-y_{i}\right| \leq \varrho \tag{27}
\end{equation*}
$$

Now, since $y_{i} \rightarrow \bar{y}$ is an isolated simple blow up, taking into account (24), Lemma 2.5 and inequality (27), we deduce that for $r_{i}<\theta<\varrho$ it is

$$
\begin{aligned}
\varrho^{\frac{q_{i}-1}{4}} M_{i} & \leq C \varrho^{\frac{q_{i}-1}{4}} \bar{u}_{i}(\varrho) \leq C \theta^{\frac{q_{i}-1}{4}} \bar{u}_{i}(\theta) \\
& \leq C \theta^{\frac{q_{i}-1}{4}}\left(\gamma_{1} M_{i} \varrho^{\alpha} \theta^{-\alpha}+\gamma_{2} u_{i}\left(y_{i}\right)^{-\lambda_{i}} \theta^{4-n+\delta_{i}}\right) .
\end{aligned}
$$

Since we are assuming $0<\alpha<\frac{2}{n-4}$, we can choose θ independent of i such that

$$
C \gamma_{1} \varrho^{\alpha} \theta^{\frac{q_{i}-1}{4}-\alpha}<\frac{1}{2} \varrho^{\frac{q_{i}-1}{4}},
$$

and with such a choice it turns out that

$$
\begin{equation*}
M_{i} \leq C u_{i}\left(y_{i}\right)^{-\lambda_{i}} \tag{28}
\end{equation*}
$$

This concludes the proof of the Lemma for $r_{i} \leq\left|y-y_{i}\right| \leq \varrho$; for $\varrho \leq\left|y-y_{i}\right| \leq 1$, it is sufficient to use Lemma 2.5.

We recall that we have set $\tau_{i}=\frac{n+4}{n-4}-q_{i}$.
Lemma 2.11. Under the hypotheses of Proposition 2.9 we have

$$
\tau_{i}=O\left(u_{i}\left(y_{i}\right)^{-\frac{2}{n-4}+o(1)}\right),
$$

and therefore

$$
u_{i}\left(y_{i}\right)^{\tau_{i}}=1+o(1) .
$$

Proof. Applying Proposition 4.1 with $r=1$ we obtain

$$
\begin{aligned}
\frac{n-4}{2(q+1)} & \sum_{j=1}^{n} \int_{B_{1}} x_{j} \frac{\partial f_{i}}{\partial x_{j}} u_{i}^{q_{i}+1} d x+\frac{n-4}{2}\left(\frac{n}{q_{i}+1}-\frac{n-4}{2}\right) \int_{B_{1}} f_{i} u_{i}^{q_{i}+1} d x \\
& -\frac{n-4}{2\left(q_{i}+1\right)} \int_{\partial B_{1}} f_{i} u_{i}^{q_{i}+1} d \sigma=\int_{\partial B_{1}} B\left(r, x, u, \nabla u_{i}, \nabla^{2} u_{i}, \nabla^{3} u_{i}\right) d \sigma .
\end{aligned}
$$

From (28), Lemma 2.5 and from standard elliptic estimates, one can easily deduce that

$$
\begin{aligned}
& \int_{\partial B_{1}} B\left(r, x, u_{i}, \nabla u, \nabla^{2} u_{i}, \nabla^{3} u_{i}\right) d \sigma=O\left(u_{i}\left(y_{i}\right)^{-2+o(1)}\right), \\
& \int_{\partial B_{1}} f_{i} u_{i}^{q_{i}+1} d \sigma=O\left(u_{i}\left(y_{i}\right)^{-\frac{2 n}{n-4}+o(1)}\right)
\end{aligned}
$$

Moreover, using Proposition 2.7 and simple rescaling arguments we derive

$$
\sum_{j=1}^{j=n} \int_{B_{1}} x_{j} \frac{\partial f_{i}}{\partial x_{j}} u_{i}^{q_{i}+1} d x=O\left(u_{i}\left(y_{i}\right)^{-\frac{2}{n-4}+o(1)}\right) .
$$

Hence it follows that

$$
\begin{aligned}
\tau_{i} & =O\left(u_{i}\left(y_{i}\right)^{-\frac{2}{n-4}+o(1)}\right)+O\left(u_{i}\left(y_{i}\right)^{-2+o(1)}\right)+O\left(u_{i}\left(y_{i}\right)^{-\frac{2 n}{n-4}+o(1)}\right) \\
& =O\left(u_{i}\left(y_{i}\right)^{-\frac{2}{n-4}+o(1)}\right)
\end{aligned}
$$

This concludes the proof.
lemma 2.12. There holds

$$
u_{i}\left(y_{i}\right) u_{i}^{q_{i}}(y) \rightarrow l \delta_{0}(y),
$$

where $l=\frac{2}{n(n+2)}\left(\lim _{i} k_{i}\right)^{-\frac{n}{2}} \omega_{n-1}$ and the convergence is in the weak sense of measures.

Proof. Take $\psi \in C_{c}^{\infty}\left(B_{1}\right)$; we clearly have

$$
\int_{B_{1}} u_{i}\left(y_{i}\right) u_{i}^{q_{i}} \psi=\int_{B_{r_{i}}} u_{i}\left(y_{i}\right) u_{i}^{q_{i}} \psi+\int_{B_{1} \backslash B_{r_{i}}} u_{i}\left(y_{i}\right) u_{i}^{q_{i}} \psi
$$

Using Proposition 2.7 we deduce by simple computations

$$
\begin{equation*}
\int_{B_{r_{i}}} u_{i}\left(y_{i}\right) u_{i}^{q_{i}} \psi=(\psi(0)+o(1)) u_{i}\left(y_{i}\right) \int_{B_{r_{i}}} u_{i}^{q_{i}} \rightarrow l \psi(0) \tag{29}
\end{equation*}
$$

Moreover, by Lemma 2.10 there holds

$$
\begin{align*}
\int_{B_{1} \backslash B_{r_{i}}} u_{i}^{q_{i}} & \leq C \int_{B_{1} \backslash B_{r_{i}}}\left(u_{i}\left(y_{i}\right)^{-\lambda_{i}}\left|y-y_{i}\right|^{4-n+\delta_{i}}\right)^{q_{i}} \tag{30}\\
& \leq C R_{i}^{n-q_{i}\left(n-4-\delta_{i}\right)} u_{i}\left(y_{i}\right)^{-1+O\left(\tau_{i}\right)}=o(1) u_{i}\left(y_{i}\right)^{-1}
\end{align*}
$$

so the conclusion follows.
Lemma 2.13. Let $w_{i}: B_{1} \rightarrow \mathbb{R}$ be defined as

$$
w_{i}(y)=u_{i}\left(y_{i}\right) \Delta u_{i}(y),
$$

and let $H_{B_{1}}\left(w_{i}\right)$ denote the unique function satisfying

$$
\begin{cases}\Delta H_{B_{1}}\left(w_{i}\right)=0 & \text { in } B_{1} \\ H_{B_{1}}\left(w_{i}\right) \equiv w_{i} & \text { on } \partial B_{1}\end{cases}
$$

If we set $\tilde{w}_{i}=w_{i}-H_{B_{1}}\left(w_{i}\right)$, then we have

$$
\tilde{w}_{i} \rightarrow \tilde{l} G_{B_{1}}(0, x) \quad \text { in } L^{1}\left(B_{1}\right)
$$

where

$$
\tilde{l}=\frac{n-4}{n(n+2)}\left(\lim _{i} f_{i}\left(y_{i}\right)\right)\left(\lim _{i} k_{i}\right)^{-\frac{n}{2}} \omega_{n-1}
$$

and where $G_{B_{1}}$ denotes the Green's function of Δ in B_{1} under Dirichlet boundary conditions.

Proof. It is easy to prove, using Lemma 2.12 and the Green's representation formula, that $\tilde{w}_{i}(\cdot) \rightarrow l G_{B_{1}}(0, \cdot)$ pointwise. We will prove that \tilde{w}_{i} is bounded in $W_{0}^{1, q}\left(B_{1}\right)$ for $q<\frac{n}{n-1}$. Then the Lemma will follow from the Rellich compactness theorem.

Hence we are reduced to prove that $\nabla \tilde{w}_{i}$ is bounded in $L^{q}\left(B_{1}\right)$ for all $q<\frac{n}{n-1}$. Let $f \in\left(L^{q^{\prime}}\left(B_{1}\right)\right)^{n}, q^{\prime}>n$, and consider the problem

$$
\left\{\begin{array}{l}
-\Delta v=\operatorname{div} f \quad \text { in } W^{-1, q^{\prime}}\left(B_{1}\right), \\
v \in W_{0}^{1, q^{\prime}}\left(B_{1}\right) .
\end{array}\right.
$$

This problem admits a unique solution v, which satisfies

$$
\|v\|_{W_{0}^{1, q^{\prime}}{ }_{\left(B_{1}\right)}} \leq C\|\operatorname{div} f\|_{W_{0}^{-1, q^{\prime}}{ }_{\left(B_{1}\right)}} \leq C^{\prime}\|f\|_{L^{q^{\prime}}\left(B_{1}\right)} .
$$

Moreover, since $q^{\prime}>n, v \in C^{0}\left(B_{1}\right)$ and

$$
\begin{equation*}
\|v\|_{C^{0}\left(B_{1}\right)} \leq C\|v\|_{W_{0}^{1, q^{\prime}}\left(B_{1}\right)} \leq C^{\prime}\|f\|_{L^{q^{\prime}}\left(B_{1}\right)} . \tag{31}
\end{equation*}
$$

We can split f into

$$
f=\nabla v+f_{1} \quad \text { with } \operatorname{div} f_{1}=0
$$

hence we have

$$
\begin{aligned}
\left|\int_{B_{1}} f \cdot \nabla \tilde{w}_{i}\right| & =\left|\int_{B_{1}} \nabla v \cdot \nabla \tilde{w}_{i}+\int_{B_{1}} f_{1} \cdot \nabla \tilde{w}_{i}\right| \\
& =\left|\int_{B_{1}} \nabla v \cdot \nabla \tilde{w}_{i}+\int_{B_{1}}\left\langle\operatorname{div} f_{1}, \tilde{w}_{i}\right\rangle\right|=\left|\int_{B_{1}} \nabla v \cdot \nabla \tilde{w}_{i}\right| .
\end{aligned}
$$

Writing $\int_{B_{1}} \nabla v \cdot \nabla \tilde{w}_{i}$ as $\int_{B_{1}} \Delta \tilde{w}_{i} v$, we deduce, using (31) and Lemma 2.12

$$
\left|\int_{B_{1}} f \cdot \nabla \tilde{w}_{i}\right| \leq C^{\prime \prime}\|v\|_{C^{0}\left(B_{1}\right)} \leq C\|f\|_{L^{q^{\prime}\left(B_{1}\right)}}
$$

Hence by Banach-Steinhaus theorem the sequence $\left\{\tilde{w}_{i}\right\}_{i}$ is bounded in $W^{1, q}$ for all $q<\frac{n}{n-1}$. This concludes the proof.

Lemma 2.14. Let $\Gamma:(0,1) \rightarrow \mathbb{R}$ be defined by

$$
\Gamma(\sigma)=\lim _{i}\left(\int_{B_{\sigma}} \Delta u_{i}\right)\left(\int_{B_{1} \backslash B_{\sigma}} \Delta u_{i}\right)^{-1}
$$

Then, after extracting a subsequence if necessary, $\Gamma(\cdot)$ is well defined and satisfies $\Gamma(t)>0 \forall t \in(0,1)$ and $\Gamma(t) \rightarrow 0$ as $t \rightarrow 0$.

Proof. Let $w_{i}=u_{i}\left(y_{i}\right) \Delta u_{i}$. Since $H_{B_{1}}\left(w_{i}\right)$ is harmonic, by the mean value property, there holds

$$
\int_{B_{\sigma}} H_{B_{1}}\left(w_{i}\right)=\omega_{n-1} \bar{H}_{i} \int_{0}^{\sigma} r^{n-1}, \quad \int_{B_{1} \backslash B_{\sigma}} H_{B_{1}}\left(w_{i}\right)=\omega_{n-1} \bar{H}_{i} \int_{\sigma}^{1} r^{n-1},
$$

where we have set

$$
\bar{H}_{i}=\frac{1}{\omega_{n-1}} \int_{\partial B_{1}} H_{B_{1}}\left(w_{i}\right)
$$

In particular recalling the definition of \tilde{w}_{i}, it follows that

$$
\begin{equation*}
\int_{B_{\sigma}} w_{i}=\int_{B_{\sigma}} \tilde{w}_{i}+\omega_{n-1} \bar{H}_{i} \int_{0}^{\sigma} r^{n-1} ; \int_{B_{1} \backslash B_{\sigma}} w_{i}=\int_{B_{1} \backslash B_{\sigma}} \tilde{w}_{i}+\omega_{n-1} \bar{H}_{i} \int_{\sigma}^{1} r^{n-1} \tag{32}
\end{equation*}
$$

Now two cases may occur: the first is $\sup _{i} \bar{H}_{i}<+\infty$, and the second is $\limsup \overline{\operatorname{H}}_{i}=+\infty$. We treat the two cases separately.
Case 1. $\sup _{i} \bar{H}_{i}<+\infty$
Taking into account (32) we have

$$
\begin{aligned}
& \left(\int_{B_{\sigma}} w_{i}\right)\left(\int_{B_{1} \backslash B_{\sigma}} w_{i}\right)^{-1} \\
& \quad=\left(\int_{B_{\sigma}} \tilde{w}_{i}+\omega_{n-1} \bar{H}_{i} \int_{0}^{\sigma} r^{n-1}\right)\left(\int_{B_{1} \backslash B_{\sigma}} \tilde{w}_{i}+\omega_{n-1} \bar{H}_{i} \int_{\sigma}^{1} r^{n-1}\right)^{-1}
\end{aligned}
$$

By Lemma 2.13 it is $\tilde{w}_{i} \rightarrow \tilde{w}=l G_{B_{1}}(0, \cdot)>0$ in $L^{1}\left(B_{1}\right)$ so, since up to a subsequence $\bar{H}_{i} \rightarrow \bar{H}, \Gamma(\sigma)$ is

$$
\Gamma(\sigma)=\left(\int_{B_{\sigma}} \tilde{w}+\omega_{n-1} \bar{H} \int_{0}^{\sigma} r^{n-1}\right)\left(\int_{B_{1} \backslash B_{\sigma}} \tilde{w}+\omega_{n-1} \bar{H} \int_{\sigma}^{1} r^{n-1}\right)^{-1}
$$

Case 2. $\quad \lim \sup _{i} \bar{H}_{i}=+\infty$
Arguing as in the first case, taking into account the convergence of \tilde{w}_{i} and the fact that $\bar{H}_{i} \rightarrow+\infty$, we derive

$$
\lim _{i}\left(\int_{B_{\sigma}} w_{i}\right)\left(\int_{B_{1} \backslash B_{\sigma}} w_{i}\right)^{-1}=\left(\int_{0}^{\sigma} r^{n-1}\right)\left(\int_{\sigma}^{1} r^{n-1}\right)^{-1}
$$

So in this case $\Gamma(\sigma)$ is

$$
\Gamma(\sigma)=\left(\int_{0}^{\sigma} r^{n-1}\right)\left(\int_{\sigma}^{1} r^{n-1}\right)^{-1}
$$

In both the cases, the function $\Gamma(\sigma)$ satisfies the required properties, hence the conclusion follows.

