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Abstract. Small data scattering for nonlinear Schrödinger equations (NLS), non-
linear wave equations (NLW), nonlinear Klein-Gordon equations (NLKG) with
power type nonlinearities is studied in the scheme of Sobolev spaces on the
whole space Rn with order s < n/2. The assumptions on the nonlinearities
are described in terms of power behavior p1 at zero and p2 at infinity such as
1 + 4/n ≤ p1 ≤ p2 ≤ 1 + 4/(n − 2s) for NLS and NLKG, and 1 + 4/(n − 1) ≤
p1 ≤ p2 ≤ 1 + 4/(n − 2s) for NLW.
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1. – Introduction

We consider the small data scattering for nonlinear Schrödinger equations
(NLS), nonlinear wave equations (NLW), nonlinear Klein-Gordon equations
(NLKG) in the Sobolev space H s for NLS and NLKG, and in the homo-
geneous Sobolev space Ḣ s for NLW. The equations in this paper take the
form

NLS i∂t u − �u = f (u), n ≥ 1, 0 ≤ s < n/2,

NLW ∂2
t u − �u = f (u), n ≥ 2, 1/2 ≤ s < n/2,

NLKG ∂2
t u − �u + u = f (u), n ≥ 2, 1/2 ≤ s < n/2,

where u is a complex valued function of (t, x) ∈ R × Rn , � is the Laplacian
in Rn , and f is a nonlinear interaction. A typical form of f (u) is given by

(1.1) f (u) =
{

c1|u|p(0) + c2|u|p(s) for NLS, NLKG
c1|u|p(1/2) + c2|u|p(s) for NLW ,
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where c1, c2 ∈ C, p(s) ≡ 1 + 4/(n − 2s). A scaling argument shows that p(s)
is the critical power at the level of H s .

There is a large literature on the small data scattering for NLS, NLW and
NLKG. See for instance [4], [7], [10], [13], [15], [16], [18], [19], [21] and [22],
and references therein.

In [7], Kato has shown the small data scattering theory for NLS with f
satisfying f ∈ C {s}(C; C), f ( j)(0) = 0,

f ( j)(z) =
{

O(|z|p− j ) as |z| → ∞ ,

O(|z|p(0)− j ) as |z| → 0 ,

for 0 ≤ j ≤ {s} and max({s}, p(0)) ≤ p ≤ p(s), where {s} = [s]+1 for s /∈ Z+,
{s} = s for s ∈ Z+, and [s] denotes the largest integer less than or equal to s.
It is also shown that the auxiliary spaces of solutions are removable when p
satisfies

p < 1 + min(2s + 2, 4)

n − 2s
if n ≥ 2, p ≤ 2

1 − 2s
if n = 1 .

In [13], we have shown the small data scattering theory for NLW with f
satisfying f ∈ Cmax(1,[s−1/2])(C; C),

(1.2)

f ( j)(z) = O(|z|p(s)− j ) for z ∈ C ,∣∣ f ([s−1/2])(z) − f ([s−1/2])(w)
∣∣ ≤ C |z − w|p(s)−[s−1/2]

if s − 1/2 < p(s) < [s + 1/2]

for 0 ≤ j ≤ max(1, [s − 1/2]).
In [22], Wang has shown the small data scattering theory for NLKG with f

satisfying one of two conditions

(a) f ∈ C1(C; C), | f ′(z)| ≤ C |z|p−1, p(0) ≤ p < p(1/2) for 1/2 ≤ s ≤ 3/2 ,

(b) f ∈ Cκ(C; C), | f ( j)(z)| ≤ C(|z|p1− j + |z|p2− j ), 0 ≤ j ≤ κ ,

for p(1/2)≤ p1 ≤ p2 ≤ p(s) and 1/2≤s < n/2 ,

where κ is a constant greater than [s]. Thus the sum of two powers |u|1+4/n +
|u|1+4/(n−2s) is excluded.

In this paper, we extend all those results above to the full range of powers of
the nonlinearities such as (1.1) with minimal regularity assumption on f using
the property (1.2). For that purpose we exploit refined Strichartz estimates,
Corollary 2.8 below, which is needed to show the uniqueness of solutions
without auxiliary spaces, as well as to deal with the sum of two powers |u|1+4/n

and |u|1+4/(n−2s) for NLKG. The proof of such refined Strichartz estimates is
inspired by [5], [9], [11]. In order to state our results precisely, we introduce
the following notation.
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For any r with 1 ≤ r ≤ ∞, Lr = Lr (Rn) denotes the Lebesgue space
on Rn . For any s ∈ R and any r with 1 < r < ∞, H s

r = (1−�)−s/2Lr denotes
the Sobolev space defined in terms of Bessel potentials. For any s ∈ R and
any r with 1 < r < ∞, Ḣ s

r = (−�)−s/2Lr denotes the homogeneous Sobolev
space defined in terms of Riesz potentials. To introduce the Besov space and
the homogeneous Besov space, let φ0 be a nonnegative function on Rn with

supp φ0 ⊂ {ξ ∈ Rn ; 1/2 ≤ |ξ | ≤ 2}

such that {φ0(2− j ·)}∞j=− ∞ forms the Littlewood-Paley dyadic decomposition on

Rn \ {0}. Let {ψj }∞−∞ and ψ̃ be functions defined by

Fψj (ξ) ≡ φ0(2
− jξ), Fψ̃(ξ) ≡ 1 −

∞∑
j=1

φ0(2
− jξ) ,

where F and F−1 denote Fourier transform and its inverse, respectively. For
any s ∈ R and any r, m with 1 ≤ r, m ≤ ∞, the Besov space Bs

r,m and the
homogeneous Besov space Ḃs

r,m are defined by

Bs
r,m ≡

u ∈S ′(Rn);‖u;Bs
r,m‖≡

‖ψ̃ ∗u; Lr‖m +
∞∑

j=1

(2s j‖ψj ∗u;Lr‖)m


1/m

<∞


Ḃs

r,m ≡

u ∈S ′(Rn)/P(Rn); ‖u; Ḃs
r,m‖≡


∞∑

j=− ∞
(2s j‖ψj ∗ u; Lr‖)m


1/m

<∞


where ∗ denotes the convolution in Rn and S ′(Rn) and P(Rn) denote the sets
of tempered distributions and of polynomials on Rn , respectively. We refer
to [1], [6], [20] for general information on Besov and Triebel-Lizorkin spaces
and their homogeneous counterparts. For simplicity we make abbreviations such
as H s = H s

2 , Ḣ s = Ḣ s
2 , Bs

r = Bs
r,2, Ḃs

r = Ḃs
r,2. For any Banach spaces X and

Y having a common dense subspace, we put

‖a; X ∩ Y‖ ≡ max(‖a; X‖, ‖a; Y‖)

for any a ∈ X ∩ Y . For any interval I ⊂ R and any Banach space X we
denote by C(I ; X) the space of strongly continuous functions from I to X ,
by Lq(I ; X) (or by Lq X , for simplicity) the space of measurable functions u
from I to X such that ‖u(·); X‖ ∈ Lq(I ). For any r with 1 ≤ r ≤ ∞, r ′ is
the exponent dual to r defined by 1/r + 1/r ′ = 1. For a, b ∈ R we denote by
a ∨ b and a ∧ b the maximum and minimum of a and b, respectively, and we
denote by a � b the inequality a ≤ Cb with some constant C > 0 which is
independent on other constants and variables in question.
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The behavior of nonlinearity f is described by the following assumptions
N (s, p) and N (s, p1, p2) with s ≥ 0, 1 ≤ p, p1, p2 < ∞.

N (s, p): f ∈ C [s](C; C), f ( j)(z) = O(|z|p− j ) for 0 ≤ j ≤ [s] ∧ p.
Moreover f ( j)(z) = 0 for p < j ≤ [s] if p < [s].

(1.3) | f ([s])(z) − f ([s])(w)|�


(|z| ∨ |w|)p−[s]−1|z − w| if [s] + 1 ≤ p ,

|z − w|p−[s] if s < p < [s] + 1 ,

0 if p ≤ s .

N (s, p1, p2): f is written as a finite sum
∑'

j=1 f j with f j satisfying N (s, p∗
j )

for some p∗
j with p1 ≤ p∗

j ≤ p2.

In this paper, H̃ s, H̃s , and H̄s denote the class of solutions, the class of data,
and the class in which the data is needed to be small, respectively, which are
defined by the following correspondence.

H̃ s H̃s H̄s

NLS Hs Hs Ḣ s

NLW Ḣ1/2 ∩ Ḣ s Ḣ1/2 ∩ Ḣs Ḣs

NLKG Hs Hs Hs

Here Ḣs = Ḣ s ⊕ Ḣ s−1 and Hs = H s ⊕ H s−1. We denote by *φ the elements
of H̃s with *φ = φ = u(0) for NLS, *φ = (φ, ψ) = (u(0), ∂t u(0)) for NLW and
NLKG. Accordingly, we define *u(t) = u(t) for NLS and *u(t) = (u(t), ∂t u(t))
for NLW and NLKG. For s, s1, s2 ∈ R and γ > 0, we put

As(s1, s2, γ ) ≡ {*φ ∈ H̃s ; ‖ *φ; H̄s1 ∩ H̄s2‖ ≤ γ } ,

so that the first index s denotes the required regularity of the data and the next
two indices s1 and s2 are related to the smallness of the data, which is realized
by the norm of H̄s1 ∩ H̄s2 of size less than or equal to γ . Let ω ≡ −� for
NLS, ω ≡ √−� for NLW, ω ≡ √

1 − � for NLKG. Let U (t) ≡ exp(i tω).
For *φ ∈ H̃s , let

�(t) *φ ≡
{ U (t)φ for NLS ,

(cos tω)φ + sin tω

ω
ψ for NLW and NLKG .

