We show that the domain of the Ornstein-Uhlenbeck operator on equals the weighted Sobolev space , where is the corresponding invariant measure. Our approach relies on the operator sum method, namely the commutative and the non commutative Dore-Venni theorems.
@article{ASNSP_2002_5_1_2_471_0, author = {Metafune, Giorgio and Pr\"uss, Jan and Rhandi, Abdelaziz and Schnaubelt, Roland}, title = {The domain of the {Ornstein-Uhlenbeck} operator on an $L^p$-space with invariant measure}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {471--485}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {2}, year = {2002}, mrnumber = {1991148}, zbl = {1170.35375}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2002_5_1_2_471_0/} }
TY - JOUR AU - Metafune, Giorgio AU - Prüss, Jan AU - Rhandi, Abdelaziz AU - Schnaubelt, Roland TI - The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 471 EP - 485 VL - 1 IS - 2 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2002_5_1_2_471_0/ LA - en ID - ASNSP_2002_5_1_2_471_0 ER -
%0 Journal Article %A Metafune, Giorgio %A Prüss, Jan %A Rhandi, Abdelaziz %A Schnaubelt, Roland %T The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 471-485 %V 1 %N 2 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2002_5_1_2_471_0/ %G en %F ASNSP_2002_5_1_2_471_0
Metafune, Giorgio; Prüss, Jan; Rhandi, Abdelaziz; Schnaubelt, Roland. The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 2, pp. 471-485. http://archive.numdam.org/item/ASNSP_2002_5_1_2_471_0/
[1] Generation of analytic semigroups in the topology by elliptic operators in , Israel J. Math. 61 (1988), 235-255. | MR | Zbl
- ,[2] Generalized symmetric Ornstein-Uhlenbeck operators in : Littlewood-Paley-Stein inequalities and domains of generators, to appear in J. Funct. Anal. | MR
- ,[3] Symmetric Ornstein-Uhlenbeck generators: Characterizations and identification of domains, preprint.
- ,[4] Completely positive measures and Feller semigroups, Math. Ann. 287 (1990), 73-105. | MR | Zbl
- ,[5] Transference Methods in Analysis, Amer. Math. Society, 1977. | MR | Zbl
- ,[6] Characterization of the domain of an elliptic operator of infinitely many variables in spaces, Rend. Mat. Acc. Lincei 8 (1997), 101-105. | MR | Zbl
,[7] Perturbation of Ornstein-Uhlenbeck semigroups, Rend. Istit. Mat. Univ. Trieste 28 (1997), 101-126. | MR | Zbl
,[8] On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal. 131 (1995), 94-114. | MR | Zbl
- ,[9] On perturbations of symmetric Gaussian diffusions, Stochastic Anal. Appl. 17 (1999), 369-382. | MR | Zbl
- ,[10] Maximal regularity for elliptic equations with unbounded coefficients, to appear in Nonlinear Analysis TMA. | Zbl
- ,[11] “Stochastic Equations in Infinite Dimensions”, Cambridge University Press, 1992. | MR | Zbl
- ,[12] Regular densities of invariant measures in Hilbert spaces, J. Funct. Anal. 130 (1995), 427-449. | MR | Zbl
- ,[13] On the closedness of the sum of two closed operators, Math. Z. 196 (1987), 189-201. | MR | Zbl
- ,[14] On the Ornstein-Uhlenbeck operator in spaces with respect to invariant measures, Trans. Amer. Math. Soc. 349 (1997), 155-169. | MR | Zbl
,[15] -spectrum of Ornstein-Uhlenbeck operators, Ann. Sc. Norm. Sup. Pisa 30 (2001), 97-124. | Numdam | MR | Zbl
,[16] Spectrum of Ornstein-Uhlenbeck operators in spaces with respect to invariant measures, preprint. | Zbl
- - ,[17] A theorem of the Dore-Venni type for noncommuting operators, Trans. Amer. Math. Soc. 349 (1997), 4787-4814. | MR | Zbl
- ,[18] On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), 429-452. | MR | Zbl
- ,[19] Imaginary powers of elliptic second order differential operators in -space, Hiroshima Math. J. 23 (1993), 161-192. | MR | Zbl
- ,[20] Sobolev spaces over the Wiener space based on an Ornstein-Uhlenbeck operator, J. Math. Kyoto Univ. 32 (1992), 731-748. | MR | Zbl
,