Lemma 2.15. Set $v_{i}(y)=\bar{u}_{i}(1)^{-1} u_{i}(y)$. Then there holds

$$
v_{i} \rightarrow v(x)=a_{1}|x|^{4-n}+b(x) \quad \text { in } C_{\mathrm{loc}}^{2}\left(B_{1} \backslash\{0\}\right),
$$

where

$$
a_{1}>0, \quad v>0, \quad b \in C^{\infty}\left(B_{1}\right), \quad \Delta^{2} b=0
$$

Proof. It is easy to see that v_{i} satisfies

$$
\Delta^{2} v_{i}=\frac{n-4}{2} \bar{u}_{i}(1)^{q_{i}-1} f_{i}(y) v_{i}^{q_{i}} \quad \text { in } B_{2} .
$$

We observe that by Lemma 2.10, $\overline{u_{i}}(1) \rightarrow 0$ so it follows from Lemma 2.5 and standard elliptic estimates (we note that $\bar{v}_{i}(1)=1$ as $i \rightarrow+\infty$) that $\left\{v_{i}\right\}$ converges in $C_{\text {loc }}^{4}\left(B_{1} \backslash\{0\}\right)$ to some function v which satisfies

$$
\Delta^{2} v=0, \quad v \geq 0, \quad \Delta v \geq 0 \quad \text { in } B_{2} \backslash\{0\} .
$$

Moreover v must possess a singularity at 0 . In fact, since we are assuming that $y_{i} \rightarrow \bar{y}$ is an isolated simple blow up, it follows that also $r^{\frac{n-4}{2}} \bar{v}(r)$ is non-increasing for $0<r<\varrho$, which is impossible if v is regular near the origin.

It follows from Lemma 4.5 that v is of the form

$$
v(x)=a_{1}|x|^{4-n}+a_{2}|x|^{2-n}+b(x),
$$

where $a_{1}, a_{2} \geq 0$, and $b \in C^{\infty}\left(B_{1}\right)$ satisfies $\Delta^{2} b=0$. Since v is singular at 0 , it is $a_{1}+a_{2}>0$. Using the divergence Theorem and the convergence of v_{i} to v, we derive that for $\sigma \in(0,1)$

$$
\lim _{i} \bar{u}_{i}(1)^{-1} \int_{B_{\sigma}} \Delta u_{i}=\int_{\partial B_{\sigma}}-\frac{\partial v}{\partial v}=\omega_{n-1} a_{2}(n-2)+o_{\sigma}(1),
$$

where $o_{\sigma}(1) \rightarrow 0$ as $\sigma \rightarrow 0$. Using Lemma 2.14 we deduce

$$
\begin{aligned}
\omega_{n-1} a_{2}(n-2)+o_{\sigma}(1) & =\int_{\partial B_{\sigma}}-\frac{\partial v}{\partial v} \\
& =\frac{\int_{B_{\sigma}} \Delta u_{i}}{\int_{B_{1} \backslash B_{S}} \Delta u_{i}} \lim _{i} \bar{u}_{i}(1)^{-1} \int_{B_{1} \backslash B_{\sigma}} \Delta u_{i} \rightarrow \Gamma(\sigma) \int_{B_{1} \backslash B_{\sigma}} \Delta v
\end{aligned}
$$

Since $\Delta v \in L^{1}\left(B_{1}\right)$, letting $\sigma \rightarrow 0$ we obtain $a_{2}=0$, taking into account that $\Gamma(\sigma) \rightarrow 0$ as $\sigma \rightarrow 0$.

Proof of Proposition 2.9. Let v_{i} be as in Lemma 2.15. We prove first the inequality (22) for $\left|y-y_{i}\right|=1$, namely we show that for some $C>0$ independent of i

$$
\begin{equation*}
C^{-1} \leq \overline{u_{i}}(1) u_{i}\left(y_{i}\right) \leq C . \tag{33}
\end{equation*}
$$

Multiply (3) by $\overline{u_{i}}(1)^{-1}$ and integrate on B_{1}, we have

$$
\begin{equation*}
\int_{\partial B_{1}}-\frac{\partial}{\partial v}\left(\Delta v_{i}\right)=\frac{n-4}{2} \overline{u_{i}}(1)^{-1} \int_{B_{1}} f_{i} u_{i}^{q_{i}}, \tag{34}
\end{equation*}
$$

where we have set, as before, $v_{i}(y)=\overline{u_{i}}(1)^{-1} u_{i}(y)$. Applying Lemma 2.15, we deduce using the bi-harmonicity of b

$$
\begin{align*}
\lim _{i} \int_{\partial B_{1}}-\frac{\partial}{\partial v}\left(\Delta v_{i}\right) & =\int_{\partial B_{1}} \frac{\partial}{\partial v}\left(2 a_{1}(4-n)|x|^{2-n}-\Delta b\right) \tag{35}\\
& =2 a_{1}(n-2)(n-4) \omega_{n-1}>0
\end{align*}
$$

From (34) and (35) we deduce that

$$
\begin{equation*}
\lim _{i} \bar{u}_{i}(1)^{-1} \int_{B_{1}} f_{i} u_{i}^{q_{i}}=4 a_{1}(n-2) \omega_{n-1}>0 \tag{36}
\end{equation*}
$$

From another part, it follows from Lemma 2.12 that

$$
\begin{equation*}
\lim _{i} u_{i}\left(y_{i}\right) \int_{B_{1}} f_{i} u_{i}^{q_{i}} \rightarrow l\left(\lim _{i} f_{i}\left(y_{i}\right)\right) \tag{37}
\end{equation*}
$$

Hence (36) and (37) imply (33). To establish (22) for $r_{i} \leq\left|y-y_{i}\right| \leq 1$, we only need to scale the problem and to reduce it to the case $\left|y-y_{i}\right|=1$. In fact, arguing by contradiction, if there exists a subsequence $\left\{\tilde{y}_{i}\right\}_{i}$ satisfying $r_{i} \leq\left|\tilde{y}_{i}-y_{i}\right| \leq \rho$, and $\lim _{i} u_{i}\left(\tilde{y}_{i}\right) u_{i}\left(y_{i}\right)\left|\tilde{y}_{i}-y_{i}\right|^{n-4}=\infty$, set $\tilde{r}_{i}=\mid \tilde{y}_{i}-$ $y_{i} \left\lvert\,, \tilde{u}_{i}(y)=\left(\tilde{r}_{i}\right)^{\frac{4}{q_{i}-1}} u_{i}\left(y_{i}+\tilde{r}_{i} y\right)\right.$. Then \tilde{u}_{i} satisfies all the assumptions of Proposition 2.9 with the same constants and with 0 instead of \bar{y}. It follows from (33) that

$$
C^{-1} \leq \tilde{u}_{i}(0) \tilde{u}_{i}\left(\frac{\tilde{y}_{i}-y_{i}}{\tilde{r}_{i}}\right) \leq C
$$

This leads to a contradiction, so we have (22).
Next we compute the value of a. Multiplying equation (3) by $u_{i}\left(y_{i}\right)$ and integrating on B_{1}, we have

$$
\int_{\partial B_{1}}-\frac{\partial}{\partial v}\left(u_{i}\left(y_{i}\right) \Delta u_{i}\right)=\frac{n-4}{2} u_{i}\left(y_{i}\right) \int_{B_{1}} f_{i} u_{i}^{q_{i}} .
$$

It follows from the harmonicity of Δb that

$$
\begin{align*}
\lim _{i} \int_{\partial B_{1}}-\frac{\partial}{\partial v}\left(u_{i}\left(y_{i}\right) \Delta u_{i}\right) & =-\int_{\partial B_{1}} \frac{\partial}{\partial v}\left(2 a(n-4)|y|^{2-n}-\Delta b(y)\right) \tag{38}\\
& =2 a(n-4)(n-2) \omega_{n-1}
\end{align*}
$$

On the other hand, by Lemma 2.12, we have

$$
\begin{equation*}
\lim _{i} \frac{n-4}{2} u_{i}\left(y_{i}\right) \int_{B_{r_{i}}} f_{i} u_{i}^{q_{i}}=\frac{n-4}{2} \lim _{i} f_{i}\left(y_{i}\right) l \tag{39}
\end{equation*}
$$

It follows from (38) and (39) that

$$
a=\left(\lim _{i} k_{i}\right)^{\frac{4-n}{2}}
$$

The Proposition is established.
Remark 2.16. As a consequence of Proposition 2.9 we have that Lemma 2.11 can be refined to

$$
\tau_{i}=O\left(u_{i}\left(y_{i}\right)^{-\frac{2}{n-4}}\right)
$$

To check this it is sufficient to repeat the proof of Lemma 2.11 and to use (22).
We now state a technical lemma, which proof is a simple consequence of Proposition 2.7, Lemma 2.11 and Proposition 2.9. We recall that $r_{i}=$ $R_{i} u_{i}\left(y_{i}\right)^{-\frac{q_{i}-1}{4}}$.

Lemma 2.17. Under the hypotheses of Proposition 2.9, we have

$$
\begin{gathered}
\int_{B_{r_{i}}}\left|y-y_{i}\right|^{s} u_{i}(y)^{q_{i}+1}= \begin{cases}u_{i}\left(y_{i}\right)^{-\frac{2 s}{n-4}}\left(\int_{\mathbb{R}^{n}}|z|^{s}\left(1+k|z|^{2}\right)^{-n} d z+o(1)\right) \\
O\left(u_{i}\left(y_{i}\right)^{-\frac{2 n}{n-4}} \log \left(u_{i}\left(y_{i}\right)\right)\right) & s=n, \\
o\left(u_{i}\left(y_{i}\right)^{-\frac{2 n}{n-4}}\right) & s>n\end{cases} \\
\int_{B_{1} \backslash B_{r_{i}}}\left|y-y_{i}\right|^{s} u_{i}(y)^{q_{i}+1}= \begin{cases}o\left(u_{i}\left(y_{i}\right)^{-\frac{2 s}{n-4}}\right) & -n<s<n, \\
O\left(u_{i}\left(y_{i}\right)^{-\frac{2 n}{n-4}} \log \left(u_{i}\left(y_{i}\right)\right)\right) & s=n, \\
O\left(u_{i}\left(y_{i}\right)^{-\frac{2 n}{n-4}}\right) & s>n,\end{cases}
\end{gathered}
$$

where $k^{2}=\left(\lim _{i} k_{i}\right)^{2}=\frac{1}{2 n(n+2)(n-2)} \lim _{i} f_{i}\left(y_{i}\right)$.

Now we show that under some regularity assumptions on $f_{i}, \nabla f_{i}\left(y_{i}\right)$ is small for i large.

Lemma 2.18. Let $\bar{r} \in(0, \varrho)$, assume that $\left\{f_{i}\right\}_{i}$ is bounded in $C^{2}\left(B_{\bar{r}}(\bar{y})\right)$, and u_{i} satisfy equation (3). Let $y_{i} \rightarrow \bar{y} \in \Omega$ be an isolated simple blow up point of u_{i}. Then

$$
\left|\nabla f_{i}\left(y_{i}\right)\right|=O\left(u_{i}\left(y_{i}\right)^{-\frac{2}{n-4}}\right)
$$

Proof. Consider a cut off function $\eta \in C_{c}^{\infty}\left(B_{1}\right)$, satisfying

$$
\eta(x)= \begin{cases}1 & |x| \leq \frac{1}{4} \\ 0 & |x| \geq \frac{1}{2}\end{cases}
$$

Multiplying equation (3) by $\eta \frac{\partial u_{i}}{\partial x_{1}}$ and integrating by parts, it follows from Proposition 2.9 that

$$
\begin{aligned}
\frac{1}{q_{i}+1} \int_{B_{1}} \frac{\partial f_{i}}{\partial x_{1}} u_{i}^{q_{i}+1} \eta= & -\int_{B_{1} \backslash B_{\frac{1}{4}}} \Delta u_{i} \frac{\partial u_{i}}{\partial x_{1}} \Delta \eta+\frac{1}{2} \int_{B_{1} \backslash B_{\frac{1}{4}}} \frac{\partial \eta}{\partial x_{1}}\left(\Delta u_{i}\right)^{2} \\
& -2 \int_{B_{1} \backslash B_{\frac{1}{4}}} \Delta u_{i}\left\langle\nabla \eta, \nabla\left(\frac{\partial u_{i}}{\partial x_{1}}\right)\right\rangle \\
& -\frac{1}{q_{i}+1} \int_{B_{1} \backslash B_{\frac{1}{4}}} \frac{\partial \eta}{\partial x_{1}} f_{i} u_{i}^{q_{i}+1} \\
= & O\left(u_{i}\left(y_{i}\right)^{-2}\right)
\end{aligned}
$$

Therefore, taking into account the boundedness of $\left\{f_{i}\right\}_{i}$ in $C^{2}\left(B_{1}\right)$ and Lemma 2.17 we have

$$
\begin{aligned}
\frac{1}{q_{i}+1} \int_{B_{1}} \eta u_{i}^{q_{i}+1} \frac{\partial f_{i}}{\partial x_{1}}\left(y_{i}\right)= & \frac{1}{q_{i}+1} \int_{B_{1}}\left(\frac{\partial f_{i}}{\partial x_{1}}\left(y_{i}\right)-\frac{\partial f_{i}}{\partial x_{1}}(y)\right) \eta u_{i}^{q_{i}+1} \\
& +\frac{1}{q_{i}+1} \int_{B_{1}} \frac{\partial f_{i}}{\partial x_{1}}(y) u_{i}^{q_{i}+1} \eta \\
= & O\left(\int_{B_{1}}\left|y-y_{i}\right| u_{i}(y)^{q_{i}+1} d y\right)+O\left(u_{i}\left(y_{i}\right)^{-2}\right) \\
= & O\left(u_{i}\left(y_{i}\right)^{-\frac{2}{n-4}}\right)
\end{aligned}
$$

Clearly, we can estimate $\left(\frac{\partial f_{i}}{\partial x_{k}}\right)\left(y_{i}\right), 2 \leq k \leq n$, in a similar way, so Lemma 2.18 follows immediately.

We notice that according to the above lemma, if $f_{i} \rightarrow f$ in $C^{2}\left(\bar{B}_{\bar{r}}(\bar{y})\right)$, then \bar{y} is a critical point of f.

Proposition 2.19. Assume that $\left\{u_{i}\right\}_{i}$ satisfies equation (3) with $n=5,6$, and
i) if $n=5,\left\{f_{i}\right\}_{i}$ is bounded in $C_{\text {loc }}^{1}\left(B_{2}\right)$;
ii) if $n=6,\left\{f_{i}\right\}_{i}$ is bounded in $C_{\text {loc }}^{2}\left(B_{2}\right)$.

Let \bar{y} be an isolated blow up point for $\left\{u_{i}\right\}_{i}$. Then \bar{y} is an isolated simple blow up point.