For t0, t ∈ R, let

G̃t0h(t) ≡


−i
∫ t

t0

U (t − τ)h(τ )dτ for NLS ,∫ t

t0

sin(t − τ)ω

ω
h(τ )dτ for NLW and NLKG.

Then NLS, NLW and NLKG are rewritten by the following integral equation

INT u(t) = �(u)(t) ≡ �(t) *φ + G̃0( f (u))(t) .
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The above integral equation is considered in the following auxiliary spaces. For
s ∈ R, we put

Xs ≡ L∞ H̃ s ∩


Lq0 Bs

q0
, q0 ≡ 2(n + 2)

n
for NLS ,

Lq1(Ḃs−1/2
q1

∩ Ḃ0
q1

), q1 ≡ 2(n + 1)

n − 1
for NLW ,

∩q0≤q≤q1 Lq Bs−1/2
q for NLKG ,

endowed with the metric d given by

d(u, v) ≡
{ ‖u − v; X0‖ for NLS ,

‖u − v; X1/2‖ for NLW and NLKG .

For 1 ≤ p < ∞, let s(p) be the critical regularity associated with the power p,
given by

s(p) ≡
{

n/2 − 2/(p − 1) for NLS and NLW ,

1/2 ∨ (n/2 − 2/(p − 1)) for NLKG .

With the notation above, our main results read as:

Theorem 1.1. Let n, s, p1, p2 satisfy

n ≥ 1, 0 ≤ s < n/2, s0 = 0, p(0) ≤ p1 ≤ p2 ≤ p(s) for NLS ,

n ≥ 2, 1/2 ≤ s < n/2, s0 = 1/2, p(1/2) ≤ p1 ≤ p2 ≤ p(s) for NLW ,

n ≥ 2, 1/2 ≤ s < n/2, s0 = 1/2, p(0) ≤ p1 ≤ p2 ≤ p(s) for NLKG .

Let f satisfy N (s − s0, p1, p2). Then there exists γ > 0 with the following property.

(1) For any data *φ ∈ As(s(p1), s(p2), γ ), INT has a unique global solution u in
C(R; H̃ s) ∩ Xs.

(2) There exists unique two states *φ+, *φ− in H̃s such that

(1.4) ‖*u(t) − �(t) *φ±; H̃s‖ → 0

as t → ± ∞. More precisely,

‖u(t) − U (t)φ±; Hs‖ → 0 for NLS ,∥∥∥(u(t)−(cos tω)φ±− sin tω

ω
ψ±, ∂t

(
u(t)−(cos tω)φ±− sin tω

ω
ψ±
))

; Ḣ1/2 ∩ Ḣs
∥∥∥→0 for NLW,(1.5) ∥∥∥(u(t)−(cos tω)φ±− sin tω

ω
ψ±, ∂t

(
u(t)−(cos tω)φ±− sin tω

ω
ψ±
))

;Hs
∥∥∥→ 0 for NLKG

with *φ± = (φ±, ψ±) for NLW and NLKG.
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(3) For any data *φ− in As(s(p1), s(p2), γ ), there exists a unique global solution
u of INT in C(R; H̃ s) ∩ Xs and a unique state *φ+ ∈ H̃s such that (1.5)

holds. Moreover the scattering operator S : *φ− �→ *φ+ is well-defined
on As(s(p1), s(p2), γ ) to H̃s and is continuous in the following sense. If
{ *φ j

−}∞j=1 ⊂ As(s(p1), s(p2), γ ) satisfies ‖ *φ− − *φ j
−; H̃s0‖ → 0 as j → ∞,

then

(1.6) ‖ *φ+ − *φ j
+; H̃µ‖ → 0

as j → ∞ for any µ with s0 ≤ µ < s(p2) where *φ j
+ = S( *φ j

−).
(4) In parts (1) and (3), the auxiliary space Xs is removable if p2 satisfies

(1.7)



p2 ≤1+(1+2s)/(1 − 2s) for n =1 ,

p2 <1+(1+s)/(1 − s) for n =2 ,

p2 ≤1+(2n+4(n − 1)s)/n(n − 2s) for n ≥3 and 0≤s <n/2(n − 1) ,

p2 <1+4(n − 1)/n(n − 2) for n ≥3 and s =n/2(n − 1) ,

p2 ≤1+4/(n − 2s) for n ≥3 and n/2(n − 1)<s <n/2

for NLS,

(1.8) p2 ≤ 1 + 4n/(n + 1)(n − 2s)

for NLW and NLKG. In particular, uniqueness of solutions holds in C(I ; H̃ s)

for any interval I in R without smallness condition on the data if p2 
= p(s).

Proposition 1.1. Let us consider NLWand NLKG. Let n ≥ 3. Let

1 ≤ s < 3/2, for n = 3, 2/3 ≤ s < 2 for n = 4 ,

(n − 2)/(n + 1) ≤ s < n/2 for n ≥ 5 .

Then the state (4) in Theorem 1.1 holds with (1.8) replaced by p2 < p(s). In
particular, uniqueness of solutions holds in C(I ; H̃ s) for any interval I in R without
smallness condition on the data.

Remark 1. The assumptions of the theorem above cover for instance
nonlinearities of the form

• cu p with p ∈ Z+ ,

• c|u|p−1u with p = 2m + 1 and m ∈ Z+ ,(1.9)

• c|u|p and c|u|p−1u with p > s − s0 ,

where c ∈ C, p(0) ≤ p ≤ p(s) for NLS and NLKG, p(1/2) ≤ p ≤ p(s) for
NLW, and

• c|u|p log |u|, c|u|p−1u log |u| with p > [s − s0] + 1 ,
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where p(0) < p < p(s) for NLS and NLKG, p(1/2) < p < p(s) for NLW,
and any finite sum of the above nonlinearities. In particular, for NLS, the
quintic correction of cubic interaction

• f (u) = c1|u|2u + c2|u|4u, c1, c2 ∈ C

falls within the scope with n ≥ 2, (n − 1)/2 ≤ s < n/2. The logarithmic
correction of cubic interaction (see Section 3.5 in [17])

• f (u) = c1|u|2u + c2|u|2u log |u|2 ,

also, falls within the scope with 3 ≤ n ≤ 5, (n − 2)/2 < s < 2 ∧ (n/2). On
the other hand, the nonlinearity f (u) = cu log |u|2 requires a special treatment
(see [2], [3]).

Remark 2. The regularity assumptions C {s} in [7] and Cκ in [22] for f ,
described above, are refined in the theorem as C [s−s0] with the property (1.3).
For NLKG, p1 and p2 can be taken in the full range p(0) ≤ p1 ≤ p2 ≤ p(s)
as compared to p(1/2) ≤ p1 ≤ p2 ≤ p(s) in [22].

Remark 3. As for NLKG for n = 1, we have shown in [12] the scattering
theory for small data at the level of H 1/2 for nonlinearities with exponential
growth at infinity such as f (u) = c|u|p(0) exp(ν|u|2), c ∈ C, ν > 0.

Acknowledgments. We are grateful to S. Machihara and K. Nakanishi for
useful comments on the Strichartz estimates in Section 2.

2. – Strichartz estimates

Let λj , σj , j = 1, 2, satisfy

λ1 = λ2 = 0, σ1 = σ2 = n for NLS ,

λ1 = λ2 = (n + 1)/2, σ1 = σ2 = n − 1 for NLW ,(2.10)

(n + 1)/2 ≤ λj ≤(n + 2)/2, 2n − 2λj ≤σj ≤2λj −2, σj > 0, j =1, 2,

for NLKG.

Our purpose in this section is to show the estimates

(2.11)

∥∥Gh; Lq(R; B̄−λ1α(r)
r )

∥∥ �
∥∥h; Lq̃(R; B̄

−λ2α(r̃)

r̃ )
∥∥ ,

Gh(t) ≡
∫

J
U (t − τ)h(τ )dτ
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for various r, q, r̃ and q̃ in [1, ∞), where α(r) ≡ 1/2 − 1/r and J denotes an
interval in R of the form [0, t], [t, ∞) and (− ∞, t], and B̄s

r denotes Ḃs
r for

NLS and NLW, Bs
r for NLKG. For that purpose we first recall a basic reasoning

of the problem. We start from the following well-known decay estimate

(2.12)
∥∥U (t)φ; B̄−λ1/2

∞
∥∥ � |t |−σ1/2

∥∥φ; B̄
λ1/2
1

∥∥ .

Interpolating the energy estimate and (2.12) and applying the Hardy-Littlewood-
Sobolev inequality in the time variable, we have

(2.13)
∥∥∥∥∫

J
U (· − τ)h(τ )dτ ; Lq B̄−λ1α(r)

r

∥∥∥∥ �
∥∥h; Lq′

B̄
−λ1α(r ′)
r ′

∥∥ .