Proof. It follows from Proposition 2.7 that $r^{\frac{4}{q_{i}-1}} \bar{u}_{i}(r)$ has precisely one critical point in the interval $\left(0, r_{i}\right)$, where $r_{i}=R_{i} u_{i}\left(y_{i}\right)^{-\frac{q_{i}-1}{4}}$, as before. Arguing by contradiction, suppose that \bar{y} is not an isolated simple blow up, and let μ_{i} be the second critical point of $r^{\frac{4}{q_{i}-1}} \bar{u}_{i}(r)$. We know that $\mu_{i} \geq r_{i}$ and, by the contradiction argument, $\mu_{i} \rightarrow 0$. Without loss of generality, we assume that $y_{i}=0$. Set

$$
\xi_{i}(y)=\mu_{i}^{\frac{4}{q_{i}-1}} u_{i}\left(\mu_{i} y\right) \quad|y| \leq \frac{1}{\mu_{i}}
$$

It follows from (3), the definition of isolated simple blow up and from the properties of μ_{i} that ξ_{i} satisfies

$$
\begin{cases}\Delta^{2} \xi_{i}(y)=f_{i}\left(\mu_{i} y\right) \xi_{i}(y)^{q_{i}} & |y|<\frac{1}{\mu_{i}} \tag{40}\\ |y|^{\frac{4}{q_{i}-1}} \xi_{i}(y) \leq A_{3} & |y|<\frac{1}{\mu_{i}} \\ \lim _{i} \xi_{i}(0)=+\infty & \end{cases}
$$

Moreover, by our choice of μ_{i} there holds

$$
\begin{gathered}
r^{\frac{4}{q_{i}-1}} \xi_{i}(r) \text { has precisely one critical point in } 0<r<1, \\
\left.\frac{d}{d r}\left(r^{\frac{4}{q_{i}-1}} \bar{\xi}_{i}(r)\right)\right|_{r=1}=0,
\end{gathered}
$$

where $\bar{\xi}_{i}(r)=\frac{1}{\left|\partial B_{r}\right|} \int_{\partial B_{r}} \xi$.
It follows that 0 is an isolated simple blow up for $\left\{\xi_{i}\right\}_{i}$. Therefore, applying Proposition 2.9, there exist some positive constant $a>0$, and some regular biharmonic function $b(y)$ in \mathbb{R}^{n} such that

$$
\begin{equation*}
\xi_{i}(0) \xi_{i}(y) \rightarrow h(y)=a|x|^{4-n}+b(y) \quad \text { in } C_{\mathrm{loc}}^{4}\left(\mathbb{R}^{n} \backslash\{0\}\right) \tag{41}
\end{equation*}
$$

We notice that $h(y)$ is positive, and $\Delta h(y)$ is non-negative.
We now claim that $b \equiv c$, for some $c \in \mathbb{R}, c \geq 0$. Indeed, we have that $\Delta b(y)$ is bounded from below by a fixed constant and is harmonic, so by the Liouville Theorem $\Delta b \equiv d$, for some $d \geq 0$. We also remark that $b(y)$ is
bounded from below. Hence, if we consider the function $l(y)=b(y)+\frac{d}{2 n}|y|^{2}$, we have that $l(y)$ is bounded from below in \mathbb{R}^{n} and is harmonic so, again by the Liouville Theorem, it follows that $l(y)$ is constant. Since b is bounded from below, this implies that $d=0$. Hence $b(y)$ is an harmonic function in \mathbb{R}^{n} bounded from below, and so it must be a constant.

The value of b can be computed as follows. Since, by our choice of μ_{i}, 1 is a critical point of $r^{\frac{4}{q_{i}-1}} \xi_{i}(r)$, we have that

$$
0=\left.\lim _{i} \frac{d}{d r}\left(r^{\frac{4}{q_{i}-1}} \bar{\xi}_{i}(r)\right)\right|_{r=1}=\left.\frac{d}{d r}\left(r^{\frac{n-4}{2}} \bar{h}(r)\right)\right|_{r=1}
$$

it follows immediately that

$$
b=a>0 .
$$

Applying Propositions 2.9 and 4.1 to equation (40) we have, for any $\sigma \in(0,1)$

$$
\begin{aligned}
& \int_{\partial B_{\sigma}} B\left(\sigma, x, \xi_{i}, \nabla \xi_{i}, \nabla^{2} \xi_{i}, \nabla^{3} \xi_{i}\right) \geq \frac{n-4}{2\left(q_{i}+1\right)} \sum_{j} \int_{B_{\sigma}} x_{j} \frac{\partial f_{i}\left(\mu_{i} \cdot\right)}{\partial x_{j}} \xi_{i}^{q_{i}+1} \\
&-\frac{\sigma(n-4)}{2\left(q_{i}+1\right)} \int_{\partial B_{\sigma}} f_{i}\left(\mu_{i} \cdot\right) \xi_{i}^{q_{i}+1} \\
& \geq \frac{n-4}{2\left(q_{i}+1\right)} \sum_{j} \int_{B_{\sigma}} x_{j} \frac{\partial f_{i}\left(\mu_{i} \cdot\right)}{\partial x_{j}} \xi_{i}^{q_{i}+1}-O\left(\xi_{i}(0)^{-q_{i}-1}\right)
\end{aligned}
$$

Multiply the above by $\xi_{i}(0)^{2}$ and send i to infinity, we have

$$
\begin{aligned}
\int_{\partial B_{\sigma}} B\left(\sigma, x, h, \nabla h, \nabla^{2} h, \nabla^{3} h\right) & =\lim _{i} \xi_{i}(0)^{2} \int_{\partial B_{\sigma}} B\left(\sigma, x, \xi_{i}, \nabla \xi_{i}, \nabla^{2} \xi_{i}, \nabla^{3} \xi_{i}\right) \\
& \geq \lim _{i} \xi_{i}(0)^{2} \frac{n-4}{2\left(q_{i}+1\right)} \sum_{j} \int_{B_{\sigma}} x_{j} \frac{\partial f_{i}\left(\mu_{i} \cdot\right)}{\partial x_{j}} \xi_{i}^{q_{i}+1}
\end{aligned}
$$

Now we want to estimate the last expression.
For $n=5$, we recall that we are assuming that $\left\{f_{i}\right\}_{i}$ is uniformly bounded in $C_{\text {loc }}^{1}\left(B_{2}\right)$ and so, taking into account Lemma 2.17, there holds

$$
\begin{equation*}
\left|\sum_{j} \int_{B_{\sigma}} x_{j} \frac{\partial f_{i}\left(\mu_{i} \cdot\right)}{\partial x_{j}} \xi_{i}^{q_{i}+1}\right| \leq C \mu_{i} \int_{B_{\sigma}}|x| \xi_{i}^{q_{i}+1}=o\left(\xi_{i}(0)^{-2}\right) . \tag{42}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\int_{\partial B_{\sigma}} B\left(\sigma, x, h, \nabla h, \nabla^{2} h, \nabla^{3} h\right) \geq \lim _{i} \xi_{i}(0)^{2} \frac{n-4}{2\left(q_{i}+1\right)} \sum_{j} \int_{B_{\sigma}} x_{j} \frac{\partial f_{i}\left(\mu_{i} \cdot\right)}{\partial x_{j}} \xi_{i}^{q_{i}+1}=0 . \tag{43}
\end{equation*}
$$

For $n=6$, we recall that we are assuming that $\left\{f_{i}\right\}_{i}$ is uniformly bounded in $C_{\text {loc }}^{2}\left(B_{2}\right)$; we proceed as follows. We have, using the Taylor expansion of f_{i} at 0

$$
\begin{aligned}
\left|\sum_{j} \int_{B_{\sigma}} x_{j} \frac{\partial f_{i}\left(\mu_{i} \cdot\right)}{\partial x_{j}} \xi_{i}^{q_{i}+1}\right| \leq & \mu_{i}\left|\int_{B_{\sigma}} y \cdot \nabla f_{i}(0) \xi_{i}^{q_{i}+1}\right| \\
& +\mu_{i}^{2} \max _{B_{\sigma} \mu_{i}}\left|\nabla^{2} f_{i}\right| \int_{B_{\sigma}}|y|^{2} \xi_{i}^{q_{i}+1}
\end{aligned}
$$

Applying Lemma 2.18 we have that $\left|\nabla f_{i}(0)\right|=O\left(\xi_{i}(0)^{-\frac{2}{n-4}}\right)$, therefore using Lemma 2.17 and the fact that $\mu_{i} \rightarrow 0$, we have

$$
\begin{equation*}
\int_{\partial B_{\sigma}} B\left(\sigma, x, h, \nabla h, \nabla^{2} h, \nabla^{3} h\right) \geq \lim _{i} \xi_{i}(0)^{2} \frac{n-4}{2\left(q_{i}+1\right)} \sum_{j} \int_{B_{\sigma}} x_{j} \frac{\partial f_{i}\left(\mu_{i} \cdot\right)}{\partial x_{j}} \xi_{i}^{q_{i}+1}=0 . \tag{44}
\end{equation*}
$$

By Corollary 4.2 , we know that for $\sigma>0$ sufficiently small

$$
\int_{\partial B_{\sigma}} B\left(\sigma, x, h, \nabla h, \nabla^{2} h, \nabla^{3} h\right)<0,
$$

and this contradicts both (43) and (44). This concludes the proof of the proposition.

3. - Applications

Once the local blow up analysis is performed, we can adapt to this framework the existence arguments developed in [16] and in [31] for the scalar curvature equation. As remarked in the Introduction, the main difference with respect to the scalar curvature problem is to prove the positivity of the solutions involved in such a scheme. For $n=5$, this is related to the estimates in [25], while for $n=6$ this is proved in Proposition 3.6. The main ingredient of these arguments are the a priori estimates given in the next subsection.

3.1. - A priori estimates on $\mathbb{S}^{5}, \mathbb{S}^{6}$

Consider for $n \geq 5$ the following equation

$$
\begin{cases}P_{h}^{n} v-\frac{n-4}{2} f(x) v^{q}=0 & \text { on } \mathbb{S}^{n}, \tag{45}\\ v>0, & \text { on } \mathbb{S}^{n}, \\ q=\frac{n+4}{n-4}-\tau, 0 \leq \tau<\frac{8}{n-4} . & \end{cases}
$$

The following Proposition describes the asymptotic profile of a solution v of (45) near the local maxima where v is large. Note that in this Proposition the number of such maxima could be arbitrarily large. A more careful analysis, stated in Proposition 3.2, shows that in fact the number of local maxima, which still may depend on v, turns out to be bounded above by a constant independent of v.

Proposition 3.1. Suppose $f \in C^{1}\left(\mathbb{S}^{n}\right)$ satisfies for some positive constant A_{1}

$$
\frac{1}{A_{1}} \leq f(p) \leq A_{1} \quad \text { for all } p \in \mathbb{S}^{n}
$$

Then, for any $0<\varepsilon<1, R>1$, there exist some positive constants $C_{0}^{*}>1$, $C_{1}^{*}>1$ depending on $n, \varepsilon, R, A_{1},\|f\|_{C^{1}}$ such that, if v is a solution of (45) with

$$
\max _{\mathbb{S}^{n}} v>C_{0}^{*}
$$

then there exists $1 \leq k=k(v)<+\infty$, depending on v and a set

$$
\mathcal{S}(v)=\left\{p_{1}, \ldots, p_{k}\right\} \subseteq \mathbb{S}^{n}, \quad p_{i}=p_{i}(v)
$$

such that
(1) $0 \leq \tau<\varepsilon$,
(2) p_{1}, \ldots, p_{k} are local maxima of v and for each $1 \leq j \leq k$, using y as some geodesic normal coordinates centered at p_{j}, we have

$$
\left\|v(0)^{-1} v\left(v(0)^{-\frac{q-1}{2}} y\right)-\delta_{j}(y)\right\|_{C^{4}\left(B_{2 R}(0)\right)}<\varepsilon
$$

and

$$
\left\{B_{R v\left(p_{j}\right)^{-\frac{q-1}{4}}}\left(p_{j}\right)\right\}_{1 \leq j \leq k} \quad \text { are disjoint balls. }
$$

Here

$$
\delta_{j}(y)=\left(1+k_{j}|y|^{2}\right)^{\frac{4-n}{2}}
$$

is the unique solution of

$$
\begin{cases}\Delta^{2} \delta_{j}=\frac{n-4}{2} f\left(p_{i}\right) \delta_{j}^{\frac{n+4}{n-4}} & \text { in } \mathbb{R}^{n} \\ \delta_{j}>0, \quad \delta_{j}(0)=1, \quad \nabla \delta_{j}(0)=0 & \text { in } \mathbb{R}^{n}\end{cases}
$$

and

$$
k_{j}^{2}=\frac{1}{2 n(n+2)(n-2)} f\left(p_{j}\right)
$$

(3) $v(p) \leq C_{1}^{*}\{\operatorname{dist}(p, \mathcal{S}(v))\}^{-\frac{4}{q_{i}-1}}$ for all $p \in \mathbb{S}^{n}$, and $\operatorname{dist}\left(p_{i}, p_{j}\right)^{\frac{4}{q_{i}-1}} v\left(p_{j}\right) \geq C_{0}^{*}$.

Proof. This can be proved by quite standard blow up arguments, using the results of [32], see [38].

Proposition 3.2. Let $n=5,6$ and assume that $f \in C^{1}\left(\mathbb{S}^{n}\right)$ satisfies, for some positive constant A_{1}

$$
\frac{1}{A_{1}} \leq f(p) \leq A_{1} \quad \forall p \in \mathbb{S}^{n}
$$

Ifn $=6$, we also assume that f is of class C^{2} on \mathbb{S}^{n}. Thenfor every $\varepsilon>0$ and $R>1$, there exists some positive constant $\delta^{*}>0$, depending on n, ε, R and $\|f\|_{C^{1}}$ (and also on $\|f\|_{C^{2}}$ if $n=6$), such that for any solution v of (45) with $\max _{\mathbb{S}^{n}} v>C_{0}^{*}$ we have

$$
\left|p_{j}-p_{l}\right| \geq \delta^{*} \quad \text { for all } 1 \leq j \neq l \leq k
$$

where $C_{0}^{*}, p_{j}=p_{j}(v), p_{l}=p_{l}(v)$ and $k=k(v)$ are as in Proposition 3.1. In particular, from the last inequality, we deduce that $k(v)$ is bounded above by a constant independent of v.

Proof. Suppose the contrary, that is for some constants ε, R, A_{1} there exist $\left\{q_{i}\right\},\left\{f_{i}\right\}$ satisfying the assumptions of Proposition 3.2 and a sequence of corresponding solutions v_{i} such that

$$
\lim _{i} \min _{j \neq l}\left|p_{j}-p_{l}\right|=0 .
$$

Without loss of generality, we assume that

$$
\begin{equation*}
\left|p_{1}\left(v_{i}\right)-p_{2}\left(v_{i}\right)\right|=\min _{j \neq l}\left|p_{j}\left(v_{i}\right)-p_{l}\left(v_{i}\right)\right| \rightarrow 0 \tag{46}
\end{equation*}
$$

Since $\left.B^{R v_{i}\left(p_{1}\right)}\right)^{-\frac{q_{i}-1}{4}}\left(p_{1}\right)$ and $B^{-\frac{q_{i}-1}{4}}\left(p_{2}\right)$ are disjoint we have by (46) $v_{i}\left(p_{1}\right) \rightarrow+\infty$ and $v_{i}\left(p_{2}\right) \rightarrow+\infty$.
Performing a stereographic projection with p_{1} as the south pole and using formula (7), equation (45) is transformed into

$$
\begin{cases}\Delta^{2} u_{i}=\frac{n-4}{2} f(x) H(x)^{\tau_{i}} u_{i}^{q_{i}} & \text { on } \mathbb{R}^{n} \tag{47}\\ v>0 & \text { on } \mathbb{R}^{n} \\ q_{i}=\frac{n+4}{n-4}-\tau_{i}, \quad 0 \leq \tau \leq \frac{2}{n-4} . & \end{cases}
$$

Let us still use $p_{2} \in \mathbb{R}^{n}$ to denote the stereographic coordinates of $p_{2} \in \mathbb{S}^{n}$, and set $\sigma_{i}=\left|p_{2}\right| \rightarrow 0$. For simplicity we assume that p_{2} is a local maximum of u_{i}. It is easy to see that

$$
\begin{equation*}
\sigma_{i}>\frac{1}{C(n)} \max \left\{R u_{i}(0)^{-\frac{q_{i}-1}{4}}, R u_{i}\left(p_{2}\right)^{-\frac{q_{i}-1}{4}}\right\} . \tag{48}
\end{equation*}
$$

Set now

$$
w_{i}(y)=\sigma_{i}^{\frac{4}{q_{i}-1}} u_{i}\left(\sigma_{i} y\right) \quad|y|<\frac{1}{\sigma_{i}} .
$$

It follows that w_{i} satisfies

$$
\begin{cases}\Delta^{2} w_{i}=\frac{n-4}{2} f\left(\sigma_{i} y\right) H\left(\sigma_{i} y\right)^{\tau_{i}} w_{i}^{q_{i}} & |y| \leq \frac{1}{\sigma_{i}} \tag{49}\\ w_{i}>0, \quad \Delta w_{i}>0, & |y| \leq \frac{1}{\sigma_{i}}\end{cases}
$$

The condition $\Delta w_{i}>0$ in the second line in the above equation is derived following the explanation given after formula (7).

Notice that by Proposition 3.1 there holds

$$
\begin{align*}
& v_{i}(y) \leq C_{1}|y|^{-\frac{4}{q_{i}-1}} \quad \text { for all }|y| \leq \frac{1}{2} \sigma_{i} \tag{50}\\
& v_{i}(y) \leq C_{1}\left|y-p_{2}\right|^{-\frac{4}{q_{i}-1}} \quad \text { for all }\left|y-p_{2}\right| \leq \frac{1}{2} \sigma_{i} \tag{51}
\end{align*}
$$

It is not difficult to see, using (48) and the last estimates, that

$$
\begin{aligned}
& w_{i}(0) \geq C_{2}, \quad \lim _{i} w_{i}\left(\left|p_{2}\right|^{-1} p_{2}\right) \geq C_{2}, \\
&|y|^{\frac{4}{q_{i}-1}} w_{i}(y) \leq C_{1} \quad|y| \leq \frac{1}{2}, \\
&\left|y-\left|p_{2}\right|^{-1} p_{2}\right|^{\frac{4}{q_{i}-1}} w_{i}(y) \leq C_{1} \quad\left|y-\left|p_{2}\right|^{-1} p_{2}\right| \leq \frac{1}{2} .
\end{aligned}
$$

We first show that

$$
\begin{equation*}
w_{i}(0) \rightarrow \infty, \quad w_{i}\left(p_{2}\left|p_{2}\right|^{-1}\right) \rightarrow \infty \tag{52}
\end{equation*}
$$

If one of these sequences tends to infinity along a subsequence, say $w_{i}(0) \rightarrow \infty$, then 0 is an isolated simple blow up. Therefore $w_{i}\left(\left|p_{2}\right|^{-1} p_{2}\right)$ must tend to infinity along the same subsequence, since otherwise, using (50), it is easy to prove that $\left(w_{i}\right)$ is uniformly bounded near $\left|p_{2}\right|^{-1} p_{2}$ along a further subsequence. In turn, using Proposition 2.9 and the Harnack Inequality we obtain that w_{i} tends to 0 uniformly near $\left|p_{2}\right|^{-1} p_{2}$, which is impossible. On the other hand if both $w_{i}(0)$ and $w_{i}\left(\left|p_{2}\right|^{-1} p_{2}\right)$ stay bounded, w_{i} will be locally bounded and will converge in $C_{\text {loc }}^{2}$ to some function having at least two critical points, which violates the uniqueness result of C. S. Lin [32]. We thus established (52).

It then follows from Proposition 2.19 that 0 and $\bar{q}=\lim _{i}\left|p_{2}\right|^{-1} p_{2}$ are both isolated blow up points for w_{i}. Hence by Proposition 2.19 they are indeed isolated simple blow up points of w_{i}.

We deduce from property (3) in Proposition 3.1, (46), Lemma 2.5 and Proposition 2.9 that there exist an at most countable set $\mathcal{S}_{1} \subseteq \mathbb{R}^{n}$ such that

$$
\begin{gathered}
\min \left\{|x-y|: x, y \in \mathcal{S}_{1}\right\} \geq 1, \\
\lim _{i} w_{i}(0) w_{i}(y)=h^{*}(y) \quad \text { in } C_{\mathrm{loc}}^{4}\left(\mathbb{R}^{n} \backslash \mathcal{S}_{1}\right), \\
h^{*}(y) \geq 0, \quad \Delta h^{*}(y) \geq 0, \quad \Delta^{2} h^{*}(y)=0 \quad y \in \mathbb{R}^{n} \backslash \mathcal{S}_{1},
\end{gathered}
$$

and $h^{*}(y)$ must be singular at 0 and at $\bar{p}=\lim _{i}\left|p_{2}\right|^{-1} p_{2}\left(0, \bar{p} \in \mathcal{S}_{1}\right)$. Hence for some positive constants a_{1} and a_{2} it is

$$
\begin{equation*}
h^{*}(y)=a_{1}|y|^{4-n}+a_{2}|y-\bar{q}|^{4-n}+b^{*}(y) \quad y \in \mathbb{R}^{n} \backslash\left\{\mathcal{S}_{1} \backslash\{0, \bar{p}\}\right\} \tag{53}
\end{equation*}
$$

where $b^{*}(y): \mathbb{R}^{n} \backslash\left\{\mathcal{S}_{1} \backslash\{0, \bar{p}\}\right\}$ satisfies

$$
\Delta^{2} b^{*}(y)=0, \quad \liminf _{|y| \rightarrow+\infty} b^{*}(y) \geq 0, \quad \liminf _{|y| \rightarrow+\infty} \Delta b^{*}(y) \geq 0
$$

The maximum principle, applied first to $\Delta b^{*}(y)$ and then to $b^{*}(y)$, yields $b^{*}(y) \geq 0$ in $\mathbb{R}^{n} \backslash\left\{\mathcal{S}_{1} \backslash\{0, \bar{p}\}\right\}$. Hence the conclusion follows from (53), reasoning as in the proof of Proposition 2.19.

Proof of Theorem 1.5. Proposition 3.2 and statement (3) in Proposition 3.1 imply that the blow up points are in finite number and are isolated. Hence by Proposition 2.19 they are also isolated simple. Then the conclusion follows from Proposition 2.7 and Lemma 2.17.

3.2. - Existence and compactness results on \mathbb{S}^{5}

This subsection is devoted to the proof of our existence and compactness results on S^{5}. The first ingredient is the fact that there is at most one blow up point; this is the content of Theorem 1.6.

Proof of Theorem 1.6 Assume the contrary, namely that $\left\{v_{i}\right\}$ has $p^{1}, p^{2} \in$ $\mathbb{S}^{n}, p^{1} \neq p^{2}$ as blow up points. Let $p_{i}^{1} \rightarrow p^{1}, p_{i}^{2} \rightarrow p^{2}$ be local maxima of v_{i} as before. Without loss of generality, we may assume that $p^{2} \neq-p^{1}$. We make a stereographic projection with p_{i}^{1} being the south pole. In the stereographic coordinates, it is $p_{i}^{1}=0$ and we still use the notation p_{i}^{2}, p^{2} for the projection of those points. According to (7), equation (6) becomes

$$
\Delta^{2} u_{i}(y)=\frac{n-4}{2} f_{i}(y) H_{i}(y)^{\tau_{i}} u_{i}(y)^{q_{i}} \quad \text { in } \mathbb{R}^{n}
$$

As before we can assume that p_{i}^{2} is a local maximum of u_{i}. We recall that, by Proposition 3.2, the number of blow up points is bounded by some constant independent of i. Therefore, reasoning as above, there exist some finite set $\mathcal{S}_{2} \subseteq \mathbb{R}^{n}, 0, p^{2} \in \mathcal{S}_{2}$, some constants $a_{1}, A>0$ and some function $h(y) \in$ $C^{4}\left(\mathbb{R}^{n} \backslash \mathcal{S}_{2}\right)$ such that

$$
\begin{gathered}
\lim _{i} u_{i}(0) u_{i}(y)=h(y) \quad \text { in } C_{\text {loc }}^{4}\left(\mathbb{R}^{n} \backslash \mathcal{S}_{2}\right), \\
h(y)=a_{1}|y|^{4-n}+A+O(|y|) \quad \text { for } y \text { close to } 0 .
\end{gathered}
$$

It follows from the proof of Proposition 2.19 that for any $0<\sigma<1$, we have

$$
\lim _{i} u_{i}(0)^{2} \int_{B_{\sigma}} y \cdot \nabla\left(f_{i} H_{i}^{\tau_{i}}\right) u_{i}^{q_{i}+1}=0 .
$$

From Corollary 4.2 we obtain a contradiction as before. Theorem 1.6 is therefore established.

Theorem 3.3. Let $n=5,6$, and assume that $f \in C^{2}\left(\mathbb{S}^{n}\right)$ is a positive Morse function which satisfies (ND). Let $\left\{f_{i}\right\}_{i}$ be a sequence of Morse functions converging to f in $C^{2}\left(\mathbb{S}^{n}\right)$, and let v_{i} be a solution of (P) with $f=f_{i}$. Then, after passing to a subsequence, either v_{i} stays bounded in $L^{\infty}\left(\mathbb{S}^{n}\right)$, or has at least two blow up points.

Proof. Suppose by contradiction that v_{i} has precisely one blow up point q_{0}. Making a stereographic projection with q_{0} being the south pole, the equation is then transformed into

$$
\begin{equation*}
\Delta^{2} u_{i}=\frac{n-4}{2} f_{i}(y) u_{i}(y)^{\frac{n+4}{n-4}}, \quad u_{i}>0, \quad \Delta u_{i}>0 \quad \text { in } \mathbb{R}^{n} \tag{54}
\end{equation*}
$$

The fact that $u_{i}, \Delta u_{i}>0$ is derived following the explanation given after formula (7). Here we have identified f_{i} with its composition with the stereographic projection. We know by Theorem 1.6 that $y_{i} \rightarrow 0$ is an isolated simple blow up point for u_{i}. It follows from Lemma 2.18 that

$$
\left|\nabla f_{i}\left(y_{i}\right)\right|=O\left(u_{i}\left(y_{i}\right)^{-\frac{2}{n-4}}\right)
$$

We can suppose without loss of generality that q_{0} is a critical point of f_{i} : hence, from the uniform invertibility of $\nabla^{2} f_{i}$ in q_{0} we deduce that

$$
\begin{equation*}
\left|y_{i}\right|=O\left(u_{i}\left(y_{i}\right)^{-\frac{2}{n-4}}\right) \tag{55}
\end{equation*}
$$

Let $\xi=\lim _{i} u_{i}\left(y_{i}\right)^{\frac{2}{n-4}} y_{i}$, and let $Q(x)=\left(D^{2} f(0) x, x\right)$. By means of (55), following the computations in [31], pages 370-373, we deduce that ξ and Q satisfy

$$
\begin{align*}
\int_{\mathbb{R}^{n}} \nabla Q\left(x+y_{i}\right)\left(1+k|z|^{2}\right)^{-n} & =0 . \tag{56}\\
\int_{\mathbb{R}^{n}}(z+\xi) \nabla Q\left(x+y_{i}\right)\left(1+k|z|^{2}\right)^{-n} & =0 . \tag{57}
\end{align*}
$$

It is easy to see that (56) and (57) contradict the hypothesis (ND).
Proof of Theorem 1.7 It is an immediate consequence of Theorems 1.6 and 3.3.

Proof of Theorem 1.8 For $\mu \in[0,1]$, consider the function f_{μ} defined by

$$
f_{\mu}=\mu f+(1-\mu) \frac{105}{8}
$$

Let $\alpha \in(0,1)$ be fixed. By Theorem 1.7, for every $\left.\mu_{0} \in\right] 0,1[$ there exists a positive constant $C\left(\mu_{0}\right)$ such that every positive solution v of (P) with $f=f_{\mu}$ and $\mu \geq \mu_{0}$ satisfies

$$
\begin{equation*}
\frac{1}{C\left(\mu_{0}\right)} \leq v \leq C\left(\mu_{0}\right) \quad, \quad\|v\|_{C^{4, \alpha}\left(\mathbb{S}^{5}\right)} \leq C\left(\mu_{0}\right) \tag{58}
\end{equation*}
$$

Using the L^{∞} estimates in [25], we can follow, up to minor details, the arguments in [16] (Section 7), see also Theorem 6.1 in [31], to check that for μ_{0} sufficiently small there holds

$$
\begin{gathered}
\operatorname{deg}_{C^{4, \alpha}}\left(u-\left(P_{h}^{5}\right)^{-1}\left(\frac{1}{2} f_{\mu_{0}}|u|^{8} u\right),\left\{\frac{1}{C\left(\mu_{0}\right)} \leq v \leq C\left(\mu_{0}\right)\right\}, 0\right) \\
=(-1)^{n} \operatorname{deg}\left(\int_{\mathbb{S}^{n}} f \circ \varphi_{P, t}(x) x, B, 0\right) .
\end{gathered}
$$

Under assumption (8), it follows that $\operatorname{deg}\left(\int_{\mathbb{S}^{n}} f \circ \varphi_{P, t}(x) x, B, 0\right) \neq 0$, see [16].
By Theorem 1.7, $u-\left(P_{h}^{5}\right)^{-1}\left(\frac{1}{2} f_{\mu}|u|^{8} u\right)$ is different from zero on the boundary of $\left\{\frac{1}{C(\mu)} \leq v \leq C(\mu)\right\}$ hence, from the homotopy property of the degree, we have also

$$
\operatorname{deg}_{C^{4, \alpha}}\left(u-\left(P_{h}^{5}\right)^{-1}\left(\frac{1}{2} f|u|^{8} u\right),\left\{\frac{1}{\left.C_{(} \mu\right)} \leq v \leq C(\mu)\right\}, 0\right) \neq 0
$$

This concludes the proof.

3.3. - Existence and compactness results on \mathbb{S}^{6}

This subsection is devoted to prove the existence and compactness results on \mathbb{S}^{6}. Similarly to the four dimensional case for scalar curvature, there could be solutions of (6) blowing up at more than one point. In the following Proposition, we give necessary conditions for solutions to blow up, and we locate their blow up points.

Proposition 3.4. Let $f \in C^{2}\left(\mathbb{S}^{6}\right)$ be a positive function. Then there exists some number $\delta^{*}>0$, depending only on $\min _{\mathbb{S}^{6}} f$ and $\|f\|_{C^{2}\left(\mathbb{S}^{6}\right)}$, with the following properties.