Applying the bilinear estimate associated with (2.13), we also have

(2.14)
∥∥∥∥∫

J
U (· − τ)h(τ )dτ ; L∞ B̄0

2

∥∥∥∥ �
∥∥h; Lq′

B̄
−λ1α(r ′)
r ′

∥∥
for 1≤r , q ≤∞ with 1/r+2/σ1q =1/2 and 1/2−1/σ1 <1/r ≤1/2. Considering
the dual operator U ′ of U in R1+n of the form U ′h ≡ ∫

R
U (−τ)h(τ )dτ , (2.14)

yields

(2.15)
∥∥U (·)φ; Lq B̄−λ1α(r)

r

∥∥ �
∥∥φ; B̄0

2

∥∥ .

Interpolating (2.13) and (2.14) and applying the duality argument, we obtain
the following well-known lemma (see [5], [8], [22] and references therein).

Lemma 2.1. Let 1 ≤ r, q, r̃ , q̃ ≤ ∞ satisfy

1/r + 2/σ1q = 1/2, 1/r̃ + 2/σ1q̃ = 1/2 + 2/σ1 ,

1/2 − 1/σ1 < 1/r ≤ 1/2 ≤ 1/r̃ < 1/2 + 1/σ1 .

Then (2.11) and (2.15) hold with λ1 = λ2.

To use the bilinear estimate, we consider the sequence

P(h, g)≡
{〈∫

J∩It, j

U (t − τ)h(τ )dτ, g(t)

〉
t,x

}∞

j=− ∞
, It, j ≡

[
t+2 j , t+2 j+1] ,

in the following lemma. For r, q, r̃ and q̃, we put

β(r, q, r̃ , q̃) ≡ σ1

2

(
1

r
+ 2

σ1q
− 1

2

)
− σ2

2

(
1

r̃
+ 2

σ2q̃
− 1

2
− 2

σ2

)
.

For x ∈ R, x ∼ 0 means that x is sufficiently close to 0.
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Lemma 2.2. Let r, q, r̃ , q̃ satisfy q ≥ q̃,

(2.16)

1/r + 2/(σ1 + σ2)q < 1/2, β(r, q, r̃ , q̃) ∼ 0 ,

1/r ′ ≤ 1/r̃
{

< 1 − (σ2 − 2)/σ2r if σ2 ≥ 2 ,

≤ 1 if σ2 < 2 .

Then the following estimate holds.

(2.17)

∣∣∣∣∣
〈∫

J∩It, j

U (t − τ)h(τ )dτ, g

〉
t,x

∣∣∣∣∣
� 2β(r,q,r̃ ,q̃) j

∥∥h; Lq̃ B̄
−λ2α(r̃)

r̃

∥∥∥∥g; Lq′
B̄

−λ1α(r ′)
r ′

∥∥ .

Proof of Lemma 2.2. By the decay estimate (2.12) with σ1 �→ (σ1 +σ2)/2
and λ1 �→ (λ1 + λ2)/2, we have

(2.18)

∥∥∥∥∥
∫

J∩It, j

U (t − τ)h(τ )dτ ; B̄−λ1/2
∞

∥∥∥∥∥ � 2−(σ1+σ2) j/4
∥∥h; L1(It, j ; B̄

λ2/2
1 )
∥∥ .

Let 1/r̃0 = 1 − r/2r̃ ′. Then by (2.14) we have

(2.19)

∥∥∥∥∥
∫

J∩It, j

U (t − τ)h(τ )dτ ; B̄0
2

∥∥∥∥∥ �
∥∥h; Lq̃0

(
It, j ; B̄

−λ2α(r̃0)

r̃0

)∥∥ ,

where q̃0 is given by 1/r̃0+2/σ2q̃0 = 1/2+2/σ2. Interpolating (2.18) and (2.19),
we have

(2.20)

∥∥∥∥∥
∫

J∩It, j

U (t − τ)h(τ )dτ ;B̄−λ1α(r)
r

∥∥∥∥∥�2−(σ1+σ2)α(r) j/2
∥∥h;L'

(
It, j ;B̄

−λ2α(r̃)

r̃

)∥∥ ,

where 1/' ≡ 1 − σ2(1/r + 1/r̃ − 1)/2. Therefore by the Hölder inequality, we
have ∣∣∣∣∣

〈∫
J∩It, j

U (t − τ)h(τ )dτ, g

〉
t,x

∣∣∣∣∣
� 2−(σ1+σ2)α(r) j/2

∥∥∥∥h; L'
τ

(
It, j ; B̄

−λ2α(r̃)

r̃

)∥∥; Lq
t

∥∥ · ∥∥g; Lq′
B̄

−λ1α(r ′)
r ′

∥∥ .

Applying the Hölder and Minkowski inequalities to the norm of h by q ≥ q̃,
we have ∥∥‖h; L'

τ

(
It, j ; B̄

−λ2α(r̃)

r̃

)‖; Lq
t

∥∥ � 2(1/'−1/q̃+1/q) j
∥∥h; Lq̃ B̄

−λ2α(r̃)

r̃

∥∥
if q̃ ≥ '. Then we have the required results. The condition q̃ ≥ ' is satisfied
by (2.16).
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Lemma 2.2 is rewritten as the following corollary by the duality argument.

Corollary 2.1. Let r, q, r̃ , q̃ satisfy q ≥ q̃,

1/r̃ + 2/(σ1 + σ2)q̃ > 1/2 + 2/(σ1 + σ2), β(r, q, r̃ , q̃) ∼ 0 ,

1/r̃ ≤ 1/r ′
{

< 1 − (σ1 − 2)/σ1r̃ ′ if σ1 ≥ 2 ,

≤ 1 if σ1 < 2 .

Then the estimate (2.17) holds.

To show Proposition 2.1, below, we recall the following bilinear interpola-
tion due to O’Neil.

Lemma 2.3 [1, Section 3.13.5 (b)], [9, Lemma 6.1]. Let Aj , Bj , Cj , j = 0, 1,
be Banach spaces. Let T be a bilinear operator with boundedness properties as

T :


A0 × B0 → C0 ,

A0 × B1 → C1 ,

A1 × B0 → C1 .

Let θ0, θ1, r0, r1, r satisfy 0 < θ0, θ1, θ0 + θ1 < 1, 1 ≤ r0, r1, r ≤ ∞, 1 ≤ 1/r0 +
1/r1. Then T is a bounded bilinear operator as

T : (A0, A1)θ0,r0r × (B0, B1)θ1,r1r −→ (C0, C1)θ0+θ1,r ,

where (A0, A1)θ,r denotes the real interpolation space.

Proposition 2.1. Let r, q, r̃ , q̃ satisfy q > 1, q̃ ≤ q, β(r, q, r̃ , q̃) = 0,

(2.21)

1/r + 2/(σ1 + σ2)q < 1/2 if 1/r ′ ≤ 1/r̃ < (1 − (σ2 − 2)/σ2r) ∧ 1 ,

1/r̃ + 2/(σ1 + σ2)q̃ > 1/2 + 2/(σ1 + σ2)

if 1/r̃ ≤ 1/r ′ < (1 − (σ1 − 2)/σ1r̃ ′) ∧ 1 ,

where both conditions in (2.21) are assumed when r ′ = r̃ . Then (2.11) holds.

Proof of Proposition 2.1. Let r, q, r̃ , q̃ satisfy the assumptions in the
proposition, and let r∗ and r̃∗ be sufficiently close to r and r̃ , respectively.
Then by Lemma 2.2 and Corollary 2.1, we have

(2.22) P : Lq̃ B̄
−λ2α(r̃∗)

r̃∗ × Lq′
B̄

−λ1α(r ′∗)

r ′∗
−→ '−β(r∗,q,r̃∗,q̃)

∞ ,

where 's
q = Lq(Z, 2s j d j) for s ∈ R, 1 ≤ q ≤ ∞, where dj denotes the point-

mass 1 at j . Applying Lemma 2.3 with r0 = r1 = 2, r = 1 to (2.22), and
using the facts that

• (L p, L p)θ,r = L p for 1 ≤ p, r ≤ ∞ ,

• (Bs0
p0

, Bs1
p1

)θ,2 ←↩ (Bs0
p0

, Bs1
p1

)θ,p = Bs
p

for s0, s1 ∈R, 1≤ p0, p1 ≤2, s =(1 − θ)s0+θs1, 1/p=(1 − θ)/p0+θ/p1 ,

• ('s0∞, 's1∞)θ,1 = 's
1 for s = (1 − θ)s0 + θs1, s0 
= s1 ,

0 < θ < 1 (see [1, Theorems 3.4.1, 6.4.5. 5.6.1]), we have

P : Lq̃ B̄
−λ2α(r̃)

r̃ × Lq′
B̄

−λ1α(r ′)
r ′ −→ '0

1 .

Since q ′, r ′ 
= ∞, we obtain (2.11).
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The next corollary follows from the above proposition and Lemma 2.1
immediately.

Corollary 2.2. Let r, q, r̃ , q̃ satisfy

1/r +2/σ1q = 1/2, σ1/2(σ1 +2) ≤ 1/r ≤ 1/2, 1/r̃ = 1/q̃ = (σ2 +4)/2(σ2 +2) .