Let $\left\{q_{i}\right\}$ satisfy $q_{i} \leq 5, q_{i} \rightarrow 5,\left\{f_{i}\right\}_{i} \in C^{2}\left(\mathbb{S}^{6}\right)$ satisfy $f_{i} \rightarrow f$ in $C^{2}\left(\mathbb{S}^{6}\right), v_{i}$ satisfy

$$
\begin{equation*}
P_{h}^{n} v_{i}=f v_{i}^{q_{i}}, \quad v_{i}>0 \quad \text { on } \mathbb{S}^{6}, \tag{59}
\end{equation*}
$$

and $\lim \sup _{i} \max _{\mathbb{S}^{6}} v_{i}=+\infty$. Then after passing to a subsequence, we have
i) $\left\{v_{i}\right\}_{i}$ has only isolated simple blow up points $\left(p^{1}, \ldots, p^{k}\right) \in \mathcal{F} \backslash \mathcal{F}^{-}(k \geq$ 1), with $\left|p^{j}-p^{i}\right| \geq \delta^{*} \forall j \neq k$, and $\rho\left(p^{1}, \ldots, p^{k}\right) \geq 0$. Furthermore $p^{1}, \ldots, p^{k} \in \mathcal{F}^{+}$if $k \geq 2$.
ii) Setting

$$
\lambda_{j}=f\left(p^{j}\right)^{-\frac{1}{4}} \lim _{i} v_{i}\left(p_{i}^{1}\right)\left(v_{i}\left(p_{i}^{j}\right)\right)^{-1}, \quad \mu^{j}:=\lim _{i} \tau_{i} v_{i}\left(p_{i}^{j}\right)^{2}
$$

where $p_{i}^{j} \rightarrow p^{j}$ is the local maximum of v_{i}, there holds

$$
\left.\lambda_{j} \in\right] 0,+\infty\left[, \quad \mu^{j} \in[0,+\infty[\quad \forall j=1, \ldots, k\right.
$$

iii) When $k=1$

$$
\mu^{1}=\frac{\Delta f\left(p^{1}\right)}{\left(f\left(p^{1}\right)\right)^{\frac{3}{2}}}
$$

when $k \geq 2$

$$
\begin{equation*}
\sum_{l=1}^{k} M_{l j} \lambda_{l}=4 \frac{\sqrt{6}}{3} \lambda_{j} \mu^{j} \quad \forall j=1, \ldots, k \tag{60}
\end{equation*}
$$

iv) $\left.\mu^{j} \in\right] 0,+\infty\left[\forall j=1, \ldots, k\right.$ if and only if $\rho\left(p^{1}, \ldots, p^{k}\right)>0$.

Proof. Assertion ii) follows from Proposition 2.9, Lemma 2.5 and Remark 2.16. From another part, it follows from Proposition 3.2, Proposition 2.19 that v_{i} has only isolated simple blow up points $p^{1}, \ldots, p^{k} \in \mathcal{F}(k \geq 1)$ with $\left|p^{j}-p^{l}\right| \geq \delta^{*}(j \neq l)$ for a fixed $\delta^{*}>0$.

Let $p_{i}^{1} \rightarrow p^{1}$ be the local maximum of v_{i} for which $v_{i}\left(p_{i}^{1}\right) \rightarrow+\infty$. Making a stereographic projection with south pole p_{i}^{1}, equation (59) is transformed into

$$
\Delta^{2} u_{i}(y)=f_{i}(y) H^{\tau_{i}}(y) u_{i}^{q_{i}} \quad y \in \mathbb{R}^{6} .
$$

By our choice of the projection, 0 is a local maximum for all u_{i}; moreover, it is clear that 0 is also an isolated simple blow up point. We can also suppose that none of the points $\left\{p^{1}, \ldots, p^{k}\right\}$ is mapped to $+\infty$ by the stereographic projection, and we still denote their images by p^{1}, \ldots, p^{k}. It follows from Proposition 2.9 that

$$
\begin{equation*}
u_{i}\left(y_{i}^{j}\right) u_{i}(y) \rightarrow h^{j}(y):=8 \sqrt{6} f\left(p^{j}\right)^{-\frac{1}{2}}|y|^{-2}+b^{j}(y) \text { in } C_{\mathrm{loc}}^{4}\left(\mathbb{R}^{6} \backslash\left\{p^{1}, \ldots, p^{k}\right\}\right) \tag{61}
\end{equation*}
$$

where b^{j} is some biharmonic function in $\mathbb{R}^{6} \backslash\left\{p^{2}, \ldots, p^{k}\right\}$.
Coming back to v_{i} we have

$$
\lim _{i} v_{i}\left(p_{i}^{1}\right) v_{i}(p)=4 \sqrt{6} f\left(p^{j}\right)^{-\frac{1}{2}} J_{p^{1}}(p)+\tilde{b}^{1}(p) \quad \text { in } C_{\mathrm{loc}}^{4}\left(\mathbb{S}^{6} \backslash\left\{p^{2}, \ldots, p^{k}\right\}\right)
$$

where \tilde{b}^{1} is some regular function on $\mathbb{S}^{6} \backslash\left\{p^{2}, \ldots, p^{k}\right\}$ satisfying $P_{h}^{6} \tilde{b}^{j}=0$.
If $k=1$, then $\tilde{b}^{1}=0$ while for $k \geq 2$, taking into account the contribution of all the poles, we deduce that for all $j=1, \ldots, k$ it is

$$
\lim _{i} v_{i}\left(p_{i}^{j}\right) v_{i}(p)=4 \sqrt{6}\left\{\frac{J_{p^{j}}(p)}{\sqrt{f\left(p^{j}\right)}}+\sum_{l \neq j} \lim _{i} \frac{v_{i}\left(p_{i}^{j}\right)}{v_{i}\left(p_{i}^{l}\right)} \frac{J_{p^{l}}(p)}{\sqrt{f\left(p^{l}\right)}}\right\}
$$

where the convergence is in $C_{\mathrm{loc}}^{4}\left(\mathbb{S}^{6} \backslash\left\{p^{1}, \ldots, p^{k}\right\}\right)$. In fact, subtracting all the poles from the limit function, we obtain a regular function $r: \mathbb{S}^{6} \rightarrow \mathbb{R}$ for which $P_{h}^{6} r=0$; by the coercivity of P_{h}^{6} on $H_{2}^{2}\left(\mathbb{S}^{6}\right)$ it must be $r=0$.

Using the last formula, we can compute the exact expression of $h^{j}(y)$, which is

$$
\begin{equation*}
h^{j}(y)=8 \sqrt{6} f\left(p^{j}\right)^{-\frac{1}{2}}|y|^{-2}+16 \sqrt{6} \sum_{l \neq j} \lim _{i} \frac{v_{i}\left(p_{i}^{j}\right)}{v_{i}\left(p_{i}^{l}\right)} \frac{J_{p_{l}}\left(p^{j}\right)}{\sqrt{f\left(p^{l}\right)}}+O(|y|) \tag{62}
\end{equation*}
$$

Hence, using (62) and Corollary 4.2, we deduce that

$$
\lim _{\sigma \rightarrow 0} \int_{\partial B_{\sigma}} B\left(\sigma, x, h^{j}, \nabla h^{j}, \nabla^{2} h^{j}, \nabla^{3} h^{j}\right)=-3\left(2^{9}\right) \omega_{5} \sum_{l \neq j} \lim _{i} \frac{v_{i}\left(p_{i}^{j}\right)}{v_{i}\left(p_{i}^{l}\right)} \frac{J_{p_{l}}\left(p^{j}\right)}{\sqrt{f\left(p^{l}\right)} \sqrt{f\left(p^{j}\right)}} .
$$

From another part, it follows from Propositions 4.1, 2.7 and Lemma 2.11 that, for any $0<\sigma<1$

$$
\int_{\partial B_{\sigma}} B\left(\sigma, x, h^{j}, \nabla h^{j}, \nabla^{2} h^{j}, \nabla^{3} h^{j}\right)=-\frac{2^{9}}{5} \omega_{5} \frac{\Delta_{h} f\left(p^{j}\right)}{f\left(p^{j}\right)^{2}}+\frac{\sqrt{6} 2^{11}}{15} \omega_{5} \frac{\mu^{j}}{\sqrt{f\left(p^{j}\right)}}
$$

From the last two formulas, using the expression of μ_{l} and λ_{l}, we obtain

$$
-15\left(\sum_{l \neq j} \frac{J_{p^{l}}\left(p^{j}\right)}{f\left(p^{j}\right)^{\frac{1}{4}} f\left(p^{l}\right)^{\frac{1}{4}}} \lambda_{l}\right)+\frac{\Delta_{h} f\left(p^{j}\right)}{f\left(p^{j}\right)^{\frac{3}{2}}} \lambda_{j}=4 \frac{\sqrt{6}}{3} \mu^{j} \lambda_{j} .
$$

We have thus established (60); in particular when $k=1$ we obtain $\mu^{1}=\frac{\Delta_{h} f\left(p^{1}\right)}{f\left(p^{1}\right)^{\frac{3}{2}}}$, so we have deduced iii).

It follows that $p^{j} \in \mathcal{F} \backslash \mathcal{F}^{-}, \forall j=1, \ldots, k$, and when $k \geq 2, p^{j} \in \mathcal{F}^{+}$. Furthermore, since $M_{i i} \geq 0$, and $M_{i j}<0$ for $i \neq j$, it follows from linear algebra and the variational characterization of the least eigenvalue that there exists some $x=\left(x_{1}, \ldots, x_{k}\right) \neq 0, x_{l} \geq 0 \forall l$, such that $\sum_{j=1}^{k} M_{l j} x_{j}=\rho x_{l}$.

Multiplying (60) by x_{j} and summing over j, we have

$$
\rho \sum_{j} \lambda_{j} x_{j}=\sum_{l, j} M_{l j} \lambda_{j} x_{l}=2 \frac{\sqrt{6}}{3} \sum_{j} \lambda_{j} x_{j} \mu^{j} \geq 0 .
$$

It follows that $\rho \geq 0$, so we have verified part i). Part iv) follows from i)-iii).
Now we perform the following construction, needed in the proof of Theorem 1.9. For $a \in \mathbb{S}^{6}$ and $\lambda>0$, let $\varphi_{a, \lambda}: \mathbb{S}^{6} \rightarrow \mathbb{S}^{6}$ be the conformal transformation defined in the introduction, and let

$$
\delta_{a, \lambda}(x)=\left|\operatorname{det} d \varphi_{a, \lambda-1}\right|^{\frac{1}{6}}
$$

For all the choices of a and λ, the function $\delta_{a, \lambda}$ satisfies $P_{h}^{6} \delta_{a, \lambda}=24 \delta_{a, \lambda}^{5}$. We consider the following scalar product and norm on $H_{2}^{2}\left(\mathbb{S}^{6}\right)$ which is equivalent to the usual one, see [24],

$$
\langle u, v\rangle=\int_{\mathbb{S}^{6}}\left(P_{h}^{n} u\right) v, \quad\|u\|=\langle u, u\rangle^{\frac{1}{2}}
$$

Set for $\tau>0$ small

$$
I_{\tau}(u)=\frac{1}{2} \int_{\mathbb{S}^{6}}(\Delta u)^{2}+10|\nabla u|^{2}+24 u^{2}-\frac{1}{6-\tau} \int_{\mathbb{S}^{6}} f|u|^{6-\tau} \quad u \in H_{2}^{2}\left(\mathbb{S}^{6}\right) .
$$

Let $p^{1}, \ldots, p^{k} \in \mathcal{F}^{+}$be critical points of f with $\rho\left(p^{1}, \ldots, p^{k}\right)>0$. For ε_{0} small, let $V_{\varepsilon_{0}}=V_{\varepsilon_{0}}\left(p^{1}, \ldots, p^{k}\right) \in \mathbb{R}_{+}^{k} \times \mathbb{R}_{+}^{k} \times\left(\mathbb{S}^{6}\right)^{k}$ be defined by
$V_{\varepsilon_{0}}=$
$=\left\{(\alpha, \lambda, a) \in \mathbb{R}_{+}^{k} \times \mathbb{R}_{+}^{k} \times\left(\mathbb{S}^{6}\right)^{k}:\left|\alpha_{i}-\left(\frac{24}{f\left(a_{i}\right)}\right)^{\frac{1}{4}}\right|<\varepsilon_{0},\left|a_{i}-p^{i}\right|\left\langle\varepsilon_{0}, \lambda_{i}\right\rangle \frac{1}{\varepsilon_{0}}, i=1, \ldots, k\right\}$.
It follows arguing as in [8], [10], that there exists $\varepsilon_{0}>0$ small, depending only on $\min _{\mathbb{S}^{6}} f$, and $\|f\|_{C^{2}\left(\mathbb{S}^{6}\right)}$, with the following property. For any $u \in H_{2}^{2}\left(\mathbb{S}^{6}\right)$ satisfying for some $(\tilde{\alpha}, \tilde{\lambda}, \tilde{a}) \in V_{\frac{\varepsilon_{0}}{2}}$ the inequality $\left\|u-\sum_{i=1}^{k} \tilde{\alpha}_{i} \delta_{\tilde{a}_{i}, \tilde{\lambda}_{i}}\right\|<\frac{\varepsilon_{0}}{2}$, we have a unique representation

$$
u=\sum_{i=1}^{k} \alpha_{i} \delta_{a_{i}, \lambda_{i}}+v
$$

with $(\alpha, \lambda, a) \in V_{\varepsilon_{0}}$ and

$$
\begin{equation*}
\left\langle v, \delta_{a_{i}, \lambda_{i}}\right\rangle=\left\langle v, \frac{\partial \delta_{a_{i}, \lambda_{i}}}{\partial a_{i}}\right\rangle=\left\langle v, \frac{\partial \delta_{a_{i}, \lambda_{i}}}{\partial \lambda_{i}}\right\rangle=0 . \tag{63}
\end{equation*}
$$

Denote by $E_{\lambda, a}$ the set of $v \in H_{2}^{2}\left(\mathbb{S}^{6}\right)$ satisfying (63). It follows that in a small neighborhood (independent of τ) of $\left\{\sum_{i=1}^{k} \alpha_{i} \delta_{a_{i}, \lambda_{i}}:(\alpha, \lambda, a) \in \Omega_{\frac{\varepsilon_{0}}{2}}\right\}$, (α, λ, a, v) is a good parametrization of u. For a large constant A and for a small constant v_{0}, set

$$
\begin{aligned}
& \Sigma_{\tau}=\Sigma_{\tau}\left(p_{1}, \ldots, p_{k}\right)=\left\{(\alpha, \lambda, a, v) \in V_{\frac{\varepsilon_{0}}{2}} \times H_{2}^{2}\left(\mathbb{S}^{6}\right):\right. \\
& \left.\quad\left|a_{i}-p_{i}\right|<\sqrt{\tau}|\log \tau|, A^{-1} \sqrt{\tau}<\lambda_{i}^{-1}<A \sqrt{\tau}, v \in E_{\lambda, a},\|v\|<v_{0}\right\} .
\end{aligned}
$$

Without confusion, we use the same notation for

$$
\Sigma_{\tau}=\left\{u=\sum_{i=1}^{k} \alpha_{i} \delta_{a_{i}, \lambda_{i}}+v:(\alpha, \lambda, a, v) \in \Sigma_{\tau}\right\} \subseteq H_{2}^{2}\left(\mathbb{S}^{6}\right)
$$

From Proposition 3.4 and Remark 2.4, one can easily deduce the following Proposition. We recall that we have set

$$
\mathcal{O}_{R}=\left\{v \in C^{4, \alpha}\left(\mathbb{S}^{6}\right): \frac{1}{R} \leq v \leq R,\|v\|_{C^{4, \alpha}\left(\mathbb{S}^{6}\right)} \leq R\right\}
$$

Proposition 3.5. For $f \in \mathcal{A}, \alpha \in] 0,1[$, there exist some positive constants $v_{0} \ll 1, A \gg 1, R \gg 1$, depending only on f such that when $\tau>0$ is sufficiently small,

$$
u \in \mathcal{O}_{R} \cup\left\{\Sigma_{\tau}\left(p^{1}, \ldots, p^{k}\right): p^{1}, \ldots, p^{k} \in \mathcal{F}^{+}, \rho\left(p^{1}, \ldots p^{k}\right)>0, k \geq 1\right\}
$$

for all u satisfying $u \in H^{2}\left(\mathbb{S}^{6}\right), u>0$ and $I_{\tau}^{\prime}(u)=0$.
If $f \in \mathcal{A}$, we can also give sufficient conditions for the existence of positive solutions of $I_{\tau}^{\prime}=0$.

Proposition 3.6. Let $f \in \mathcal{A}, v_{0}>0$ be suitably small and $A>0$ be suitably large. Then, if $p^{1}, \ldots, p^{k} \in \mathcal{F}^{+}$with $\rho\left(p^{1}, \ldots, p^{k}\right)>0$, and if $\tau>0$ is sufficiently small, the functional I_{τ} has a unique critical point u in Σ_{τ}. In the above parametrization, we have $v \rightarrow 0$ as $\tau \rightarrow 0$.

This function u is positive, and as a critical point of I_{τ} it is nondegenerate with Morse index $7 k-\sum_{j=1}^{k} m\left(f, p^{j}\right)$, where $m\left(f, p^{j}\right)$ is the Morse index of K at p^{j}.

Proof. The proof of the existence and uniqueness of a non degenerate critical point is based only on the study of I_{τ} is Σ_{τ} and this can be performed as in [31], see also [11], so we omit it here. We just remark that it uses a local inversion theorem, which can be applied by the properties of the spectrum of the conformal laplacian on \mathbb{S}^{n}. Since the spectrum of P_{h}^{n} possesses analogous properties, see [25] Theorem 2.2, we are indeed in the same situation from the variational point of view.

Differently from the scalar curvature case, the proof of the positivity is more involved, and we perform it in Subsection 3.4. This difficulty arises from the fact that we cannot use as a test function the negative part of u.

When the number τ is bounded from below, we have also the following compactness result for positive solutions.

Proposition 3.7. Let $f \in C^{2}\left(\mathbb{S}^{6}\right)$ be a positive function, $0<\tau_{0}<\tau \leq 4-\tau_{0}$. There exist some positive constants C and δ depending only on $\tau_{0}, \min _{\mathbb{S} 6} f$, and $\|f\|_{C^{2}}$ with the following properties
i) $\left\{u \in H_{2}^{2}\left(\mathbb{S}^{6}\right): u \geq 0\right.$ a.e., $\left.I_{\tau}^{\prime}(u)=0\right\} \subseteq \mathcal{O}_{C}$,
ii) setting $\mathcal{O}_{C, \delta}=\left\{u \in H_{2}^{2}\left(\mathbb{S}^{6}\right): \exists v \in \mathcal{O}_{C}\right.$ such that $\left.\|u-v\|_{H_{2}^{2}}<\delta\right\}$, it is $I_{\tau}^{\prime} \neq 0$ on $\partial \mathcal{O}_{C, \delta}$, and

$$
\begin{equation*}
\operatorname{deg}_{H_{2}^{2}}\left(u-\left(P_{h}^{6}\right)^{-1}\left(f|u|^{4-\tau} u\right), \mathcal{O}_{C, \delta}, 0\right)=-1 \tag{64}
\end{equation*}
$$

Proof. Property i) is a consequence of the nonexistence results of [32] and of Remark 2.4. The fact that $I_{\tau}^{\prime} \neq 0$ on $\partial \mathcal{O}_{C, \delta}$ is a consequence of the L^{∞} estimates in [25], see e.g. Lemma 4.9 there.

In fact, having uniform estimates from above and from below on the positive solutions of $I_{\tau}^{\prime}=0$, it is possible to prove (subtracting the equations) that solutions u of $P_{h}^{6} u=f|u|^{4-\tau} u$ which are close in H_{2}^{2} to elements of \mathcal{O}_{C} are also L^{∞} close. Hence they are positive and still contained in \mathcal{O}_{C}.

About the computation of the degree, consider the homotopy $f_{t}=t f+(1-$ t) f^{*}, with $f^{*}=x^{7}+2$, recall that $\mathbb{S}^{6}=\left\{x \in \mathbb{R}^{7}:\|x\|=1\right\}$. It follows from the Kazdan-Warner condition, see the Introduction, that there is no solution of (P) with $f=f^{*}$. Therefore we only need to establish (64) for f^{*} and τ very small. This follows from Propositions 3.4, 3.5 and 3.6.

Proof of Theorem 1.9 The norm inequality in (11) follows from Theorem 1.5. Suppose by contradiction that the second inequality is not true; then there exist solutions v_{i} blowing up at $p^{1}, \ldots, p^{k} \in \mathbb{S}^{6}$, and these are isolated simple blow up points. It follows from Theorem 3.3 that $k \geq 2$: taking into account that $f \in \mathcal{A}$ and $\mu^{j}=0$ for all $j\left(\tau_{i}=0\right)$, we get a contradiction by Proposition 3.4 iv). Hence (11) is proved.

Using Proposition 3.5, (11) and the homotopy invariance of the LeraySchauder degree, we have

$$
\begin{equation*}
\operatorname{deg}\left(u-\left(P_{h}^{n}\right)^{-1}\left(f|u|^{4} u\right), \mathcal{O}_{R}, 0\right)=\operatorname{deg}\left(u-\left(P_{h}^{n}\right)^{-1}\left(f|u|^{4-\tau} u\right), \mathcal{O}_{R}, 0\right) \tag{65}
\end{equation*}
$$

By Propositions 3.5 and 3.6, for suitable values of τ, A and v_{0} we know that the positive solutions of $I_{\tau}^{\prime}=0$ are either in \mathcal{O}_{R} or in some Σ_{τ}, and viceversa for all $p^{1}, \ldots, p^{k} \in \mathcal{F}_{+}$with $\rho\left(p^{1}, \ldots, p^{k}\right)>0$, there is a nondegenerate critical point of I_{τ} in Σ_{τ} which is a positive function. This gives a complete characterization of the positive solutions of (45) when τ is positive and small.

Let C and δ be given by Proposition 3.7. It is clear that if C is sufficiently large and δ_{1} is sufficiently small, then $\mathcal{O}_{R, \delta_{1}} \subseteq O_{C, \delta}$. By Proposition 3.6, (64) and by the excision property of the degree, we have

$$
\begin{equation*}
\operatorname{deg}_{H_{2}^{2}}\left(u-\left(P_{h}^{n}\right)^{-1}\left(f|u|^{4-\tau} u\right), \mathcal{O}_{R, \delta_{1}}, 0\right)=\operatorname{Index}(f) \tag{66}
\end{equation*}
$$

As in the proof of Proposition 3.7, one can check that there are no critical points of I_{τ} in $\overline{\mathcal{O}_{R, \delta_{1}}} \backslash \mathcal{O}_{R}$, hence Theorem B. 2 of [31] Part I applies and yields

$$
\begin{equation*}
\operatorname{deg}_{H_{2}^{2}}\left(u-\left(P_{h}^{n}\right)^{-1}\left(f|u|^{4-\tau} u\right), \mathcal{O}_{R, \delta_{1}}, 0\right)=\operatorname{deg}\left(u-\left(P_{h}^{n}\right)^{-1}\left(f|u|^{4-\tau} u\right), \mathcal{O}_{R}, 0\right) \tag{67}
\end{equation*}
$$

Then the conclusion follows from (65), (66), and (67). The proof of Theorem 1.9 is thereby completed.

3.4. - Positivity of the solutions

In this subsection we prove the positivity statement in Proposition 3.6. We define the operator L_{h} to be $L_{h} u=\Delta u+\frac{c_{n}}{2} u$, and we consider the problem

$$
\begin{equation*}
L_{h}^{2} u=g \quad \text { on } \mathbb{S}^{n} \tag{68}
\end{equation*}
$$

where $g \in L^{p}\left(\mathbb{S}^{n}\right)$, for some $p>1$. From standard elliptic theory there exists an unique weak solution $u \in H_{4}^{p}\left(\mathbb{S}^{n}\right)$, and moreover

$$
\begin{equation*}
\|u\|_{H_{4}^{p}} \leq \bar{C}(n, p)\|g\|_{p} \tag{69}
\end{equation*}
$$

for some constant $\bar{C}(n, p)$ depending only on n and p. We recall the following Proposition from [25].

Proposition 3.8. Let $q \in L^{\infty}\left(\mathbb{S}^{n}\right)$, $r \in L^{s}\left(\mathbb{S}^{n}\right)$, for some $s>1$, and let $1<p \leq \frac{n+4}{n-4}$. Suppose $u \in H_{2}^{2}\left(\mathbb{S}^{n}\right)$ is a weak solution of the equation

$$
\begin{equation*}
L_{h}^{2} u=q|u|^{p-1} u+r \quad \text { on } \mathbb{S}^{n} . \tag{70}
\end{equation*}
$$

Then for all $s>1$, there exists a positive constant $\beta_{n, s}$ depending only on n and s,

$$
\|u\|_{s} \leq C(n, s)\|r\|_{s},
$$

where $C(n, s)$ is a constant depending only on n and s.
We are going to prove the following Proposition.
Proposition 3.9. Let $k \in \mathbb{N}, a_{1}, \ldots, a_{k} \in \mathbb{S}^{n}, \alpha_{1}, \ldots, \alpha_{k} \in(0,+\infty), A>$ $1, \gamma>1$, and let $f \in C\left(\mathbb{S}^{n}\right)$ be a positive function. Suppose that

$$
\begin{align*}
& A^{-1} \tau^{\gamma} \leq \lambda_{i} \leq A \tau^{\frac{1}{\gamma}} \quad i=1, \ldots, k, \quad \tau \in\left(0, \tau_{0}\right), \tag{71}\\
& \alpha_{i}=\left(\frac{2}{n-4} d_{n} f\left(a^{i}\right)+o(1)\right)^{\frac{n-4}{2}} \quad \text { as } \tau \rightarrow 0,
\end{align*}
$$

and suppose u is a solution of

$$
P_{h}^{n} u=\frac{n-4}{2} f(x)|u|^{\frac{8}{n-4}-\tau} u \quad \text { on } \mathbb{S}^{n}, \quad \tau \in\left(0, \tau_{0}\right)
$$

with

$$
\begin{equation*}
u=\sum_{i=1}^{k} \alpha_{i} \delta_{a_{i}, \lambda_{i}}+v_{\tau}, \quad v_{\tau} \rightarrow 0 \text { in } H_{2}^{2}\left(\mathbb{S}^{n}\right) \text { as } \tau \rightarrow 0 \tag{73}
\end{equation*}
$$

Then $u>0$ for τ sufficiently small.

As an immediate consequence of Proposition 3.9 we have a complete proof of Proposition 3.6.

Now we come to the proof of Proposition 3.9. We are dealing with a solution u of the equation

$$
\begin{equation*}
P_{h}^{n} u=\frac{n-4}{2} f(x)|u|^{p-1} u \quad \text { on } \mathbb{S}^{n}, \tag{74}
\end{equation*}
$$

where $p=\frac{n+4}{n-4}-\tau$. It is convenient to perform the conformal transformation $\varphi_{a, \lambda_{1}}$ on \mathbb{S}^{n}, which induces naturally the isometry $T_{\varphi_{a, \lambda_{1}}}: H_{2}^{2}\left(\mathbb{S}^{n}\right) \rightarrow H_{2}^{2}\left(\mathbb{S}^{n}\right)$ given by

$$
T_{\varphi_{a, \lambda_{1}}}: u \quad \rightarrow \quad\left|\operatorname{det} \varphi_{a, \lambda_{1}}\right|^{\frac{n-4}{2 n}} u \circ \varphi_{a, \lambda_{1}}
$$

Setting $\bar{u}=T_{\varphi_{a_{1}, \lambda_{1}}} u$, using (73) one can check that

$$
\bar{u}=\alpha_{1}+\sum_{i=2}^{k} \alpha_{i} \delta_{b_{i}, \zeta_{i}}+r_{\tau}
$$

where $\left\{b_{i}\right\}_{i} \subseteq \mathbb{S}^{n}, \zeta_{i} \rightarrow+\infty$ and $r_{\tau} \rightarrow 0$ in H_{2}^{2} as $\tau \rightarrow 0$. Moreover, by the conformal invariance of P_{h}^{n}, \bar{u} is a solution of

$$
P_{h}^{n} \bar{u}=f\left(\varphi_{a_{1}, \lambda_{1}}(x)\right) \delta_{a_{1}, \lambda_{1}}^{-\tau}|\bar{u}|^{p-1} \bar{u} \quad \text { on } \mathbb{S}^{n}
$$

Now, writing $\bar{u}=\alpha_{1}+w$, it is sufficient to prove that

$$
\begin{equation*}
w \geq-\frac{1}{2} \alpha_{1}, \quad \text { for } \tau \text { small enough. } \tag{75}
\end{equation*}
$$

In fact this implies that $\bar{u}>0$ and hence $u>0$.
By a simple computation we obtain that w satisfies

$$
L_{h}^{2} w=\phi_{\tau}(x, w(x)) \quad \text { in } \mathbb{S}^{n}
$$

where

$$
\phi_{\tau}(x, t)=\frac{n-4}{2} f\left(\varphi_{a_{1}, \lambda_{1}}(x)\right) \delta_{a_{1}, \lambda_{1}}^{-\tau}\left|\alpha_{1}+t\right|^{p-1}\left(\alpha_{1}+t\right)+e_{n} t-d_{n} \alpha_{1},
$$

with $p=\frac{n+4}{n-4}-\tau$, and $e_{n}=\frac{c_{n}^{2}}{4}-d_{n}>0$.
Setting $\tilde{f}=\phi_{\tau}(x, w(x))$, we denote by w_{1} and w_{2} the solutions of

$$
L_{h}^{2} w_{1}=\tilde{f}^{+}, \quad L_{h}^{2} w_{2}=-\tilde{f}^{-}
$$

where $\tilde{f}^{+}=\max \{\tilde{f}, 0\}$ and $\tilde{f}^{-}=-\min \{\tilde{f}, 0\}$. By the maximum principle, we have $w_{1} \geq 0, w_{2} \leq 0$; moreover, it is clear that $w_{1}+w_{2}=w$.