Then (2.11) and (2.15) hold.

We put a, b as follows.

a ≡ (σ1 + σ2 − 4)/2(σ1 + σ2 − 2), b ≡ (σ1 + σ2 − 4)/2(σ1 + σ2) .

Corollary 2.3. Let σ1, σ2, r, q, r̃ , q̃ satisfy

σ1, σ2 ≥ 2, 1/r ′ ≤ 1/r̃ , b ≤ 1/r < 1/2 ,(2.23)

1/r + 2/σ1q = 1/2, 1/r̃ + 2/σ2q̃ = 1/2 + 2/σ2 ,(2.24)

1/r̃
{

< 1 − (σ2 − 2)/σ2r if a ≤ 1/r,

≤ 1/2 + 2/σ2 − σ1α(r)/σ2 if 1/r < a .
(2.25)

Then (2.11) holds. Moreover q = q̃ if 1/r̃ equals to the RHS of the last inequality,
and q > q̃ otherwise.

Proof of Corollary 2.3. The condition b ≤ 1/r is needed for the existence
of r̃ in (2.25) when 1/r < a. The conditions β(r, q, r̃ , q̃) = 0 and (2.21)
follow from (2.24). The index r which satisfies (2.24) with q = q̃ and 1/r̃ =
1 − (σ2 − 2)/σ2r is given by 1/r = a. If a ≤ 1/r and 1/r̃ < 1 − (σ2 − 2)/σ2r ,
then q > q̃. If 1/r < a and 1/r̃ ≤ 1/2 + 2/σ2 − σ1α(r)/σ2, then q ≥ q̃ .

Corollary 2.4. Let 2 < σ2 ≤ σ1. Let r, q, r̃ , q̃ be given by

(1/r, 1/q) = (1/2 − 1/σ1, 1/2), (1/r̃ , 1/q̃) = (1/2 + 1/σ2, 1/2) .

Then (2.11) holds.

Proof of Corollary 2.4. Since r satisfies b ≤ 1/r < a by 2 < σ2 ≤ σ1 and
r̃ satisfies 1/r̃ = 1/2+2/σ2 −σ1α(r)/σ2, (2.11) follows from Corollary 2.3.

Applying the duality argument described in the proof of Lemma 2.1 to
Corollary 2.4 with σ1 = σ2, we have the following endpoint estimates for
Lemma 2.1.

Corollary 2.5. Let σ1 > 2. Let r, q, r̃ and q̃ satisfy

1/r + 2/σ1q = 1/2, 1/r̃ + 2/σ1q̃ = 1/2 + 2/σ1 ,

1/2 − 1/σ1 ≤ 1/r ≤ 1/2 ≤ 1/r̃ ≤ 1/2 + 1/σ1 .

Then (2.11) and (2.15) hold with λ1 = λ2.
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Remark 4. Corollary 2.5 has been shown in [9] for Schrödinger and wave
equations, and is applied to show the local well-posedness of NLW with

(2.26)
| f ( j)(u)| = O(|u|p− j ), j = 0, 1, p = 1 + 4(n − 1)/(n2 − 2n + 5),

s = (n − 3)/2(n − 1), n ≥ 4 ,

where r, q, r̃ , q̃ are taken as

1/r̃ = 1/2+1/(n−1), 1/q̃ = 1/2, 1/r = 1/r̃ −2/(n+1), 1/q = (n−1)α(r)/2 .

By Corollary 2.5, we can show the local well-posedness of NLKG with (2.26)
analogously.

Corollary 2.6. The conclusion of Corollary 2.3 holds with (2.23) replaced
by the following conditions

σ1 > 2, σ2 ≥ 2, 1/2 ≤ 1/r̃ , b ∨ (1/2 − 1/σ1) ≤ 1/r < 1/2 .

Proof of Corollary 2.6. By Corollary 2.5, we have

‖Gh; Lq B̄−λ1α(r)
r ‖ � ‖h; L1 B̄0

2‖ .

Interpolating this estimate and the conclusion of Corollary 2.3, we may replace
1/r ′ ≤ 1/r̃ in (2.23) with 1/2 ≤ 1/r̃ .

In the following lemma we show (2.11) for 1/r̃ = 1 − (σ2 − 2)/σ2r when
a < 1/r in Corollary 2.3. However, we were not able to obtain the estimate
when a = 1/r .

Lemma 2.4. Let σ1 > 2. Let r, q, r̃ , q̃ satisfy β(r, q, r̃ , q̃) = 0,

(σ1 − 2)/σ1r̃ ′ ≤ 1/r ≤ 1/r̃ ′ ,
1/r̃ + 2/(σ1 + σ2)q̃ > 1/2 + 2/(σ1 + σ2), 0 ≤ 1/q < 1/q̃ < 1 .(2.27)

Then (2.11) holds.

Proof of Lemma 2.4. Let r∗, q∗ be given by

1/r∗ = r̃ ′/2r, 1/r∗ + 2/σ1q∗ = 1/2 .

By (2.12) and (2.15), we have

∥∥|t |(σ1+σ2)/4U (t)φ; L∞(B̄−λ1/2
∞ , dw)

∥∥ � ‖φ; B̄
λ2/2
1 ‖ ,(2.28) ∥∥|t |(σ1+σ2)/4U (t)φ; Lq∗(B̄−λ1α(r∗)

r∗ , dw)
∥∥ � ‖φ; B̄0

2‖ ,(2.29)

where dw is the measure given by

dw(t) = |t |−(σ1+σ2)q∗/4dt
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and L p(X, dw) denotes the weighted Lebesgue space given by

‖u; L p(X, dw)‖ =
{∫

‖u(t); X‖pdw(t)
}1/p

.

Interpolating (2.28) and (2.29), we have∥∥|t |(σ1+σ2)/4U (t)φ; L'(B̄−λ1α(r)
r , dw)

∥∥ � ‖φ; B̄
−λ2α(r̃)

r̃ ‖ ,

which is rewritten by

(2.30)
∥∥|t |γ U (t)φ; L' B̄−λ1α(r)

r

∥∥ � ‖φ; B̄
−λ2α(r̃)

r̃ ‖ ,

where 1/' ≡ σ1(1 − 1/r̃ − 1/r)/2, γ ≡ −(σ1 + σ2)α(r̃)/2. Applying (2.30), we
have

|〈Gh, g〉| =
∫

ds
∫

dτ |〈U (τ )h(s), g(τ + s)〉|

� ‖h; Lq̃ B̄
−λ2α(r̃)

r̃ ‖ · ‖‖|τ |−γ g(τ + s); L'′
τ B̄

−λ1α(r ′)
r ′ ‖; Lq̃′

s ‖ .

If q̃, ' satisfy

(2.31) 0 < '′/q̃ ′ < '′/q ′ < 1 ,

then applying the Hardy-Littlewood-Sobolev inequality with β(r, q, r̃ , q̃) = 0,
we have

|〈Gh, g〉| � ‖h; Lq̃ B̄
−λ2α(r̃)

r̃ ‖‖g; Lq′
B̄

−λ1α(r ′)
r ′ ‖ .

Therefore we obtain (2.11). The condition (2.31) is satisfied by (2.27).

Applying the duality argument to Lemma 2.4, we have the following Corol-
lary.

Corollary 2.7. Let σ2 >2. Let r, q, r̃ , q̃ satisfy β(r, q, r̃ , q̃)=0, q̃ <q <∞,

1/r ′ ≤ 1/r̃ ≤ 1 − (σ2 − 2)/σ2r, 1/r + 2/(σ1 + σ2)q < 1/2 .

Then (2.11) holds.

Combining Corollary 2.6 with Corollary 2.7, we obtain the following corol-
lary.

Corollary 2.8. Let σ1 > 2, σ2 > 2. Let r, q, r̃ , q̃ satisfy

1/r +2/σ1q = 1/2, 1/r̃ +2/σ2q̃ =1/2+2/σ2, b ∨ ((σ1 − 2)/2σ1)≤1/r <1/2 ,

1/2 ≤ 1/r̃


≤ 1 − (σ2 − 2)/σ2r if a < 1/r ,

< 1 − (σ2 − 2)/σ2r if 1/r = a ,

≤ 1/2 + 2/σ2 − σ1α(r)/σ2 if 1/r < a .

Then (2.11) holds. Here q = q̃ if 1/r̃ equals to the RHS of the last inequality, and
q > q̃ otherwise.
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3. – Proof of Theorem 1.1

(1) Since f is written as a finite sum such that f = ∑'
j=1 f j with f j

satisfying N (s − s0, pj ) with p1 ≤ pj ≤ p2, we define σj and λj , 1 ≤ j ≤ ',
as σj = σ1, λj = λ1 for NLS and NLW,

σj = 4/(pj −1) if p(0) ≤ pj ≤ p(1/2), σj = n−1 if p(1/2) < pj ≤ p(s)

and λj = (σj + 2)/2 for NLKG. Then σj , λj , 1 ≤ j ≤ ', satisfy (2.10). For
µ ≥ 0, we define

Y µ ≡



L∞ Ḣµ ∩ Lq1 Ḃµ
q1

for NLS ,

L∞ Ḣµ ∩ Lq1 Ḃµ−1/2
q1

for NLW ,

L∞ Hµ ∩
'⋂

j=1

Lqj Bµ−1/2
qj

for NLKG ,

where qj ≡ 2(σj +2)/σj , 1 ≤ j ≤ '. By Corollary 2.2, in particular for NLKG,
we have

max
1≤ j≤'

‖Gh; Lqj B−1/2
qj

‖ � min
1≤ j≤'

‖h; L
q′

j B1/2
q′

j
‖ .

Therefore we have

(3.32) ‖�(u); Y µ‖�‖ *φ; H̄µ‖+
'∑

j=1


‖ f j (u);Lq′

1 Ḃµ

q′
1
‖ for NLS ,

‖ f j (u);L
q′

j B̄µ−1/2
q′

j
‖ for NLW, NLKG ,

where H̄s denotes Ḣµ for NLS, Ḣµ for NLW, Hµ for NLKG, and we have
used the property that (−�)µ/2 [resp. (1 − �)µ/2] is an isomorphism on Ḃ0

r
[resp. B0

r ] to Ḃ−µ
r [resp. B−µ

r ], 1 ≤ r ≤ ∞.

Lemma 3.1 [14, Lemma 2.2]. Let s > 0, 1 ≤ p < ∞. Let f satisfy N (s, p).
Let r̃ , m, r satisfy 1 ≤ r̃ < ∞, 2 ≤ m, r < ∞,

1/r̃ = (p − 1)/m + 1/r .

Then
‖ f (u); Ḃs

r̃ ‖ � ‖u; Ḃ0
m‖p−1‖u; Ḃs

r ‖ ,

where Ḃ may be replaced by B.

There exist (r∗
j , q∗

j ) such that

1/r∗
j + 2/σj q

∗
j = 1/2, 0 < 1/q∗

j ≤ 1/qj , 1/q ′
j = (pj − 1)/q∗

j + 1/qj ,

1/q∗
j =
{

1/r∗
j − s(pj )/n for NLS ,

1/r∗
j − (s(pj ) − λjα(r∗

j ))/n for NLW, NLKG .
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Indeed, the above q∗
j is given by (pj − 1)(σj + 2)/2. Therefore by Lemma 3.1

with the embedding B̄µ
r ↪→ B̄0

m for 1/r − µ/n = 1/m, µ ≥ 0, and the Hölder
inequality in time variable, the second terms on the RHS of (3.32) are estimated
by

(3.33)

'∑
j=1

‖u; L
q∗

j Ḃ
s(pj )

r∗
j

‖pj −1‖u; Lq1 Ḃµ
q1

‖ for NLS ,

'∑
j=1

‖u; L
q∗

j B̄
s(pj )−λj α(r∗

j )

r∗
j

‖pj −1‖u; Lqj B̄µ−1/2
qj

‖ for NLW, NLKG .

For δ > 0, M > 0, R > 0, we put

As(s(p1), s(p2), γ, δ) ≡ { *φ ∈ As(s(p1), s(p2), γ ) ; ‖ *φ; H̄s‖ ≤ δ
}

,

Xs(R, M) ≡
{

u ∈ Xs ; max
1≤ j≤'

‖u; Y s(pj )‖ ≤ R, ‖u; Y s‖ ≤ M
}

.

Then by (3.32), (3.33) and applying an analogous argument to d, we have

(3.34)



‖�(u); Y s‖ � δ +
'∑

j=1

R pj −1 M ,

max
1≤ j≤'

‖�(u); Y s(pj )‖ � γ +
'∑

j=1

R pj −1 R ,

d(u, v) �
'∑

j=1

R pj −1d(u, v)

for *φ ∈ As(s(p1), s(p2), γ, δ) and u, v ∈ Xs(R, M). � is a contraction map
on Xs(R, M) if the RHS of (3.34) are dominated by M, R, and d(u, v)/2,
respectively. Indeed, this is realized by putting M = 2δ and R = 2γ with γ

satisfying

(3.35) C
'∑

j=1

(2γ )pj −1 ≤ 1/2 .

Since Xs(R, M) endowed with metric d is a complete metric space, we obtain
the global solution u of INT if γ is sufficiently small. The continuity of u
in time variable follows from the unitarity of U and Lebesgue’s convergence
theorem.

To show the uniqueness of solutions in C(R; H̃ s)∩ Xs , let u and v be two
solutions with the same data. Then we have

d(u, vχT ) ≤ C
'∑

j=1

(‖u; Y s(pj )‖ ∨ ‖vχT ; Y s(pj )‖)pj −1d(u, vχT ) ,
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where χT (t) = 1 for |t | ≤ T , χT (t) = 0 for |t | ≥ T . Since the sum on the RHS
is smaller than 1/2 for sufficiently small T , we have u(t) = v(t) for |t | ≤ T .
Repeating this procedure, we obtain u(t) = v(t) for all t .

(2) The asymptotic states *φ± = φ± for NLS, *φ± = (φ±, ψ±) for NLW and
NLKG are given by

(3.36)

φ± = φ +
∫ ± ∞

0
U (−τ) f (u(τ ))dτ for NLS ,

φ± = φ −
∫ ± ∞

0

sin τω

ω
f (u(τ ))dτ,

ψ± = ψ +
∫ ± ∞

0
cos τω f (u(τ ))dτ for NLW, NLKG .

Let us consider NLKG. The required regularity φ± ∈ H s follows from

‖φ±; H s‖ ≤ ‖φ; H s‖ +
∥∥∥∥∫ ± ∞

t

sin(t − τ)ω

ω
f (u(τ ))dτ ; L∞ H s

∥∥∥∥
since the second term on RHS is finite by (3.32) and (3.33). Similarly we have
ψ± ∈ H s−1. Since *φ± satisfies

�(t) *φ± = �(t) *φ +
∫ ± ∞

0

sin(t − τ)ω

ω
f
(
u(τ )
)
dτ ,

we have

‖u(t) − �(t) *φ+; H s‖ ≤
∥∥∥∥∫ ∞

ν

sin(ν − τ)ω

ω
f (u(τ ))dτ ; L∞

ν ([t, ∞); H s)

∥∥∥∥
�

'∑
j=1

∥∥ f j (u); L
q′

j
(
[t, ∞); Bs−1/2

q′
j

)∥∥ .

Therefore we have ‖u(t) − �(t) *φ+; H s‖ → 0 as t → ∞. We obtain (1.5) by
an analogous argument for NLS and NLW. The uniqueness of states *φ± in H̃s

with (1.5) follows from the unitarity of U (t).

(3) The proof of (1) shows that there exists γ > 0 such that for any δ > 0
and any data *φ0 ∈ As(s(p1), s(p2), γ, δ), the operator �t0 , t0 ∈ [− ∞, ∞], given
by

�t0(u)(t) ≡ �(t − t0) *φ0 + G̃t0( f (u))(t) for t0 ∈ R ,

�± ∞(u)(t) ≡ �(t) *φ0 + G̃± ∞( f (u))(t) ,

has a unique fixed point in C(R; H̃ s) ∩ Xs(2γ, 2δ), and if t0 
= ±∞, then the
fixed point is also unique in C(R; H̃ s) ∩ Xs . Let *φ− ∈ As(s(p1), s(p2), γ /2).
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In particular, we have *φ− ∈ As(s(p1), s(p2), γ, 2‖ *φ−; H̄s‖). Then there exists
a unique fixed point u of �− ∞ with *φ0 replaced by *φ− in

W ≡ C(R; H̃ s) ∩ Xs(2γ, 4‖ *φ−; H̄s‖) .
Let *φ, *φ+ be defined by (3.36). Then it follows that *φ, *φ+ ∈ H̃s , and u is
a global solution of INT which satisfies (1.5). The above u is also unique
in C(R; H̃ s) ∩ Xs by the following argument. Let v be another solution in
C(R; H̃ s) ∩ Xs such that (1.5) holds for *φ−. Let

(3.37) *φt0 ≡ v(t0) for NLS, *φt0 ≡ (v(t0), ∂tv(t0)) for NLW, NLKG .

Then we have *φt0 ∈ As(s(p1), s(p2), γ, 2‖ *φ−; H̄s‖) for sufficiently small t0
by the convergence of the norms ‖ *φt0; H̄µ‖ −→ ‖*φ−; H̄µ‖ as t0 → − ∞ for
µ = s(p1), s(p2), s. Therefore �t0 with *φ0 replaced by *φt0 has a unique fixed
point in W , and the fixed point is also unique in C(R; H̃ s) ∩ Xs . Since v

satisfies v = �t0(v) with *φ0 replaced by *φt0 , we have v ∈ W . Moreover since
v satisfies v = �− ∞(v) with *φ0 replaced by *φ−, we obtain u = v by the
uniqueness of the fixed point of �− ∞ in W .

The correspondence between *φ− and *φ+ are given by

(3.38)

φ+ = φ− +
∫ ∞

− ∞
U (−τ) f (u(τ ))dτ for NLS ,

φ+ = φ− −
∫ ∞

− ∞
sin τω

ω
f (u(τ ))dτ,

ψ+ = ψ− +
∫ ∞

− ∞
cos τω f (u(τ ))dτ for NLW and NLKG ,

via global solutions with (1.5). The continuity of the scattering operator S :
*φ− �→ *φ+ is shown as follows. Let uk, k ≥ 1, be global solutions with
asymptotic states *φk

±. In particular uk is the fixed point of �− ∞ with *φ0

replaced by *φk
−. Let us consider NLKG. Then we have

d(u, uk) ≤ C‖ *φ − *φk;H1/2‖ + C
'∑

j=1

‖ f j (u) − f j (u
k); L

q′
j B0

q′
j
‖ .