Inequality (75) is proved if we are able to show that

$$
\begin{equation*}
w_{2} \geq-\frac{1}{2} \alpha_{1} \quad \text { for } \tau \text { small. } \tag{76}
\end{equation*}
$$

In order to do this, we set

$$
\Xi=\left\{x \in \mathbb{S}^{n}: \tilde{f}(x)<0\right\}
$$

We notice that $\phi_{\tau}(x, 0)$ is uniformly bounded on \mathbb{S}^{n}, and $\frac{\partial \phi}{\partial t}(x, t) \geq \gamma_{1}$ for a fixed $\gamma_{1}>0$, hence we have

$$
\begin{equation*}
x \in \Xi \quad \Rightarrow \quad w(x) \leq C \tag{77}
\end{equation*}
$$

where C is a fixed constant.
Fix a small $\varepsilon>0$, and consider the sets

$$
\Omega_{\varepsilon}=\Xi \cap\left\{x \in \mathbb{S}^{n}:-\varepsilon<w_{2} \leq 0\right\}, \quad \Theta_{\varepsilon}=\Xi \cap\left\{x \in \mathbb{S}^{n}: w_{2} \leq-\varepsilon\right\}
$$

Lemma 3.10. Let $\eta>0$ be a small fixed positive number. The following properties hold true
i) $\|w\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)} \leq C$, for some fixed constant C;
ii) in Θ_{ε}, it is $\frac{|w|}{\left|w_{2}\right|} \leq C_{\varepsilon}$, for some constant C_{ε} depending only on ε;
iii) $\|w\|_{L^{\frac{2 n}{n-4}(\Xi)}} \rightarrow 0$ as $\tau \rightarrow 0$;
iv) $|\tilde{f}| \leq C_{1}+C_{2}|w|^{\frac{n+4}{n-4}}$, for some fixed positive constants C_{1} and C_{2};
v) for any $\eta>0$, the function $\phi_{\tau}(x, t)$ satisfies the following properties
a) $\phi_{\tau}(x, 0) \rightarrow 0$ uniformly on $\mathbb{S}^{n} \backslash B_{\eta}\left(-a_{1}\right)$,
b) $\left|\phi_{\tau}(x, t)\right| \leq\left|\phi_{\tau}(x, 0)\right|+C\left(|t|+|t|^{\frac{n+4}{n-4}}\right)$, for some fixed constant C.

Proof. Property i) follows easily from (77) and from $w=w_{1}+w_{2} \geq w_{2} \geq$ $-\varepsilon>-1$ in Ω_{ε} (we can suppose $\varepsilon \in(0,1)$). Property ii) follows from the inequality $\left|w_{2}\right| \geq \varepsilon$ in Θ_{ε} : in fact, in Ξ we have $w_{1} \leq C+w_{2}$, and hence we deduce immediately

$$
\frac{|w|}{\left|w_{2}\right|} \leq \frac{\left|w_{1}\right|+\left|w_{2}\right|}{\left|w_{2}\right|} \leq \frac{C+2\left|w_{2}\right|}{\left|w_{2}\right|} \leq 2+\frac{C}{\varepsilon} .
$$

Property iii) follows from (77) and $\zeta_{i} \rightarrow+\infty$. Properties iv) and v) are very easy to check, we just notice that for v)-a) we use $\delta_{a_{1}, \lambda_{1}}^{-\tau} \rightarrow 1$ uniformly on \mathbb{S}^{n}, because of (71) and (72).

Before proving (76), we first show that w_{2} tends to zero in $H_{2}^{2}\left(\mathbb{S}^{n}\right)$. From now on we write B_{η} for $B_{\eta}\left(-a_{1}\right)$.

Lemma 3.11. We have

$$
\left\|w_{2}\right\|_{H_{2}^{2}} \rightarrow 0 \quad \text { as } \tau \rightarrow 0
$$

in particular, fixed $\varepsilon>0,\left|\Theta_{\varepsilon}\right| \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Proof. We write

$$
\begin{equation*}
L_{h}^{2} w_{2}=\chi_{\Xi} \tilde{f}=\chi_{\Xi} \chi_{B_{\eta}} \tilde{f}+\chi_{\Xi} \chi_{\mathbb{S}^{n} \backslash B_{\eta}} \tilde{f} \tag{78}
\end{equation*}
$$

In $\Xi \cap B_{\eta}$ we can use property iv) above, so we deduce

$$
\begin{aligned}
\left\|\chi_{\Xi} \chi_{B_{\eta}} \tilde{f}\right\|_{L^{\frac{2 n}{n+4}}} & \leq\left(\int_{B_{\eta} \cap \Xi}\left(C_{1}+C_{2}|w|^{\frac{n+4}{n-4}}\right)^{\frac{2 n}{n+4}}\right)^{\frac{n+4}{2 n}} \\
& \leq C\left(\left|B_{\eta}\right|+\|w\|_{L^{\frac{2 n}{n-4}(\Xi)}}^{\frac{2 n}{n-4}}\right)^{\frac{n+4}{2 n}}
\end{aligned}
$$

Since by iii) we have $\|w\|_{L^{\frac{2 n}{n-4}(\Xi)}} \rightarrow 0$ as $\tau \rightarrow 0$, we obtain

$$
\begin{equation*}
\left\|\chi_{\Xi} \chi_{B_{\eta}} \tilde{f}\right\|_{L^{2 n} n+4}=o_{\eta}(1)+o_{\tau}(1) \quad \text { for } \eta \text { and } \tau \text { small. } \tag{79}
\end{equation*}
$$

We also have, by property v)-b)

$$
\left|\chi_{\Xi} \chi_{\mathbb{S}^{n} \backslash B_{\eta}} \tilde{f}\right| \leq C_{\tau}+C\left(|w|+|w|^{\frac{n+4}{n-4}}\right) \quad \text { in } \Xi \cap\left(\mathbb{S}^{n} \backslash B_{\eta}\right)
$$

and hence

$$
\left\|\chi_{\Xi} \chi_{\mathbb{S}^{n} \backslash B_{\eta}} \tilde{f}\right\|_{L^{\frac{2 n}{n+4}}} \leq C\left(\int_{\mathbb{S}^{n} \backslash B_{\eta}}\left|\phi_{\tau}(x, 0)\right|^{\frac{2 n}{n+4}}+\int_{\Xi}\left(|w|+|w|^{\frac{2 n}{n-4}}\right)\right)^{\frac{n+4}{2 n}}
$$

Using iii) and v)-a) we deduce

$$
\begin{equation*}
\left\|\chi_{\Xi} \chi_{\mathbb{S}^{n} \backslash B_{\eta}} \tilde{f}\right\|_{L^{\frac{2 n}{n+4}}} \rightarrow 0 \quad \text { as } \tau \rightarrow 0 \tag{80}
\end{equation*}
$$

From (79), (80) and the arbitrariness of η it follows that $\lim _{\tau \rightarrow 0}\left\|\chi_{\Xi} \tilde{f}\right\|_{L \frac{2 n}{n+4}}=0$.
So the Lemma is a consequence of (78), (69) and the Sobolev embeddings.

Now we come to the conclusion, namely we prove (76). We consider the function \tilde{f} separately in the three sets $\Theta_{\varepsilon}, \Omega_{\varepsilon} \cap B_{\eta}$ and $\Omega_{\varepsilon} \cap\left(\mathbb{S}^{n} \backslash B_{\eta}\right)$.

In Θ_{ε} we have, using property iv)

$$
|\tilde{f}(x)| \leq C_{1}+C_{2}|w|^{\frac{n+4}{n-4}} \leq C\left(\frac{1+|w|^{\frac{n+4}{n-4}}}{\left|w_{2}\right|^{\frac{n+4}{n-4}}}\right)\left|w_{2}\right|^{\frac{n+4}{n-4}} \quad x \in \Theta_{\varepsilon}
$$

So, since $x \in \Theta_{\varepsilon}$, from ii) it follows that

$$
\begin{equation*}
\tilde{f}(x)=g_{\varepsilon, \tau}(x)\left|w_{2}\right|^{\frac{8}{n-4}} w_{2} \quad \text { in } \Theta_{\varepsilon}, \quad \text { and }\left|g_{\varepsilon, \tau}(x)\right| \leq C_{\varepsilon} \tag{81}
\end{equation*}
$$

where C_{ε} is a positive constant depending only on ε.
By (77), i) and iv), we have

$$
\begin{equation*}
|\tilde{f}(x)| \leq C \quad x \in B_{\eta} \cap \Omega_{\varepsilon} \tag{82}
\end{equation*}
$$

for some fixed positive constant C.
Moreover for $x \in \Omega_{\varepsilon}$ it is $w(x) \geq \varepsilon$ hence, fixing $\eta>0$, we have by $v)-a$)

$$
\begin{equation*}
-h_{\varepsilon, \tau}^{\eta} \leq \tilde{f}(x)<0 \quad x \in\left(\mathbb{S}^{n} \backslash B_{\eta}\right) \cap \Omega_{\varepsilon} \tag{83}
\end{equation*}
$$

where $h_{\varepsilon, \tau}^{\eta}$ is a positive constant which tends to zero as $(\varepsilon, \tau) \rightarrow 0$.
Hence, taking into account (81), (82), and (83) we have

$$
\begin{equation*}
L_{h}^{2} w_{2}=\chi_{\Theta_{\varepsilon}} g_{\varepsilon, \tau}(x)\left|w_{2}\right|^{\frac{8}{n-4}} w_{2}+\hat{f}(x) \tag{84}
\end{equation*}
$$

where

$$
\left\|g_{\varepsilon, \tau}\right\|_{L^{\infty}} \leq C_{\varepsilon}, \quad|\hat{f}(x)| \leq h_{\varepsilon, \tau}^{\eta}+C \chi_{B_{\eta}}(x)
$$

Now we fix $\alpha>\frac{n}{4}$ and $s>\frac{n+4}{n-4} \alpha$, so in particular it is $s>\alpha$. Since $w_{2} \rightarrow$ 0 in H_{2}^{2} as $\tau \rightarrow 0$, by Lemma 3.11, it turns out that $\left\|\chi_{\Theta_{\varepsilon}} g_{\varepsilon, \tau}(x)\left|w_{2}\right|^{\frac{8}{n-4}}\right\|_{L^{\frac{n}{4}}} \rightarrow$ 0 as $\tau \rightarrow 0$. We can apply Proposition 3.8 and we deduce that

$$
\begin{equation*}
\left\|w_{2}\right\|_{s} \leq C(n, s)\|\hat{f}\|_{s} \tag{85}
\end{equation*}
$$

The last L^{s} norm can be estimated as

$$
\begin{equation*}
\|\hat{f}\|_{s} \leq\left(\int_{\mathbb{S}^{n}}\left(h_{\varepsilon, \tau}^{\eta}+C \chi_{B_{\eta}}\right)^{s}\right)^{\frac{1}{s}} \leq C\left(\left\|h_{\varepsilon, \tau}^{\eta}\right\|_{\infty}+\eta^{\frac{n}{s}}\right) \tag{86}
\end{equation*}
$$

Applying (69) to equation (84) and using the Hölder inequality and the Sobolev embeddings we derive

$$
\begin{equation*}
\left\|w_{2}\right\|_{\infty} \leq C(n, \alpha)\left(\left\|\chi_{\Theta_{\varepsilon}} g_{\varepsilon, \tau}\left|w_{2}\right|^{\frac{n+4}{n-4}}\right\|_{\alpha}+C_{\alpha, s}\|\hat{f}\|_{s}\right) . \tag{87}
\end{equation*}
$$

Let $p=\frac{s}{\alpha} \frac{n-4}{n+4}>1$, and let p^{\prime} be the conjugate exponent of p : using the Hölder inequality we have that

$$
\begin{align*}
\left\|\chi_{\Theta_{\varepsilon}} g_{\varepsilon, \tau}\left|w_{2}\right|^{\frac{n+4}{n-4}}\right\|_{\alpha} & \leq\left(\left(\int_{\mathbb{S}^{n}}\left|w_{2}\right|^{s}\right)^{\frac{1}{p}}\left(\int_{\Xi}\left|g_{\varepsilon, \tau}\right|^{\alpha p^{\prime}}\right)^{\frac{1}{p^{\prime}}}\right)^{\frac{1}{\alpha}} \tag{88}\\
& \leq C_{\varepsilon}^{\alpha p^{\prime}}\left\|w_{2}\right\|_{s}^{\frac{s}{p \alpha}}\left|\Theta_{\varepsilon}\right|^{\frac{1}{\alpha p^{\prime}}}
\end{align*}
$$

From (87) and (88) it follows that

$$
\left\|w_{2}\right\|_{\infty} \leq C(n, \alpha) C_{\varepsilon}^{\alpha p^{\prime}}\left\|w_{2}\right\|_{s}^{\frac{s}{p \alpha}}\left|\Theta_{\varepsilon}\right|^{\frac{1}{\alpha p^{\prime}}}+C(n, \alpha) C_{\alpha, s}\|\hat{f}\|_{s}
$$

Hence we have by (85) and (86)

$$
\left\|w_{2}\right\|_{\infty} \leq C(n, s, \alpha)\left(C_{\varepsilon}^{\alpha p^{\prime}}\left(\left\|h_{\varepsilon, \tau}^{\eta}\right\|_{\infty}+\eta^{\frac{n}{s}}\right)^{\frac{s}{p \alpha}}\left|\Theta_{\varepsilon}\right|^{\frac{1}{\alpha p^{\prime}}}+\left(\left\|h_{\varepsilon, \tau}^{\eta}\right\|_{\infty}+\eta^{\frac{n}{s}}\right)\right) .
$$

Having fixed α and s, we can now choose first η and then ε such that $C(n, s, \alpha)\left(\left\|h_{\varepsilon, \tau}^{\eta}\right\|_{\infty}+\eta^{\frac{n}{s}}\right) \leq \frac{1}{4} \alpha_{1}$ for τ sufficiently small. Since $\left|\Theta_{\varepsilon}\right| \rightarrow 0$ as $\tau \rightarrow 0$ by Lemma 3.11, (76) follows from the last formula. This concludes the proof.