Since the last term is dominated by d(u, uk)/2, we have d(u, uk) → 0 as
k → ∞. By (3.38), we have

‖φ+ − φk
+; H 1/2‖ ≤ ‖φ− − φk

−; H 1/2‖
+
∥∥∥∥∫ ∞

− ∞
sin(t − τ)ω

ω
( f (u(τ )) − f (uk(τ )))dτ ; L∞ H 1/2

∥∥∥∥
Since the last term is dominated by d(u, uk)/2, we obtain φk

+ → φ+ in H 1/2

as k → ∞. Similarly we also have ψk
+ → ψ+ in H−1/2 as k → ∞, and (1.6)
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follows from the complex interpolation Hµ = [H 1/2, H s(p2)]. The results for
NLS and NLW are obtained by an analogous argument.

(4) We use the following argument to show the uniqueness of solutions.
Let u, v ∈ C([−T, T ]; H̃ s), T > 0, be two solutions with the same data. Then
u and v satisfy

u − v =
'∑

j=1

G̃0
(

f j (u) − f j (v)
)
.

If there exist r, q, r̃j , q̃j , r∗
j , 1 ≤ j ≤ ', such that

‖G̃0h; Lq Lr‖ � ‖h; Lq̃j Lr̃j ‖ ,(3.39)

1/r̃j = (pj − 1)/r∗
j + 1/r, q ≥ q̃j , H̃ s ↪→ Lr ∩ Lrj ∗ ,(3.40)

then by the Hölder inequality we have

‖u − v; Lq Lr‖ �
'∑

j=1

T 1/q̃j −1/q(‖u; L∞ H̃ s‖ ∨ ‖v; L∞ H̃ s‖)pj −1‖u − v; Lq Lr‖ .

Therefore taking T sufficiently small if q > q̃j for 1 ≤ j ≤ ', and moreover
taking ‖u; L∞ H̃ s‖ sufficiently small if there exists j with q = q̃j , we have
u(t) = v(t), t ∈ [−T, T ], in H̃ s . Repeating this procedure, we obtain the
uniqueness in C(R; H̃ s).

Lemma 3.2. Let us consider NLS. Let s, p1 and p2 satisfy 0 ≤ s < n/2,
1 + min(2s/n, 2/n) ≤ p1 ≤ p2,

p2 ≤ 1 + (1 + 2s)/(1 − 2s) if n = 1, p2 ≤ 1 + (1 + s)/(1 − s) if n = 2,

p2 ≤ 1 + (2n + 4(n − 1)s)/n(n − 2s) if n ≥ 3 and 0 ≤ s < n/2(n − 1),

p2 < 1 + 4(n − 1)/n(n − 2) if n ≥ 3 and s = n/2(n − 1),

p2 ≤ 1 + 4/(n − 2s) if n ≥ 3 and n/2(n − 1) < s < n/2.

Then there exist r, q, r̃j , q̃j , r∗
j , 1 ≤ j ≤ ', with (3.39) and (3.40). Moreover q = q̃j

if and only if pj = 1 + 4/(n − 2s).

Proof of Lemma 3.2. Let r, q satisfy 1/r + 2/nq = 1/2 and

1/r = ((n − 2s)/2n
) ∨ ((n − 2)/2n

)
.

Let r̃j , q̃j , 1 ≤ j ≤ ', satisfy 1/r̃j + 2/nq̃j = 1/2 + 2/n, 1 ≤ r̃j ≤ 2 if n = 1,
1 < r̃j ≤ 2 if n = 2,

1/2≤1/r̃j


≤1 − (n−2)/nr if n ≥3, (n−2)/2(n − 1)<1/r ≤1/2,

<(n2+2n−4)/2n(n−1) if n ≥3, 1/r =(n−2)/2(n−1),

≤1/r +2/n if n ≥3, (n−2)/2n ≤1/r <(n−2)/2(n−1).

Then (3.39) follows from Lemma 2.1 for n = 1, 2 and Corollary 2.8 for n ≥ 3.
Let r∗

j satisfy
(n − 2s)/2n ≤ 1/r∗

j ≤ 1/2 .

We now take r̃j and r∗
j such that (3.40) holds. It happens q = qj if and only

if r = 2n/(n − 2), r̃j = r ′, r∗
j = 2n/(n − 2s), namely pj = 1 + 4/(n − 2s).
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Lemma 3.3. Let us consider NLW and NLKG. Let s, p1 satisfy 1/2 ≤ s < n/2,
p1 ≥ 1 + 4n/(n2 − 1) for NLW, p1 ≥ 1 + 4/(n + 1) for NLKG, and let p2 satisfy

p1 ≤ p2 ≤ 1 + 4n/(n + 1)(n − 2s) .

Then there exist r, q, r̃j , q̃j , r∗
j , 1 ≤ j ≤ ' with (3.39) and (3.40). Moreover q and

q̃j satisfy q > q̃j for 1 ≤ j ≤ '.

Proof of Lemma 3.3. Let r, q satisfy 1/r + 2/(n − 1)q = 1/2 and

1/r = ((n − 2s)/2n
) ∨ ((n − 1)/2(n + 1)

)
.

Let r̃j , q̃j satisfy 1/r̃j + 2/(n − 1)q̃j = 1/2 + 2/(n − 1) and

(3.41) 1/r̃j = 1/r + 2/(n + 1)

for 1 ≤ j ≤ '. Then (3.39) follows from Lemma 2.1 for n ≤ 3 and Corollary 2.8
for n ≥ 4. Let r∗

j satisfy

(n − 2s)/2n ≤ 1/r∗
j ≤
{

(n − 1)/2n for NLW ,

1/2 for NLKG .

We now take r∗
j such that (3.40) holds. Note that q and qj always satisfy

q > qj by (3.41).

If p1 and p2 satisfy the assumption in Theorem 1.1 with (1.7) and (1.8),
then by Lemmas 3.2 and 3.3 solutions of INT with the same data are unique
in C(R; H̃ s). Therefore the space Xs in (1) in the theorem is redundant.

To show that Xs in (3) in the theorem is removable, we use a similar
argument in (3) in this section. Let v be another solution in C(R; H̃ s) such
that (1.5) holds for *φ−. Then for sufficiently small t0, v is a fixed point of �t0

with *φ0 replaced by *φt0 which is defined by (3.37). Since the fixed point of
�t0 is unique in C(R; H̃ s) by Lemma 3.2 and 3.3, we have v ∈ Xs . Therefore
we obtain u = v by (3) in the theorem. So that we may remove Xs in (3) in
the theorem.

4. – Proof of Proposition 1.1

In Lemma 4.6, below, we show the uniqueness of solutions of NLW and
NLKG with the same data in C(I ; H̃ s) for any interval I in R. We follow
the method of the proof of Proposition 3.1 in [6]. Throughout this section,
we consider NLW and NLKG with n ≥ 3 and 1/2 ≤ s < n/2. We use
Lemma 2.1 for n = 3, Corollary 2.8 for n ≥ 4 with σ ≡ σ1 = σ2 = n − 1,
λ ≡ λ1 = λ2 = (n + 1)/2. We put δ(r) ≡ nα(r).
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Lemma 4.1. Let r satisfy

1/2(n − 2) ≤ α(r) ≤ 1/(n − 1) for n ≥ 4, 0 ≤ α(r) < 1/2 for n = 3 .

Let p satisfy

3n + 1

n2 − 1
≤ p − 1


≤ 2

n − 2s
min
(

2n

n + 1
, 2 − n−1

2 α(r)

)
for n ≥ 4 ,

<
3

3 − 2s
for n = 3 .

Let f satisfy N (s − 1/2, p). Then∥∥∥∥∥
∫ t

t0

U (t − τ)

ω
f (u(τ ))dτ : Lq(I ; B̄s−λα(r)

r )

∥∥∥∥∥ � |I |ν‖u; L∞(I ; H̃ s)‖p

for any u ∈ L∞(I ; H̃ s), where q ≡ 2/(n − 1)α(r) and ν > 0 is some constant, and
t0 is any point with t0 ∈ Ī ⊂ R.

Proof of Lemma 4.1. By the conditions on p, there exists s1 with 1/2 ≤
s1 ≤ s,

n + λ

λ
≤ (p − 1)(n − 2s1)

{ ≤ min
(

2n

λ
, 4 − (n − 1)α(r)

)
for n ≥ 4 ,

< 3 for n = 3 .

Let r̃ be given by α(r̃) = (2 − (p − 1)(n − 2s1))/(n − 1). Then r̃ satisfies
the condition α(r) − 2/(n − 1) < α(r̃) ≤ 0 for n ≥ 4 since 2 ≤ (p − 1)(n −
2s1) ≤ 4 − (n − 1)α(r), the condition −1/2 < α(r̃) ≤ 0 for n = 3 since
2 ≤ (p − 1)(n − 2s1) < 3. Therefore by Lemma 2.1 and Corollary 2.8, we have∥∥∥∥∥

∫ t

t0

U (t − τ)

ω
f (u(τ ))dτ ; Lq(I ; B̄s−λα(r)

r )

∥∥∥∥∥ � ‖ f (u); Lq̃(I ; B̄ρ∗
r̃ )‖ ,

where q, q̃, ρ∗ are given by

q = 2/(n − 1)α(r), 1/q̃ = (n − 1)α(r̃)/2 + 1, ρ∗ = s − λα(r̃) − 1 .