4. - Appendix

4.1. - A Pohozahev-type identity

Proposition 4.1. Let $n \geq 5$, let B_{r} be the ball in \mathbb{R}^{n} centered at 0 and with radius r, and let $p \geq 1$ and let u be a positive C^{4} solution of

$$
\begin{equation*}
\Delta^{2} u=\frac{n-4}{2} f(x) u^{q} \quad x \in B_{r} \tag{89}
\end{equation*}
$$

We have

$$
\begin{gathered}
\frac{n-4}{2(q+1)} \sum_{i} \int_{B_{r}} x_{i} \frac{\partial f}{\partial x_{i}} u^{q+1} d x+\frac{n-4}{2}\left(\frac{n}{q+1}-\frac{n-4}{2}\right) \int_{B_{r}} f u^{q+1} d x \\
-r \frac{n-4}{2(q+1)} \int_{\partial B_{r}} f u^{q+1} d \sigma=\int_{\partial B_{r}} B\left(r, x, u, \nabla u, \nabla^{2} u, \nabla^{3} u\right) d \sigma
\end{gathered}
$$

where

$$
\begin{aligned}
B\left(r, x, u, \nabla u, \nabla^{2} u, \nabla^{3} u\right)= & -\frac{n-2}{2} \Delta u \frac{\partial u}{\partial v}-\frac{r}{2}|\Delta u|^{2}+\frac{n-4}{2} u \frac{\partial}{\partial v}(\Delta u) \\
& +\langle x, \nabla u\rangle \frac{\partial}{\partial v}(\Delta u)-\Delta u \sum_{i} x_{i} \frac{\partial}{\partial v} u_{i}
\end{aligned}
$$

Proof. Multiplying equation (89) by u we have

$$
\int_{B_{r}} u \Delta^{2} u d x=\frac{n-4}{2} \int_{B_{r}} f u^{q+1} d x
$$

so integrating by parts we obtain

$$
\int_{B_{r}}(\Delta u)^{2} d x=\frac{n-4}{2} \int_{B_{r}} f u^{q+1} d x-\int_{\partial B_{r}} \Delta u \frac{\partial u}{\partial v} d \sigma+\int_{\partial B_{r}} u \frac{\partial}{\partial v}(\Delta u) d \sigma .
$$

Multiplying equation (89) by $\sum_{i=1}^{n} x_{i} u_{i}$ we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} \int_{B_{r}} \Delta^{2} u x_{i} u_{i} d x=\frac{n-4}{2} \sum_{i=1}^{n} \int_{B_{r}} x_{i} u_{i} f u^{q} d x \tag{90}
\end{equation*}
$$

Integrating by parts, we rewrite the right hand side of (90) as

$$
\begin{align*}
\sum_{i=1}^{n} \int_{B_{r}} x_{i} u_{i} f u^{q} d x= & -\frac{n}{q+1} \int_{B_{r}} f u^{q+1} d x+\frac{r}{q+1} \int_{\partial B_{r}} f u^{q+1} d \sigma \\
& -\frac{1}{q+1} \sum_{i=1}^{n} \int_{B_{r}} x_{i} \frac{\partial f}{\partial x_{i}} u^{q+1} d x \tag{91}
\end{align*}
$$

Next, one can transform the left hand side of (90) in the following way

$$
\begin{align*}
\sum_{i=1}^{n} \int_{B_{r}} \Delta^{2} u x_{i} u_{i} d x= & \frac{4-n}{2} \int_{B_{r}}(\Delta u)^{2} d x+\frac{r}{2} \int_{\partial B_{r}}(\Delta u)^{2} d \sigma+\int_{\partial B_{r}} \Delta u \frac{\partial u}{\partial v} d \sigma \\
& -\int_{\partial B_{r}}\langle x, \nabla u\rangle \frac{\partial}{\partial v}(\Delta u) d x+\sum_{i=1}^{n} \int_{\partial B_{r}} x_{i} \frac{\partial}{\partial v}\left(u_{i}\right) \Delta u d x \tag{92}
\end{align*}
$$

So, putting together equations (90), (91) and (92) we obtain the result.
It is easy to check that the boundary term enjoys the following properties
Corollary 4.2. $B\left(r, x, u, \nabla u, \nabla^{2} u, \nabla^{3} u\right)$ has the following properties
i) for $u(x)=|x|^{4-n}$, it is

$$
B\left(r, x, u, \nabla u, \nabla^{2} u, \nabla^{3} u\right)=0 \quad \text { for all } x \in \partial B_{r}
$$

ii) for $u(x)=|x|^{4-n}+A+\alpha(x)$, where $A>0$ is some positive constant and $\alpha(x)$ is some C^{4} function with $\alpha(0)=0$, then there exists some $r^{*}>0$ such that, for any r with $0<r<r^{*}$ we have

$$
B\left(r, x, u, \nabla u, \nabla^{2} u, \nabla^{3} u\right)<0 \text { for all } x \in \partial B_{r},
$$

and

$$
\lim _{r \rightarrow 0} \int_{\partial B_{r}} B\left(r, x, u, \nabla u, \nabla^{2} u, \nabla^{3} u\right)=-(n-4)^{2}(n-2) \omega_{n-1} A
$$

4.2. - A maximum principle for elliptic systems on domains

We recall the following result, see [36] page 193.
Lemma 4.3. Let $D \in \mathbb{R}^{n}$ be a bounded smooth domain, and let $w(\cdot)>0$ be a vector field on \bar{D} such that

$$
L_{\mu}\left[w_{\mu}\right]+\sum_{\nu=1}^{k} h_{\mu \nu} w_{\nu} \leq 0 \quad \text { in } D \quad \mu=1, \ldots, k
$$

where

$$
L_{\mu}=\sum_{i, j=1}^{n} a_{i j}^{(\mu)}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}^{(\mu)}(x) \frac{\partial}{\partial x_{i}},
$$

where $a_{i j}^{(\mu)}(x), b_{i}^{(\mu)}(x)$ are uniformly bounded, $a_{i j}^{(\mu)}(x)$ are uniformly elliptic, and $h_{\mu \nu} \geq 0$ for $\mu \neq \nu$. Suppose that the vector field $z(x)$ satisfies the system of inequalities

$$
L_{\mu}\left[z_{\mu}\right]+\sum_{v=1}^{k} h_{\mu \nu} z_{v} \geq 0 \quad \text { in } D \quad \mu=1, \ldots, k
$$

and that there exists some constant $M>0$ such that $z \leq M w$ on ∂D. Then $z \leq M w$ in \bar{D}.

4.3. - Some properties of biharmonic functions

We recall the following well known Lemma, see for example [7].
Lemma 4.4 (Böcher). Suppose $n \geq 3, a_{0} \in \mathbb{R}$, and $v \in C^{2}\left(B_{2} \backslash\{0\}\right)$ satisfies the conditions

$$
\begin{cases}\Delta v=0 & \text { in } B_{2} \backslash\{0\} \\ v \geq a_{0}|x|^{2-n} & \text { in } B_{2} \backslash\{0\}\end{cases}
$$

Then there exist $a_{1} \geq a_{0}$ and an harmonic function $d: B_{1} \rightarrow \mathbb{R}$ such that

$$
v(x)=a_{1}|x|^{2-n}+d(x) \quad x \in B_{1} \backslash\{0\} .
$$

Taking into account Lemma 4.4, we can prove the following analogous result regarding the biharmonic operator.

Lemma 4.5. Suppose $n \geq 5$, and suppose $v \in C^{4}\left(B_{1} \backslash\{0\}\right)$ satisfies the conditions

$$
\begin{cases}\Delta^{2} v=0 & \text { in } B_{2} \backslash\{0\} \\ v \geq 0 & \text { in } B_{2} \backslash\{0\} \\ \Delta v \geq 0 & \text { in } B_{2} \backslash\{0\}\end{cases}
$$

Then there exist $a_{1}, a_{2} \geq 0$ a function $b \in C^{\infty}\left(B_{1}\right)$ with $\Delta^{2} b=0$ such that

$$
v(x)=a_{1}|x|^{4-n}+a_{2}|x|^{2-n}+b(x) \quad x \in B_{\frac{1}{2}} \backslash\{0\} .
$$

Proof. Set $w=\Delta v$. Then one can easily check that w satisfies the assumptions of Lemma 4.4 with $a_{0}=0$, so there exist $a_{3} \geq 0$ and a function $d \in C^{\infty}\left(B_{1}\right)$ with $\Delta d=0$ such that

$$
w(x)=a_{3}|x|^{2-n}+d(x) \quad x \in B_{1} \backslash\{0\} .
$$

Define $\tilde{v}: B_{1} \backslash\{0\}$ to be

$$
\tilde{v}(x)=\frac{a_{3}}{2(n-4)}|x|^{4-n}+\Delta^{-1} d(x) \quad x \in B_{1} \backslash\{0\}
$$

where $\Delta^{-1} d$ denotes a classical solution of $\Delta u=d$ in B_{1}. It is easy to see that, setting $\bar{v}=v-\tilde{v}$, there exists $\bar{C}>0$ such that \bar{v} satisfies

$$
\begin{cases}\Delta \bar{v}=0 & \text { in } B_{1} \backslash\{0\} \\ \bar{v} \geq-\bar{C}|x|^{4-n} & \text { in } B_{1} \backslash\{0\} .\end{cases}
$$

Hence, applying Lemma 4.4 to \bar{v}, there exist $a_{2} \geq 0$ and $e \in C^{\infty}\left(B_{1}\right)$ with $\Delta e=0$ such that

$$
\bar{v}(x)=a_{2}|x|^{2-n}+e(x) \quad \text { in } B_{1} \backslash\{0\} .
$$

Hence the Lemma follows setting

$$
a_{1}=\frac{a_{3}}{2(n-4)}, \quad b=e+\Delta^{-1} d .
$$

The proof is concluded.

REFERENCES

[1] S. I. Andersson - H. D. Doebner, Nonlinear partial differential operators and quantization procedures, Proceedings of a workshop held at the Technische Universitt Clausthal, S. I. Andersson - H.-D. Doebner Clausthal (eds.), July 1981.
[2] A. Ambrosetti - J. Garcia Azorero - A. Peral, Perturbation of $\Delta u+u^{\frac{(N+2)}{N-2)}}=0$, the Scalar Curvature Problem in \mathbb{R}^{N} and related topics, Journal of Functional Analysis 165 (1999), 117-149.
[3] A. Arapostathis - M. F. Ghosh - S. Marcus, Harnack's inequality for cooperative weakly coupled systems, Comm. Partial Differential Equations 24 (1999), 1555-1571.
[4] T. Aubin, Meilleures constantes dans le théorème d'inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, Journal of Functional Analysis 32 (1979), 148-174.
[5] T. Aubin, "Some Nonlinear Problems in Differential Geometry", Springer-Verlag, 1998.
[6] T. Aubin - A. Bahri, Méthodes de topologie algébrique pour le probléme de la courbure scalaire prescrite, Journal des Mathématiques Pures et Appliquées 76 (1997), 525-549.
[7] S. Axler - P. Bourdon - W. Ramey, "Harmonic Function Theory", Springer-Verlag, GTM 137, 1992.
[8] A. Bahri, "Critical points at infinity in some variational problems", Research Notes in Mathematics, 182, Longman-Pitman, London, 1989.
[9] A. BAhri, An invariantfor Yamabe type flows with applications to scalar curvature problems in higher dimensions, Duke Mathematical Journal 81 (1996), 323-466.
[10] A. Bahri - J. M. Coron, The Scalar-Curvature problem on the standard three-dimensional sphere, Journal of Functional Analysis 95 (1991), 106-172.
[11] M. Ben Ayed - Y. Chen - H. Chtioui - M. Hammami, On the prescribed scalar curvature problem on 4-manifolds, Duke Mathematical Journal 84 (1996), 633-677.
[12] T. P. Branson, Group representations arising from Lorentz conformal geometry, Journal of Functional Analysis 74 (1987), 199-291.
[13] T. P. Branson, Differential operators canonically associated to a conformal structure, Mathematica Scandinavica 57-2 (1985), 293-345.
[14] T. P. Branson - S. Y. A. Chang - P. C. Yang, Estimates and extremal problems for the log-determinant on 4-manifolds, Communications in Mathematical Physics 149 (1992), 241-262.
[15] S. Y. A. Chang, On a fourth order PDE in conformal geometry, Preprint, 1997.
[16] S. Y. A. Chang - M. J. Gursky - P. C. Yang, The scalar curvature equation on 2- and 3- spheres, Calculus of Variations and Partial Differential Equations 1 (1993), 205-229.
[17] S. Y. A. Chang - M. J. Gursky - P. C. Yang, Regularity of a fourth order non-linear PDE with critical exponent, American Journal of Mathematics 121 (1999), 215-257.
[18] S. Y. A. Chang - J. Qing - P. C. Yang, On the Chern-Gauss-Bonnet integral for conformal metrics on \mathbb{R}^{4}, Duke Mathematical Journal, to appear.
[19] S. Y. A. Chang - J. Qing - P. C. Yang, Compactification for a class of conformally flat 4-manifolds, Inventiones Mathematicae, to appear.
[20] S. Y. A. Chang - P. Yang, A perturbation result in prescribing scalar curvature on \mathbb{S}^{n}, Duke Mathematical Journal 64 (1991), 27-69.
[21] S. Y. A. Chang - P. C. Yang, Extremal metrics of zeta functional determinants on 4-manifolds, Annals of Mathematics 142 (1995), 171-212.
[22] S. Y. A. Chang - P. C. Yang, On a fourth order curvature invariant, In: "Spectral Problems in Geometry and Arithmetic", T. Branson (ed.), Comtemporary Mathematics 237, AMS, 1999, 9-28.
[23] A. Connes, "Noncommutative geometry", Academic Press, Inc., San Diego, CA, 1994.
[24] Z. Djadli - E. Hebey - M. Ledoux, Paneitz-type operators and applications, Duke Mathematical Journal 104 (2000) 129-169.
[25] Z. Diadli - A. Malchiodi - M. Ould Ahmedou, Prescribed fourth order conformal invariant on the standard sphere, Part I, to appear in Comm. Contem. Math.
[26] H. D. Doebner - J. D. Hennig, Differential geometric methods in mathematical physics, Proceedings of the twelfth international conference held at the Technical University of Clausthal, H.-D. Doebner - J. D. Hennig (ed.). Clausthal, August 30-September 2, 1983.
[27] J. Escobar - R. Schoen, Conformal metrics with prescribed scalar curvature, Inventiones Mathematicae 86 (1986), 243-254.
[28] D. Gilbarg - N. Trudinger, "Elliptic Partial Differential Equations of Second Order", 2nd edition, Springer-Verlag, 1983.
[29] M. J. Gursky, The Weyl functional, de Rham cohomology, and Kahler-Einstein metrics, Annals of Mathematics 148 (1998), 315-337.
[30] E. Hebey, Changements de métriques conformes sur la sphère - Le problème de Nirenberg, Bull. Sci. Math. 114 (1990), 215-242.
[31] Y. Y. Li, Prescribing scalar curvature on \mathbb{S}^{n} and related topics, Part I, Journal of Differential Equations 120 (1995), 319-410; Part II, Existence and compactness, Communications in Pure and Applied Mathematics, 49 (1996), 437-477.
[32] C. S. Lin, A classification of solutions of conformally invariant fourth order equation in \mathbb{R}^{n}, Commentari Mathematici Helveticii 73 (1998), 206-231.
[33] J. Moser, On a nonlinear problem in differential geometry, In: "Dynamical Systems", M. Peixoto (ed.), Academic Press, New York, 1973, 273-280.
[34] S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudoRiemannian manifolds, Preprint, 1983.
[35] S. Paneitz, Essential unitarization of symplectics and applications to field quantization, Journal of Functional Analysis 48 (1982), 310-359.
[36] M. H. Рrotter - H. F. Weinberger, "Maximum Principles in Differential Equations", Springer-Verlag, 2nd edition, 1984.
[37] R. Schoen, On the number of constant scalar curvature metrics in a conformal class, In: "Differential Geometry: A Symposium in Honor of Manfredo Do Carmo", H. B. Lawson K. Tenenblat (eds.), (1991), 331-320, Wiley, New York.
[38] R. Schoen - D. Zhang, Prescribed scalar curvature on the n-sphere, Calculus of Variations and Partial Differential Equations, 4 (1996), 1-25.
[39] J. Serrin - H. Zou, Non-existence of positive solutions of Lane-Emden systems, Differential and Integral Equations 9 (1996), 635-653.
[40] J. Wei - X. Xu, On conformal deformations of metrics on \mathbb{S}^{n}, Journal of Functional Analysis 157 (1998), 292-325.

Université de Cergy-Pontoise Département de Mathématique
Site de Saint-Martin
2 Avenue Adolphe Chauvin
F 95302 Cergy-Pontoise Cedex, France
Zindine.Djadli@math.u-cergy.fr
School of Mathematics Institute for Advanced Study 1 Einstein Drive Princeton, New Jersey 08540 USA malchiod@ias.edu
Rheinische Friedrich-Wilhelms
Universitat Bonn
Mathematisches Institut
Beringstrasse 4
D-53115 Bonn, Germany ahmedou@math.uni-bonn.de