Here ρ∗ satisfies ρ∗ ≥ 0 since s ≥ 1/2 and (n + λ)/λ ≤ (p − 1)(n − 2s1). Let
r∗, r∗∗ be numbers with δ(r∗) = s1, 1/r̃ = (p −1)/r∗ +1/r∗∗. Then r∗∗ satisfies
δ(r∗∗) = λα(r̃) + 1, 0 ≤ α(r∗∗) < 1/2 since the last inequality is rewritten by
n(5 − n)/(n + 1) < (p − 1)(n − 2s1) ≤ 4n/(n + 1), which is satisfied by the
condition on s1. By Lemma 3.1 and the embeddings H̃ s1 ↪→ B̄0

r∗ , H̃ s ↪→ B̄ρ∗
r∗∗ ,

we have

‖ f (u); B̄ρ∗
r̃ ‖ � ‖u; B̄0

r∗‖p−1‖u; B̄ρ∗
r∗∗‖ � ‖u; H̃ s1‖p−1‖u; H̃ s‖ ,

so that we obtain the required result as ν = 1/q̃ > 0.
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Lemma 4.2. Let r, s, µ satisfy 2 ≤ r < ∞, 0 ≤ s ≤ µ < s + δ(r). Let r∗
satisfy

s ≤ δ(r∗) ≤ min
(

n

2
, µ,

sδ(r)

s + δ(r) − µ

)
.

Then
‖φ; B0

r∗‖ � ‖φ; H s‖1−θ‖φ; Bµ−δ(r)
r ‖θ

for any φ ∈ H s ∩ Bµ−δ(r)
r , where θ = (δ(r∗)−s)/(µ−s), B and H may be replaced

with Ḃ and Ḣ , respectively.

Proof of Lemma 4.2. By s ≤ δ(r∗) ≤ µ, θ satisfies 0 ≤ θ ≤ 1. Let ' be
a number given by α(') = θα(r). Then ' satisfies δ(m) − δ(') = (1 − θ)s +
θ(µ − δ(r)), and 1 ≤ ' ≤ m by s ≤ δ(r∗) ≤ sδ(r)/(s + δ(r) − µ). Therefore
by the embedding and interpolation, B0

r∗ ←↩ Bδ(r∗)−δ(')
' = (H s, Bµ−δ(r)

r )[θ ], we
obtain the conclusion.

Lemma 4.3. Let s satisfy the condition in Proposition 1.1. Let r, q satisfy

max
(

1

2(n−2)
,

4

n2−1
,

n−2s

n2−1

)
(4.42)

≤α(r) ≤ min
(

1

n − 1
,

2 + (n − 1)s

n2 − 1

)
for n ≥ 4 ,

α(r) = 1 − ε0

2
for n = 3 ,(4.43)

q = 2/(n − 1)α(r), where ε0 > 0 is a sufficiently small number. Let ε be a number
with 0 < ε ≤ (n − λ)α(r) for n ≥ 4, ε0 ≤ ε ≤ α(r) for n = 3. Let p satisfy
p = 1+4(1−ε)/(n−2s). Let f satisfy N (s −1/2, p). Then the following estimate
holds ∥∥∥∥∥

∫ t

t0

U (t − τ)

ω
f (u(τ ))dτ ; Lq(I ; B̄µ+ε−δ(r)

r )

∥∥∥∥∥
� |I |ε‖u; L∞(I ; H̃ s)‖p−1‖u; Lq(I ; B̄µ−δ(r)

r )‖
for any u ∈ L∞(I ; H̃ s)∩Lq(I ; B̄µ−δ(r)

r ), and anyµwith s ≤ µ ≤ s+(n−λ)α(r)−ε,
where t0 is any point with t0 ∈ Ī ⊂ R.

Proof of Lemma 4.3. First we note that there exists r with (4.42) for
n ≥ 4 by the conditions on s. Let r be any number with (4.42), (4.43), where
ε0 > 0 is a sufficiently small number determined later. Let r̃ , q̃ be given by

α(r̃) = α(r) − 1 − ε

n − λ
,

1

q̃
= σ

2
α(r̃) + 1 .

Then by Lemma 2.1 for n = 3, Corollary 2.8 for n ≥ 4, we have∥∥∥∥∫ U (t − τ)

ω
f (u(τ ))dτ ; Lq(I ; B̄µ+ε−δ(r)

r )

∥∥∥∥ � ‖ f (u); Lq̃(I ; B̄ρ∗
r̃ )‖ ,



456 MAKOTO NAKAMURA – TOHRU OZAWA

where ρ∗ = µ+ε− (n −λ)α(r)−λα(r̃)−1. Here ρ∗ satisfies ρ∗ ≥ 0 by µ ≥ s,
ε ≤ (n − λ)α(r) and

(4.44) α(r) ≤ (2 + (n − 1)s)/(n2 − 1) .

Let η = (s − ρ∗)/(s + δ(r) − µ). Then η satisfies 0 ≤ η ≤ 1 by µ ≤
s + (n − λ)α(r) − ε and

(4.45) 4(1 − ε)/(n2 − 1) ≤ α(r) .

Let r∗, r∗∗ satisfy

α(r∗∗) = ηα(r), 1/r̃ = (p − 1)/r∗ + 1/r∗∗ .

Then r∗ satisfies r∗ < ∞ by 2 < r , and

s ≤ δ(r∗) ≤ µ∗ ≡ min
(

n

2
, µ,

sδ(r)

s + δ(r) − µ

)
.

Indeed, the above inequalities are rewritten as
(s + (n − λ)α(r) − µ + 1 − ε)α(r) − (s + δ(r) − µ)(p − 1)(n − 2s)/2n

≤(s + (n − λ)α(r) − µ)α(r̃)

≤(s + (n − λ)α(r) − µ + 1 − ε)α(r) − (s + δ(r) − µ)(p − 1)(n − 2µ∗)/2n .

The first inequality is easily shown, while the second is rewritten as s + (n −
1)α(r) − µ ≥ a∗, where a∗ is given by

a∗ = 0 for µ ≥ n/2, a∗ = (s + δ(r) − µ)(n − 1)(n − 2µ)

n(n − 2s)
for δ(r)≤µ<n/2 ,

a∗ = (n − 1)(n(s − µ) + (n − 2s)δ(r))

n(n − 2s)
for s ≤ µ < δ(r) .

The cases for µ ≥ n/2 and s ≤ µ < δ(r) follow from µ ≤ s + (n − λ)α(r) − ε

and s ≥ 1/2, respectively. The case for δ(r) ≤ µ < n/2 is rewritten as

g(µ) ≡ (n − 1)(s + δ(r) − µ)(n − 2µ) − n(n − 2s)(s + (n − 1)α(r) − µ) ≤ 0 .

Since g(s) = 0 and g′′(µ) > 0, g(µ) ≤ 0 holds for s ≤ µ ≤ s + (n −λ)α(r)− ε

if g(s + (n − λ)α(r) − ε) ≤ 0, which is rewritten as

g1(ε) ≡
(

ε − n − 1

2
α(r)

)(
2ε + 2λα(r) − n − 2s

n − 1

)
≤ 0 .

Since g1((n − 1)α(r)/2) = 0 and g′′
1 (ε) > 0, g1(ε) ≤ 0 holds for 0 < ε ≤

(n − λ)α(r) if g1(0) ≤ 0, which is satisfied by the condition

(4.46) (n − 2s)/(n2 − 1) ≤ α(r) .

By Lemma 3.1, Lemma 4.2 and the interpolation B̄ρ∗
r∗∗ = (H̃ s, B̄µ−δ(r)

r )[η], we
have

‖ f (u); B̄ρ∗
r̃ ‖ � ‖u; H̃ s‖(1−θ)(p−1)+1−η‖u; B̄µ−δ(r)

r ‖θ(p−1)+η ,

where θ = (δ(r∗) − s)/(µ − s). Therefore we have

‖ f (u); Lq(I ; B̄ρ∗
r̃ )‖ � |I |ε‖u; L∞(I ; H̃ s)‖p−1‖u; Lq(I ; B̄µ−δ(r)

r )‖ ,

where we have used the properties θ(p − 1) + η = 1 and ε = 1/q̃ − 1/q. So
that we obtain the required result for n ≥ 4. For n = 3, the conditions (4.44),
(4.45), (4.46) follow from s ≥ 1, ε ≥ ε0, ε0 ≤ 2/(n + 1), respectively.
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Lemma 4.4. Let s satisfy the conditions in Proposition 1.1. Let r satisfy (4.42),
(4.43), where ε0 > 0 be sufficiently small, and let q ≡ 2/(n − 1)α(r). Let p1, p2
satisfy

3n + 1

n2 − 1
≤ p1 − 1 ≤ p2 − 1


≤ 4(1 − ε0)

3 − 2s
for n = 3 ,

<
4

n − 2s
for n ≥ 4 .

Let f satisfy N (s − 1/2, p1, p2). Then any solution u of NLW, or NLKG, in
C(I ; H̃ s) satisfies u ∈ Lq(I ; B̄s−λα(r)

r ), where I is any bounded interval in R.

Proof of Lemma 4.4. Let t0 be any point with t0 ∈ Ī . The solution u is
rewritten as

u(t) = (cos(t − t0)ω)u(t0)+ sin(t − t0)ω

ω
∂t u(t0)+

k∑
j=1

G̃t0 f j (u)+
'∑

j=k+1

G̃t0 f j (u) ,

where f j satisfies N (s − 1/2, p∗
j ) with

p1 ≤ p∗
1 ≤ · · · ≤ p∗

k < 1 + 4(1 − (n − λ)α(r))

n − 2s
≤ p∗

k+1 ≤ · · · ≤ p∗
' ≤ p2 .

Let εj , k + 1 ≤ j ≤ ', be numbers given by

pj − 1 = 4(1 − εj )/(n − 2s) .

We note that εk+1 ≥ · · · ≥ ε'. By Lemma 2.1 and Lemma 4.1, we have

u(t) −
'∑

j=k+1

G̃t0 f j (u) ∈ Lq(I ; B̄s−δ(r)
r ∩ B̄s−λα(r)

r ) .

By Lemma 4.3, we have

G̃t0 f j (u) ∈ Lq(I ; B̄s−δ(r)
r ∩ B̄

s+εj −δ(r)
r

)
↪→ Lq(I ; B̄s−δ(r)

r ∩ B̄s+ε'−δ(r)
r

)
for k + 1 ≤ j ≤ ', so that we have u ∈ Lq(I ; B̄s−δ(r)

r ∩ B̄
s+ε'−δ(r)
r ). Again by

Lemma 4.3, we have

G̃t0 f j (u) ∈ Lq(I ; B̄s−δ(r)
r ∩ B̄ρ1

r

)
↪→ Lq(I ; B̄s−δ(r)

r ∩ B̄ρ2
r

)
,

where ρ1 = (s +ε' +εj −δ(r))∧ (s −λα(r)), ρ2 = (s +2ε' −δ(r))∧ (s −λα(r)),
so that we have u ∈ Lq(I ; B̄s−δ(r)

r ∩ B̄
ρ2
r ). Repeating this procedure, we obtain

u ∈ Lq(I ; B̄s−λα(r)
r ).
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Lemma 4.5. Let s satisfy 1 ≤ s < 3/2 for n = 3, 5/8 ≤ s < 2 for n = 4,
1/2 ≤ s < n/2 for n ≥ 5. Let p satisfy p−1 ≤ 4/(n−2s), and p−1 ≥ 4n/(n2−1)

for NLW, p − 1 ≥ 4/(n + 1) for NLKG. Let f satisfy N (s − 1/2, p). Let r satisfy

(4.47)
max(1/2(n−2), (n−2s)/(n2−1))≤α(r)≤min(1/(n−1), s/λ) for n ≥ 4,

α(r) = (1 − ε0)/2 for n = 3,

where ε0 > 0 is some sufficiently small number. Then∥∥∥∥∥
∫ t

t0

U (t − τ)

ω
( f (u(τ ) − f (v(τ )))dτ ; Lq(I ; B̄0

r )

∥∥∥∥∥
�


|I |2/(n+1) max

w=u,v
‖w;L∞(I ; H̃ s)‖p−1‖u−v;Lq(I ;B̄0

r )‖
for p − 1 < 4n/(n + 1)(n − 2s) ,

|I |2−(p−1)(n−2s)/2max
w=u,v

‖w;L∞(I ;H̃ s)∩Lq(I ;B̄s−λα(r)
r )‖p−1‖u−v;Lq(I ;B̄0

r )‖
for p − 1 ≥ 4n/(n + 1)(n − 2s) ,

where q ≡ 2/(n − 1)α(r), t0 is any number with t0 ∈ Ī ⊂ R.

Proof of Lemma 4.5. First we note that there exists r with (4.47) by the
conditions on s. Let r̃ satisfy 1/r̃ = 1/r + 2/(n + 1). Then r̃ satisfies

α(r) − 2/(n − 1) < α(r̃) ≤ 0 for n ≥ 4, −1/2 < α(r̃) ≤ 0 for n = 3 .

By Lemma 2.1 and Corollary 2.8, we have∥∥∥∥∥
∫ t

t0

U (t − τ)

ω
( f (u(τ )) − f (v(τ )))dτ ; Lq(I ; B̄0

r )

∥∥∥∥∥ �
∥∥ f (u)− f (v); Lq̃(I ; B̄0

r̃ )
∥∥ ,

where 1/q̃ = (n −1)α(r̃)/2+1. Let r∗ satisfy r∗ = (p−1)(n +1)/2. If p−1 <

4n/(n + 1)(n − 2s), then r∗ satisfies 1/2 ≤ δ(r∗) < s for NLW, 0 ≤ δ(r∗) < s
for NLKG. By the Hölder inequality and the embedding H̃ s ↪→ Ḣ δ(r∗) ↪→ B̄0

r∗ ,
we have

‖ f (u) − f (v); B̄0
r̃ ‖ � max

w=u,v
‖w; H̃ s‖p−1‖u − v; B̄0

r ‖ .

So that we obtain the required result. If p − 1 ≥ 4n/(n + 1)(n − 2s), then r∗
satisfies

s ≤ δ(r∗) ≤ min(n/2, s + (n − λ)α(r), ns/λ)

since the above inequalities are satisfied if p and s satisfy

4n

(n + 1)(n − 2s)
≤ p − 1 ≤ 4

n − 2s
,

n

2
− min

(
n

2
, s + (n − λ)α(r),

ns

λ

)
≤ n(n − 2s)

2(n + 1)
,
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where the last inequality is satisfied by 1/2 ≤ s < n/2 and (n − 2s)/(n2 − 1) ≤
α(r). By Lemma 4.2, we have

‖ f (u) − f (v); B̄0
r̃ ‖ � max

w=u,v
‖w; H̃ s‖(1−θ)(p−1)‖w; B̄s−λα(r)

r ‖θ(p−1)‖u − v; B̄0
r ‖ ,

where θ = (δ(r∗) − s)/(µ − s). By the Hölder inequality in time variable, we
obtain the required result, where we use the property

1/q̃ − θ(p − 1)/q − 1/q = 2 − (p − 1)(n − 2s)/2 .

Lemma 4.6. Let n, s satisfy the conditions in Proposition 1.1. Let p1, p2 satisfy
p1 ≤ p2 < p(s), and p1 ≥ p(1/2) for NLW, p1 ≥ p(0) for NLKG. Let f satisfy
N (s − 1/2, p1, p2). Let u, v be solutions of NLW, or NLKG, in C(I ; H̃ s) with
(u(t0), ∂t u(t0)) = (v(t0), ∂tv(t0)) for some t0 ∈ I . Then u = v in C(I ; H̃ s).

Proof of Lemma 4.6. By the condition on s, there exists r which satisfies
(4.42), (4.43) with α(r) ≤ s/λ, where ε0 > 0 is taken as p2 − 1 ≤ 4(1 −
ε0)/(n − 2s) for n = 3. By Lemma 4.4, we have u, v ∈ Lq(I ; B̄s−λα(r)

r ) with
q = 2/(n − 1)α(r). Since u − v is rewritten by

u − v =
k∑

j=1

∫ t

t0

U (t − τ)

ω

(
f j (u(τ )) − f j (v(τ ))

)
dτ ,

where f j , 1 ≤ j ≤ k, satisfies N (s−1/2, p∗
j ) with p1 ≤ p∗

j ≤ p2, by Lemma 4.5
we have

‖u − v; Lq(I1; B̄0
r )‖

�
k∑

j=1

|I1|νj max
w=u,v

‖w; L∞(I1; H̃ s) ∩ Lq(I1; B̄s−λα(r)
r )‖p∗

j −1‖u − v; Lq(I1; B̄0
r )‖

for any I1 ⊂ R with t0 ∈ Ī1, |I1| < 1, where νj = min(2/(n + 1), 2 − (p∗
j −

1)(n−2s)/2), we note that u, v ∈ Lq(I1; B̄0
r ) by the embeddings Bs−λα(r)

r ↪→ B0
r

for NLKG, and Ḣ 1/2 ∩ Ḃs−λα(r)
r ↪→ Ḃ0

r for NLW. Taking I1 sufficiently small,
we have u = v in C(I1; H̃ s). Repeating this procedure, we obtain the required
results.
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Physique théorique 67 (1997), 259-296.

[16] H. Pecher, Nonlinear small data scattering for the wave and Klein–Gordon equation,
Math. Z. 185 (1984), 261-270.

[17] P. Ramond, “Field Theory”, Addison-Wesley Publishing Company, Advanced Book Pro-
gram, Redwood City, CA, 1990.

[18] W. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal. 41 (1981), 110-133.
[19] W. Strauss, Nonlinear scattering theory at low energy: sequel, J. Funct. Anal. 43 (1981),

281-293.
[20] H. Triebel, “Theory of Function Spaces”, Birkhäuser, Basel, 1983.
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